

Cockshott, W., Gdura, Y. and Keir, P. (2012) Two alternative
implementations of automatic parallelisation. In: CPC 2012 16th
Workshop on Compilers for Parallel Computing, January 11-13, 2012,
Archivio Antico, Palazzo Bo, Padova, Italy.

http://eprints.gla.ac.uk/59134/

Deposited on: 18 January 2012

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

If arrays are �rst class values, programmers can specify in a concise man-
ner operations that are to be performed in parallel across whole arrays of data
without the need for explicit loop structures. As a result array languages lend
themselves to reasonably direct compilation onto parallel hardware.

2 The Machines

Our compilers are targeted at the Cell broadband engine and at Intel multi-core
machines using the new AVX instruction sets. These machines pose interesting
problems for automatic parallelisation because in the �rst case a heterogeneous
multi-core processor is involved, and the second case the compiler has to wrestle
with making the best use of both multi-core and SIMD parallelisation.

2.1 Cell Broadband Engine

The �rst generation Cell Broadband Engine [13,9] includes a 64-bit RISC Pow-
erPC processor element (PPE), augmented by 8 accelerators: SIMD synergistic
processor elements (SPE). The SPEs and PPE are all clocked at 3.2GHz. As
shown on �gure 1 along with a memory controller, and bus interface controller,
the PPE and SPEs are interconnected through an on-chip element interconnect
bus (EIB) with 96 bytes/cycle bandwidth. Rambus XDR DRAM memory de-
livers 12.8 Gb/s per 32-bit memory channel giving a total bandwidth of 25.6
Gb/s. The PPE has 32KB �rst-level instruction and data caches, and a 512KB
second-level cache, and implements IBM's �Amazon� PowerPC AS ISA. Pow-
erPC support for virtualisation and large page sizes is inherited, enabling the
PPE to support multiple operating systems. The PPE provides dual, in-order
instruction issue and is fed by two simultaneous hardware threads. The PPE has
32 general purpose registers, and 32 �oating-point registers; both are 64-bit. A
vector multimedia extension unit (VMX) also provides the PPE with its own set
of 32, 128-bit wide, SIMD registers using an Altivec SIMD ISA.

The SPEs are mainly designed for manipulating data. They are indepen-
dent simple SIMD RISC architectures that are very similar in function to vector
processors in which a single instruction operates on multiple data elements [1].
An SPE consists of two independent main components: a Synergistic Processing
Unit (SPU) and a Memory Flow Controller (MFC). Each SPU has 128 x 128-bit
registers and supports only 16-byte load and store operations and operates on
128-bit vector data types. It also has two parallel execution units and a 256KB

Fig. 1. Architecture of the Cell Broadband Engine.

(Cell SDK) installed. The Cell SDK includes two versions of GCC 4.1.1 targeting
the PPE and SPE respectively. Of the Cell's eight SPEs, only 6 are available to
us. One is lost due to increased fabrication yields; the other hosts the execution
of a hypervisor.

2.2 The Intel Sandybridge

The hardware for the Intel test used an Intel Sandy Bridge[29] with 4 compute
cores and one Graphics Processing Unit. Each core was hyperthreaded giving a
maximum of 8 simultaneous threads supported in hardware and the clockspeed
was 3.1 GHz.. Each core has its own level 1 caches for instruction and data each
of 32 kB, these are backed up with 256K of level 2 cache for each core. There
is a level 3 cache shared by all caches and synchonised via a high speed inter
processor ring bus. This ring bus architecture is similar to that used on the Cell
and the Larrabee[25].

From the standpoint of the compiler writer the most signi�cant feature
of the chip is that it is the �rst production machine to run the new AVX
instructions[10]. These introduce a number of novel features the most signi�-
cant of which are:

� The introduction of 3 address instructions as a general feature of the archi-
tecture. Up until now 3 address instructions on Intel chips had only been
used in integer multiplication.

� The extending of the XMM registers used in the SSE instructions to 256
bits. The full length registers are now called YMM registers. This greater

length allows, for instance, the parallel addition of 8 single precision �oating
point values in a single instruction.

� The introduction of unaligned multi-media addresses. In the original SSE
speci�cation memory addresses of 128 bit vectors had to be 16 byte aligned.
The withdrawal of this restriction allows more freedom in compiling parallel
operations on array slices.

L3

compute core

L1 I D

32K 32K

256 K L2

compute core

L1 I D

32K 32K

256 K L2

compute core

L1 I D

32K 32K

256 K L2

Fig. 2. Architecture of the Sandy Bridge chip.

