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Abstract

A three-stage approach to system identification in the continuous-time is presented which is ap-
propriate for day-to-day application by plant engineers inthe process industry. The three stages are:
data acquisition using relay feedback; non-parametric identification of the system step response;
and parametric model fitting of the identified step-response. The method is evaluated on a pilot-
scale food-cooking extruder.
Keywords: Continuous time systems, relay feedback control, Least squares, frequency do-
main, state variable filters, time domain

1 Introduction

The food-cooking extruder is an important processing unit within the food manufacturing industry.
However, product quality control is often open-loop and thus significant improvements to food
quality and throughput can be expected by the use of closed-loop quality control. It has been shown
previously that model-based predictive control can be successfully applied to this problem (for
example Wang et al.(2001)). It is known that to design such a control system, a suitable model of
the food-cooking extruder is required. Unfortunately, because the extrusion cooking process has
strong interactions between mass, energy and momentum transfer, coupled with complex physico-
chemical transformations, it is hard to derive a mathematical model from first principles. Moreover,
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such models can be overly complex for the purposes of model-based predictive control. For these
reasons, the use of system identification to deduce a suitable model from input-output data is a
more practical approach to building mathematical models ofthe food-cooking extruder suitable for
model-based predictive control.

It is our experience that whilst process engineers in the food industry have a good intuitive grasp
of the processes based on their engineering knowledge and experience, they have little experience
of system identification techniques. For this reason, system identification will only be accepted
in the process industries if each stage has a transparent result that relates directly to the knowledge
and experience of industrial process engineers. This paperpresents a three stage approach to system
identification and demonstrates that each stage is both simple to apply and transparent in its results.
The three stages are:

Data Acquisition using Relay Feedback:An automated technique for experimental data acquisi-
tion based on the relay feedback approach ofÅström and Hagglund (1984), but with modified
periodic oscillations (Wang et al., 1999).

Step Response using Frequency-sampling Filters:Identification of the system step response from
the experimental data using the Frequency-sampling Filter(FSF) approach of Wang and
Cluett (1997).

Continuous-time Transfer-function Identification: Identification of a (continuous-time) transfer
function from the identified step response.

Each stage is automated, yet the output of each stage is readily understandable and can be exam-
ined by the process engineer before proceeding to the next stage. Thus the first stage yields data
corresponding to square waves at the correct frequency to yield useful information and the process
engineer can adjust input and output amplitudes according to his knowledge of process behaviour.
The second stage gives a step response which is much ’cleaner’ (in terms of noise and disturbance)
than that obtained by a simple step response experiment and therefore can be matched to the expe-
rience and intuition of the engineer. The third stage yieldsa transfer function approximation to the
step; the order of the transfer function can be chosen by the process engineer to trade off accuracy
against complexity whilst yielding numerical values for steady-state gains, time constants, natural
frequencies and damping.

One of the essential ideas behind the proposed approach is associated with the idea of ’data
compression’ in which the process experimental data using binary input signals are compressed
into step responses. During this compression process well-established system identification tools
and methods in discrete systems can be applied to obtain highquality step response models. High
quality step response models with little noise will lead to the estimation of continuous time transfer
function models with high accuracy(as demonstrated in thispaper). In addition, the number of
data points contained in a step response model is far less than the number of data points in a set of
process experimental data using a binary input signal, which is inevitably advantageous in numerical
computation of a continuous time transfer function model. It is worthwhile to point out that use of
state-variable filters in the estimation of a continuous time transfer function model is essential for
overcoming the well-known lack of excitation problem (Ljung, 1987) when a step input signal is
used.

There was an attempt to identify a continuous time transfer function model of food extruder di-
rectly from input and output data using state-variable filter approach (Wang et al., 2001). However,
because of the high noise level existed in the measurement offood extruder, it was numerically sen-
sitive for the estimation of the pole locations in the continuous time model, as well as for the choice
of state variable filters, even though a large number of experimental data were used. In contrast, in
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the proposed approach as the continuous time system estimation is set on the second stage of the
estimation problem, it is anticipated that higher quality continuous time models will be obtained
when there is little noise in the step response data.

Although none of these stages proposed in the paper are novel, the contribution of the paper
is to combine them in a novel way and to verify the approach in an industrial application context.
Section 2 considers the first stage; Section 3 considers the second stage and Section 4 considers the
third stage. Section 5 contains the experimental evaluation of the procedure and Section 6 draws
some conclusions.

2 Data Acquisition using Relay Feedback

A simple relay is a nonlinear element that switches between the levels−a and+a based on the error
signale and generates a square wave input signalu to the process. In the extruder case, the process
outputs are corrupted with noise, hysteresis is added to therelay to reduce the effect of the noise
(see Figure 1). Adding hysteresis to the relay produces a dead-zone to prevent the relay signal from
switching due to the noise. It is well known that if the width of the hysteresisε equals zero, then
the oscillation frequency corresponds to the cross over frequency of the process under the feedback
control. An integrator in series to the relay element generates a stable oscillation with the dominant
frequency corresponding to−900 on the Nyquist plot (̊Aström and Hagglund, 1984).

A standard relay experiment produces in most cases a limit cycle dominated by a single fre-
quency. However, this information is not sufficient for the estimation of a continuous time transfer
function model. The strategy we adopt in the identification experiment design was introduced in
Wang et al. (1999) and applied by Wang and Gawthrop (2001) to simulation studies of continuous
time system identification, in which we make use of multiple relay experiments to generate fre-
quency response information at several frequencies. The proposed apparatus combines in parallel a
relay element with an integrator in series with a relay element. Figure 1 provides a block diagram of
this apparatus. The experiment is performed by alternatively switching the error signal between the
relay path and the integrator-relay path. The design of the experiment then reduces to the selection
of this switching sequence. The proposed relay experiment on its own provides some interesting
ideas about how to design input signals for continuous time identification. One of the main benefits
of the apparatus is that the design of an identification experiment suitable for obtaining a mathe-
matical model has now been automated. In addition, choice ofsampling rate can be set to near
continuous measurement.

3 Step Response Estimation using Frequency-sampling Fil-
ters

The step responseof a system is a standard non-parametric representation, which reflects system
time delay, gain and response time in an intuitive way. It is called non-parametric (in contrast to
parametric) in the sense that the process dynamics is captured by a set of response coefficients,
instead of description of process poles and zeros. Step response representation is invariant between
system descriptions in continuous time and discrete time atthe sampling instant. It can be derived
through direct plant step response test at the situations where the plant is relatively disturbance-free
and its response time is relatively short (Rake, 1980). However, in many engineering applications,
plant step response is estimated from a set of plant input andoutput data generated from a more
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extensive plant experiment such as the proposed relay experiment above. In the estimation of step
response, it is assumed that a discrete-time-domain finite impulse-response (FIR) model(Ljung,
1987) of the form below is used to describe a stable system through the input and output relation:

y(k) =

N−1
∑

m=0

hmu(k −m) + v(k) (1)

wherey(k) andu(k), k = 0, 1, 2, . . . , are the set of plant input and output response data;hm,
m = 0, 1, 2 . . . , N − 1 are the impulse response coefficients. Upon obtaining the estimatedhm,
step response coefficients can be constructed as shown lateron. The core technique here is to use
an FIR model to describe the process. Supposing that the plant settling time isT and the sample
interval is∆t, the basic approach is to directly identify theN = T

∆t
coefficientshm corresponding

to timest = 0,∆t, . . . , T . This approach has a number of disadvantages: in particularas∆t gets
small (fast sampling), the number of parameters gets large;and the estimated step is not smooth as
each estimated parameter is a random variable.

A growing methodology in the field of system identification uses basis functions (see Wahlberg
(1991), Ninness and Gustafsson (1997) and Wang and Cluett(2000)). The FIR approach mentioned
above is a special case of the basis function approach where the (time-domain) basis functions are
δk(i) where:

δk(i) =

{

1 i = k

0 i 6= k
(2)

The frequency domain equivalent is to represent the transfer function as a weighted sum of filters
of the form:

H l
fir =

1

zl
(3)

with multiple poles atz = 0.
The disadvantages of the FIR approach (particularly in the case whenN is large) can be re-

moved by using a set ofn � N basis functions which are more sophisticated than those of (2) or
(3). In particular we use the set of basis functions corresponding to the step response of a set of
discrete-timeFrequency-sampling filters(FSF) developed by Wang and Cluett(1997). As the name
suggests, these filters have poles on the z-plane unit circleuniformly spaced by a frequency-domain
sampling intervalΩ = 2π