The machine was running Linux and the C reference tests were compiled
with GCC version 4.1.2

3 The Compilers

We will describe the approaches taken by two compilers: an F compiler written
in Haskell that targets the IBM Cell, and a Pascal compiler implemented in
Java that targets both the IBM Cell and the Intel Sandybridge processor. We
will look in particular at the code generation and parallelisation strategies of the
two compilers.

3.1 Glasgow Pascal

The Glasgow Vector Pascal compiler is implemented in Java allowing a single
executable jar �le to be distributed for all platforms. The machine code to be
output is selected by a commandline �ag. This �ag selects one of a library of
code generator classes included in the jar �le. The optimising code generators

themselves are java classes which are automatically produced by a code generator
generator from formal speci�cations of the target processor instruction-sets[5].

The compiler will attempt to parallelise array statements across two dimen-
sions. It will attempt to distribute calculations of the rows of the result across
di�erent cores and attempt to parallelise the column results of each row us-
ing SIMD instructions. The degree of parallelism achieved depends both on the
width of the SIMD registers available, and on the number of cores available.

For example the executable statement in the following code:

var b,d:array[1..n,1..m] of real;
a:array[1..m] of real;

.....
b:= 1.5*(d+a);

is equivalent on a processor with no parallel hardware to the following loop
using the implicit index vector iota:

for iota[0]:=1 to n do
for iota[1]:=1 to m do
b[iota[0] ,iota[1]]:= 1.5*(d[iota[0],iota[1]]+a[iota[1]]);

but if we were using a machine with 8 element vector registers and 4 cores the
translation would produce something equivalent to the following pseudo-code:

parfor p :=0 to 3 do
for iota[0]:=1 to n step 4 do
for iota[1]:=1 to (m div 8)*8 step 8 do
b[iota[0]+p,iota[1]..iota[1]+7]:=
1.5*(d[iota[0]+p,iota[1]..iota[1]+7]+a[iota[1]..iota[1]+7]);

for iota[1]:=1+(m div 8)*8 to m do
b[iota[0] ,iota[1]]:= 1.5*(d[iota[0],iota[1]]+a[iota[1]]);

Although this above is pseudo-code, it captures the basic parallelisation
mechanism which allocates di�erent rows of the problem to threads and then
uses SIMD parallelism on the inner loop. Note the residual sequential code to
handle rows that are not a multiple of the vector length.

Parallelisation is entirely automatic, no pragmas or directives are needed
in the source code. Command line �ags indicate what hardware resources are
available to achieve parallelisation. So to compile a programmenbody.pas to
Sandybridge code one would issue the shell command:

vpc nbody -cpuAVX32 -cores4 -opt3
to specify the source �le, the processor, the number of available cores and

the optimisation level to use. The
in the s vecor n1ody.pas

When compiling for the Cell we use the same compiler as for the Sandy
Bridge but use a di�erent code generator class. In this case we specify that the
code generator has only one core available to it, but the core has very long SIMD
registers capable of holding 1024 �oating point numbers. The long SIMD reg-
isters are emulated at run time by a Virtual SIMD Machine(VSM) that runs
in parallel on the SPEs. The code generator plants code to initialise the virtual
machine on the SPEs at programme startup. It then generates PowerPC assem-
bly instructions that correspond to the sequential source code excluding array
expressions. Array expressions are translated into VSM opcodes using the basic
pattern shown earlier. The virtual SIMD instructions are implemented by the
Power PC writing virtual machine opcodes down hardware FIFOs to parallel
interpreters runing on the SPEs. The scheduling of operations on the SPEs and
the data transfers to them is thus done using the standard register allocation
mechanism of the code generator.

3.2 E]

The diagram in �gure 3 presents an overview of the executable components of
the toolchain associated with the E] compiler [20] at an operational level. E],
the O�oad C++ compiler, and the GNU toolchain all run under Cygwin on
Windows and produce a 32-bit ELF executable suitable for execution on the
PS3 under Linux. As shown, the SPU object �les are embedded within a PPU
object �le using the GNU ppu-embedspu tool. The compilation stages performed
by the GNU tools are fully con�gurable; and all such components are potentially
interchangeable.

The E] compiler accepts individual source programs written in the `F' pro-
gramming language, before translating them into the extended C++ dialect,
O�oad C++ [6]. The purpose of this transformation is to extract and partition
suitable `F' array expressions into multiple o�oad blocks, later compiled by the
O�oad compiler for parallel evaluation. Of course E] must also convert the base
language from `F'. The output language, O�oad C++, statically assigns each
pointer with an integer depth, 0 or 1, corresponding to a target in main memory
or in local store; outer or inner. This aspect transforms many `F' procedures
into template functions, parameterised by this o�oad depth.

The output by the E] compiler is in fact con�gurable using embedded `C'
preprocessor macros embedded. With the appropriate (default) macros set, the
extended O�oad C++ portions of the generated code may either be enabled,
facilitating parallel execution, or disabled, providing serial C++ code may be
compiled by any C++ compiler. The existence of this serial reference has proced
highly useful for debugging, testing, and also performance pro�ling.

The O�oad compiler may then be provided with extended C++ output
from the E] compiler as input, and may need access to a Fortran runtime library
compatible with the PPU, the SPU, or both. E] has developed a templated C++
class, ArrayT, parameterised by o�oad depth, and providing a cross-vendor ABI-
compatible array interface to all Fortran runtime libraries, using the low-level
Chasm Interoperability Tools [22].

F

?

E] compiler

O�oad C++
?

O�oad compiler

C �
��	

PPU-GCC compiler

C@
@@R

SPU-GCC compiler

PPU
Object File

?

PPU-G++ compiler

SPU
Object File
?

PPU-EMBEDSPU tool

PPU
Object File�

?
elf32-powerpc

Fig. 3. The E] compiler and the system at-large.

Sony's Multicore Application Runtime System (MARS) libraries are used to
implement the threading support required by the O�oad runtime system.

The O�oad compiler can also be invoked with the -nomake switch, in which
case the generated source and make�les are not deleted; and the GNU make tool
is not applied. This option is essential when di�erent tools, or versions other than
the defaults, are required. For example, in the con�guration shown in �gure 3, the

4 An example application

We will take as an example of how these compilers work a benchmark programme
for N-body simulation. We will show how the use of array operations allows au-
tomatic parallelisation of the code to di�erent target architectures without the
need for any pragmas or process directives. We will also present measurements
of the performance gains that we have obtained with this approach. The N-body

Table 2. More detailed performance of Pascal on the Cell

N-body Performance (seconds) per Iteration
Problem Pascal C
Size PPE 1 SPE 2 SPEs 4 SPEsPPE
1K 0.381 0.105 0.065 0.048 0.045
4K 4.852 1.387 0.782 0.470 0.771
8K 20.35 5.715 3.334 2.056 3.232
16K 100.2 22.27 13.24 8.086 16.52

Tanikawa and collaborators [26] report a similar experiment the use of the AVX
instructions to accelerate a version of the N-body problem, but this version is
not directly comparable with the SICSA work both because it uses a more so-
phisticated Hermite technique and because their kernels were hand coded in
assembler. The version reported by Sampson[23] is intermediate between a high
level language and a low level one, since it required the explicit use of machine
speci�c SSE intrinsics. All other implementations reported in Table 1 use ma-
chine independent high level language source codes. Note that the parallel Pascal
on the Cell gives only roughly the same speed as sequential C in table 1, but for
N > 1024, Gdura[19] reported appreciable acceleration over C.

The N body problem is inherently of orderN2 in the number of planets since
it is necessary to compute the gravitational force between each pair of bodies.

force matrix has to be computed, meaning that parallel code has to do more
arithmetic than sequential code. The Pascal version of the advance function is

type coord = record pos: array[1..3] of realt;end;
procedure MAadvance(dt : realt);
var i,j :integer;

dv:array[1..n,1..1] of coord;
begin

dv:=computevelocitychange(iota[0],dt);
for i:= 1 to N do

for j:= 1 to 3 do v^[j,i]:=v^[j,i]+ dv[i,1].pos[j];
(*! Finally update positions. *)

x^ := x^ + v^ *dt;
end;

The array dv is a column vector whose elements are coordinates. The assignment
to dv in the �rst line of the function computes in parallel the �v values for all
planets. These are then used to update the velocities. The �nal line computes
the changes in position for all bodies, again in parallel. The compiled code uses
a mixture of SIMD and multi-core parallelism. The E] and Fortran version of
the algorithm uses a more sophisticated decomposition based on [15] but it uses
a Fortran elemental function mapped over an array in a similar manner.