N
. In particular,n is chosen to be an odd number and the filter poles are at:

1, e±jΩ, e±2jΩ, . . . , e±
n−1

2
jΩ, which guarantees that the frequency sampling filters appear in com-

plex conjugate pairs. Figure 2 shows the location of the filter poles whenn = 9 andN = 50. More
specifically thelth discrete-time filterH l(z)(with pole atejlΩ ) is given by:

H l(z) =
1

N

1 − z−N

1 − ejlΩz−1
(4)

and the set of n filters (with poles given by Figure 2) is given by (4) with −n−1
2 ≤ l ≤ n−1

2 . A
systemG(z) with this set of poles can then be represented in partial fraction (pole/residue) form as
the weighted sum of the set of filters where the weights are thecomplex residues ofG(z) at thelth
pole:

G(z) =

n−1
2

∑

l=−
n−1

2

G(ejlΩ)H l(z) (5)
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Thelth frequency sampling filter can also be written in a complex geometric series expansion as

H l(z) =
1

N
(1 + ejlΩz−1 + ej2lΩz−2 + . . .+ ej(N−1)lΩz−(N−1)) (6)

At z = ejlΩ,H l(z) = 1.
Note that (for|l| > 0) the weightsG(ejlΩ) occur in complex conjugate pairs corresponding to

the complex-conjugate filter poles of Figure 2. These first order, complex filters appearing in pairs
can always be rewritten as an equivalent second-order, real, filters. Thus it is always possible to
deal in real numbers only. However, as is usual in filter theory, it is simpler to develop the theory
in first-order, complex, form. Ifn = N , the FIR model is a linear transformation of the FSF model
(5). However, ifn < N , the FSF filter representation is alow-pass filteredrepresentation of the
process as the filters corresponding to the points marked as� in Figure 2 have been removed. In
the context of system identification (and assuming thatn−1

2 Ω is significantly larger than the system
bandwidth), this has the useful effect of removing the corrupting effect of high frequency noise and
gives a smooth estimated step response.

To be more precise, with description of the system using frequency sampling filters, it is as-
sumed that the system response can be described by

y(k) =

n−1
2

∑

l=−
n−1

2

G(ejlΩ)H l(z)u(k) + v(k) (7)

for a suitable choice ofG(ejlΩ)′s, whereu(k) is the process input,y(k) is the process output
andv(k) is the disturbance signal. Figure 3 shows the system input-and-output relationship using
frequency sampling filter model. The outputy(k) can be expressed in a linear regression form by
defining the parameter vector as

θ =
[

G(ej0) G(ejΩ) G(e−jΩ) . . . G(ej
n−1

2
Ω) G(e−j n−1

2
Ω)

]∗

and the regressor vector as

φ(k) =
[

f(k)0 f(k)1 f(k)−1 . . . f(k)
n−1

2 f(k)−
n−1

2

]∗

where

f(k)r =
1

N

1 − z−N

1 − ejrΩz−1

for r = 0,±1,±2, . . . ,±n−1
2 , andA∗ is defined as complex conjugate transpose ofA. This allows

us to rewrite equation (7) as
y(k) = φ(k)∗θ + v(k) (8)

Given a set of sampled finite amount of data{y(1), y(2), y(3), . . . , y(M)} and
{u(1), u(2), u(3), . . . , u(M)}, we can obtain an estimate of the frequency sampling filter model
using Least Squares. More specifically, we can chooseθ to minimise a performance index of the
form

J =

M
∑

k=1

|y(k) − φ(k)∗θ|2 (9)
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If we define

ΦM =















φ(1)∗

φ(2)∗

φ(3)∗

φ(4)∗

...















;YM =















y(1)
y(2)
y(3)
y(4)

...















then the Least Squares estimate is

θ̂ = (Φ∗

MΦM)−1Φ∗

MYM (10)

Upon obtaining the estimate of the process frequency response parameters, the estimate of the step
response at sampling instantm can be expressed by

ĝm =
m

∑

i=0

ĥi (11)

where the estimated impulse response coefficientsĥ0, ĥ1, ĥ2, . . . , ĥm−1 are related to the estimated
frequency response via

ĥi =
1

N

n−1
2

∑

l=−
n−1

2

Ĝ(ejlΩ)ejliΩ (12)

Substituting (12) into (11), we obtain the estimated step response coefficient at sampling instantm

as

ĝm =

n−1
2

∑

l=−
n−1

2

Ĝ(ejlΩ)
1

N

1 − ejlΩ(m+1)

1 − ejlΩ
(13)

Note that both impulse response coefficientsĥi and ĝm are real because the complex frequency
sampling filters are selected in complex conjugate pairs (n is an odd number). Defining

Q(m) =
[

S(0,m) S(1,m) S(−1,m) . . . S(n−1
2 ,m) S(−n−1

2 ,m)
]

the estimated step response of the process at the samplem is represented in a linear relation to the
estimated frequency parameter vectorθ

ĝm = Q(m)θ̂ (14)

whereS(l,m) = 1
N

1−ejlΩ(m+1)

1−ejlΩ . Also

S(l,m) =
1

N
(1 + ejlΩ + ej2lΩ + . . .+ ejmlΩ)

Thus, atl = 0, S(l,m) = m+1
N

.
If v(.) is white noise with zero mean and varianceσ2, it has been shown in Wang and Cluett

(2000) that when a sufficiently large number of frequency parametern ≤ N is used in the parame-
terisation

E[ĝm − gm] ≈ 0 (15)

E[(ĝm − gm)2] ≈ Q(m)(Φ∗Φ)−1Q(m)∗σ2 = δ(m)2 (16)
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However, in the situation ofv(.) being coloured noise, in order to obtain the estimation of the
variance for the step response model, we assume that

v(k) =
1

D(z)
ε(k) (17)

whereD(z) = 1+d1z
−1+d2z

−2+. . .+dqz
−q, andε(k) is white noise with zero mean. An iterative

algorithm in the spirit of relaxed Maximum Likelihood approach (Goodwin and Payne, 1977) can
be used for simultaneous estimation of the frequency sampling filter model and the autoregressive
noise model. Upon convergence of the algorithm, the variance of the estimated step response at the
sample instantm is

E[(ĝm − gm)2] = Q(m)(Φ∗

fΦf )−1Q(m)∗σ2
f = δf (m)2 (18)

whereΦf is the prefiltered data matrix, andσ2
f is the variance of the residuals. The estimation

algorithm presented here is not only effective and well understood, but also yields unbiased step
response estimate with a stochastic description of the error. With the estimated variance for the step
response, statistical confidence bounds can be derived (Wang and Cluett, 2000).

4 Continuous-time Transfer-function Identification

As discussed in Section 3 stage two of the three-stage approach yields the system step-response
in non-parametricform. As discussed in Section 3, and illustrated in Section 5, the estimated
step response is relatively noise-free compared to an actual step response test and thus can be in-
tuitively judged by the process engineer. Whilst early versions of model-based predictive control
were based on step-response models, modern model-based predictive control requires a parametric
model. In particular, the model-based predictive control methods being researched by the authors
are set in continuous-time (Wang, 2001, Gawthrop et.al. 1998). Thus, the purpose of the third
stage, discussed in this section, is to fit acontinuous time parametrictransfer function model to this
identified step response. This transfer function model can be converted into state-space form using
standard algorithms.

Consider a continuous time model described by Laplace transfer function of the form

G(s) =
B(s)

A(s)
=
bβs

β + bβ−1s
β−1 + . . . + b0

sα + aα−1sα−1 + . . .+ a0
(19)

whereai, i = 0, . . . , α − 1 andbi, i = 0, . . . , β are the coefficients, andα andβ are the orders
of the numerator and denominator (α ≥ β). For a given plant input signalu(t), the plant output
response is described by

y(t) = G(p)u(t) + η(t) (20)

whereG(p) is an operator corresponding to the transfer functionG(s) andη(t) is the additive con-
tinuous time disturbance. Specifically,η(t) = H(p)ψ(t) whereH(p) is an operator correspond-
ing to a transfer functionH(s) andψ(t) is white noise with covariance functionE[ψ(t)ψ(τ)] =

σ2
c δ(t− τ). ByH(p)ψ(t), we mean a stochastic process with power spectral densityσ2

c

2π
|H(jw)|2.