elemental function calc_accel_p(pchunk) result(accel)
type(pchunk2d), intent(in) :: pchunk
type(accel_chunk) :: accel
real(kind=ki) :: dx, dy, dz, distSqr, distSixth, invDistCubed, s
integer :: i, j
accel%avec3 = vec3(0.0_ki, 0.0_ki, 0.0_ki)
do i=1,size(pchunk%ivec4)

do j=1,size(pchunk%jvec4)
dx = pchunk%ivec4(i)%x - pchunk%jvec4(j)%x
dy = pchunk%ivec4(i)%y - pchunk%jvec4(j)%y
dz = pchunk%ivec4(i)%z - pchunk%jvec4(j)%z
distSqr = dx*dx + dy*dy + dz*dz + EPS
distSixth = distSqr * distSqr * distSqr
invDistCubed = 1.0_ki / sqrt(distSixth)
s = pchunk%jvec4(j)%w * invDistCubed
accel%avec3(i)%x = accel%avec3(i)%x - dx * s
accel%avec3(i)%y = accel%avec3(i)%y - dy * s
accel%avec3(i)%z = accel%avec3(i)%z - dz * s

end do
end do

end function calc_accel_p

If we consider the general complexity of this problem under parallelism, one
component of the execution time should shrink as the number of processors in-
creases. During each round of the simulation, the program has to accumulate the
gravitational forces imposed on each body by all other bodies. Since these calcu-
lations are independent, they can in principle be done using di�erent processors
in parallel. If p is the number of processors, this stage should have a cost�N2

p ,
for some constant�. After this calculation has been done, all of the processors
would have to ensure that all other processors have access to the same updated
data on planetary positions. For a uni-processor this is unproblematic � there is
only a single state vector in memory. For multi-processors, however, depending
on their design, this communications phase can be an appreciable overhead. If
the communications is done naively, the data-transfer cost is� p2N

5 Conclusions

We have demonstrated that array versions of two classic imperative languages
Fortran and Pascal can be a suitable tool when targeting modern multi-core pro-
cessors. The addition of array mapping operations gives imperative languages the
same advantages of concise notation that functional languages gain through list
mapping. Such maps lend themselves well to expressing parallel operations. Be-
cause of the inherently simpler compilation model of imperative languages it
is possible to translate simple data parallel expressions into fast code. On ho-
mogenous multi-core machines the array language gave performance markedly
superior to other languages with explicit support for parallelism. Only by the
use of SIMD intrinsics and explicit thread libraries was C++ able to give com-
parable results. On the hetrogenous Cell architecture, we have shown two dis-
tinct approaches to implementing array parallel operations. Whilst each of these

9. H. Peter Hofstee. Power E�cient Processor Architecture and The Cell Processor.
In HPCA, pages 258�262. IEEE Computer Society, 2005.

10. Intel. Combined Volume Set of Intel 64 and IA-32 Architectures Software Devel-
oper’s Manuals, 2011.

11. ISO. Pascal ISO 7185, 1990.
12. K. Iverson. A programming language. Wiley, New York, 1966.
13. J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D. Shippy.

Introduction to the Cell multiprocessor. IBM Journal of Research and Develop-
ment, 49(4.5):589�604, July 2005.

14. P. Keir. All-pairs n-body in Fortran for CellBE . SICSA Multi-core Challenge
Phase II Workshop, May 2011.

15. Mark Harris Lars Nyland and Jan Prins. Fast n-body simulation with cuda. In
Hubert Nguyen, editor, GPU Gems 3, pages 677�694. Addison-Wesley Professional,
2007.

16. Hans-Wolfgang Loidl. A C# implementation of the n-body problem . SICSA
Multi-core Challenge Phase II Workshop, May 2011.

17. Iain McGinniss. Naive approaches to n-body parallelism using Google Go . SICSA
Multi-core Challenge Phase II Workshop, May 2011.

18. M Metcalf and J Reid. The F Programming Language. Oxford Univesity Press,
1996.

19. Y. Gdura P. Cockshott. Vector Pascal implementations running on Nehalem and
Cell processors . SICSA Multi-core Challenge Phase II Workshop, May 2011.

20. P. Cockshott P. Keir and A. Richards. Mainstream parallel array programming on
cell. In Proceedings of the 5th Workshop on Highly Parallel Processing on a Chip
(HPPC 11), 2011.

21. R.H. Perrott, D. Crookes, P. Milligan, and W.R.M. Purdy. A compiler for an
array and vector processing language.

	eprintcoversheet.pdf
	0B0B0Bhttp://eprints.gla.ac.uk/59134/