In this indirect approach, the input signal to the plant is a unit step. Because the step responses
are equivalent in both continuous time and discrete time cases at the sampling instantti, the output
is the step-responseresulting from stage 2 (Section 3)of our approach:

y(ti) = ĝ(ti) = g(ti) + η(ti) (21)
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where the disturbanceη(ti) is the error contained in the estimated step response. The disturbance
is a discrete sequence with known statistical properties that

E[η(ti)] = 0; E[η(ti)
2] = δ(i)2

If δ(i) is approximately constant for alli, the discrete disturbance sequence is a near white noise in
discrete time. In general,η(.) has a ”flat” spectrum in the low and medium frequency region and its
amplitude is relatively small.

Suppose that an all-pole filter having denominatorC(s) = sα+1 + cαs
α + cα−1s

α−1 + . . .+ c0
is selected for the identification procedure. By passing both input and output measurementsu(t)
andy(t) through this filter, we obtain filtered input and output signals. This operation when applied
to model (20) yields

A(p)

C(p)
y(t) =

B(p)

C(p)
u(t) +

A(p)

C(p)
η(t) (22)

whereA(p),B(p) andC(p) are operators corresponding toA(s),B(s) andC(s) respectively. Here
the filter operation is equivalent to the prefiltering operation in discrete time system save that in the
continuous time case, the filter structure is restricted to all pole form.

To formulate a Least Squares problem for parameter estimation, the next step is to generate the
derivatives of the filtered input and output responses. Thisstep is simplified when a state variable
filter implementation procedure is used (Gawthrop, 1984). Let ȳα(t), ȳα−1(t), . . ., ȳ0(t) denote,

respectively, pα

C(p)y(t),
pα−1

C(p) y(t), . . .,
1

C(p)y(t); let ūα(t), ūα−1(t), . . ., ū0(t) denote, respectively,
pα

C(p)u(t),
pα−1

C(p) u(t), . . .,
1

C(p)u(t). To obtain the derivatives of filtered output responses, we define
a state variable vector

Xy(t) = [ȳα(t) ȳα−1(t) . . . ȳ0(t)]
T

Then, by choosing the state space model in a control canonical form, we have












dȳα(t)
dt

dȳα−1(t)
dt
...

dȳ0(t)
dt













=











−cα −cα−1 . . . −c0
1 0 . . . 0
...
0 . . . 1 0





















ȳα(t)
ȳα−1(t)

...
ȳ0(t)











+











1
0
...
0











y(t)

= V











ȳα(t)
ȳα−1(t)

...
ȳ0(t)











+Wy(t) (23)

whereV andW are the corresponding system matrices. The solution of the state space equation
(23), assuming zero initial conditions, gives the derivatives of the filtered output responses. Simi-
larly, define

Xu(t) = [ūα(t) ūα−1(t) . . . ū0(t)]
T

Then

Ẋu(t) = V Xu(t) +Wu(t)

Xu(0) = 0α (24)

where0n is a zero column vector of lengthn.
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At this stage, although the state variables are expressed inthe continuous time form, the inputs
to the state variable filters are in the form of discrete measurement. The state equations are required
to be solved numerically to give the derivatives of the filtered input and output signals. One of the
simple approaches to obtain the filtered responses is given as follows. The response of the state
variableX(t) for ti ≤ t ≤ ti+1 is

∫ ti+1

ti

dX(t) =

∫ ti+1

ti

(V X(t) +Wu(t))dt (25)

which is

X(ti+1) ≈ X(ti) +
V X(ti) +Wu(ti) + V X(ti+1) +Wu(ti+1)

2
∆t (26)

Thus, the solution of the state variable vector is, by given initial conditionX(t0), i = 1, 2, 3, . . .,

X(ti+1) = (I −
∆t

2
V )−1(I +

∆t

2
V )X(ti) + (I −

∆t

2
V )−1 ∆t

2
W (u(ti) + u(ti+1)) (27)

Because Trapezoidal rule is used in the approximation of theintegral equation (25), the approxima-
tion error between two sample points is,ti ≤ t ≤ ti+1

Ec = −
1

12
∆t3(V

d2X(t)

dt2
) +W

d2u(t)

dt2
(28)

The approximation scheme is stable if

λmax[(I −
∆t

2
V )−1(I +

∆t

2
V )] < 1 (29)

whereλmax(A) is the maximum eigenvalue ofA. With the discretised state variables defined by
(23)-(24), equation (22) can be written as

ȳα(ti)+aα−1ȳα−1(ti)+ . . .+a0ȳ0(ti) = bβūβ(ti)+bβ−1ūβ−1(ti)+ . . .+b0ū0(ti)+ηf (ti) (30)

whereηf (ti) denotes the filtered disturbance variable. To estimate the parametersai, i = 0, 1, 2
. . . α− 1, bi, i = 0,1,. . ., β, equation (30) is reformulated into a standard regression form as

ȳα(ti) = φ(ti)
T
c θc + ηf (ti) (31)

where
φ(ti)

T
c = [−ȳα−1(ti) . . . − ȳ0(ti) ūα(ti) . . . ū0(ti)]

and
θT
c = [aα−1 . . . a0 bβ . . . b0]

The Least Squares solution for the set of parameters in the continuous time model is given by

θc = (
N−1
∑

i=0

φ(ti)φ(ti)
T )−1

N−1
∑

i=0

φ(ti)ȳα(ti) (32)

The continuous time parameter vectorθc can also be estimated using the multiple model estimation
algorithm (Wang and Gawthrop, 2001).
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5 Experimental Evaluation

Extrusion is a continuous process in which a rotating screw is used to force the food material
through the barrel of the machine and out through a narrow dieopening. In this process the material
is simultaneously transported, mixed, shaped, stretched and sheared under elevated temperature and
pressure. Figure 4 shows the block diagram of a twin screw food extruder. The extruder in the study
is an APV-MPF40 co-rotating twin-screw extruder. The extruder has the following specifications:

• Throughput: 20-75kg/hr

• Screw Diameter: 40mm

• Length to Diameter Ratio: 25:1

• Feeding System: Gravimetric

• Process Monitoring: via Siemens 95U PLC

The extruder was run with the following setup for all experiments:

• Screw Profile No: 12 (High Shear Configuration)

• Die: 3mm diameter, 2mm land length

The factors which can be adjusted on-line for control purpose include the screw speed, the rate at
which the raw material enters the extruder (termed feed rate) and the liquid injection rate (measured
via liquid pump speed). The process output variables which are important for product quality con-
trol (Wang et al. 2001) are the Specific Mechanical Energy, Die Pressure, screw motor torque, and
Product Temperature at the location which is close to the die. All these variables can be measured
on-line by using sensors.

This experiment apparatus has been implemented on an extrusion plant through the existing Su-
pervisory Control and Data Acquisition system on the extruder, and has been successfully used in
collecting experimental data for identification purposes for all input and output variables under in-
vestigation. Figure 5 shows the user-interface of relay feedback control system for the identification
experiment.

5.1 Data Acquisition using Relay Feedback

The basic procedure in the identification experiment is to perturb the input signals one at a time
and measure the responses in all output signals. The perturbation of the input signal is generated
automatically by a nonlinear relay feedback mechanism. In other words, when one relay feedback
control system is in operation, the rest of the input signalsremains constant. Since the extruder is
not a single input and single output system, the first issue inthe design of the experiment is pairing
of input and output variables for the relay feedback controlsystems. This issue is addressed by
paring the input variable with the output variable that has the largest time constant, also by taking
consideration of the extruder physics. This approach ensures that sufficient low frequency compo-
nents exist in the excitation signals for all output variables. More specifically, screw speed is used
to manipulate specific mechanical energy, liquid pump speedis used to manipulate motor torque,
feed rate is used to manipulate die pressure, zone 9 temperature setpoint is used to manipulate the
temperature at the die.

The relay feedback control apparatus has been used in collecting experimental data for iden-
tification. This particular set of experimental data analysed here was generated by controlling die
pressure with material feedrate. Figure 6 shows the input signal generated by the relay apparatus
and the responses of SME, motor torque and die pressure.
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5.2 Step Response using Frequency-sampling Filters

Three step response models with confidence bounds were estimated where the relaxed maximum
likelihood method (Goodwin and Payne, 1977) was used to iteratively identify three noise models
respectively. The model orders and the converged noise models are given below, respectively, for
SME, Motor Torque and Die Pressure. A sufficiently largen was chosen for the three cases to
ensure the unmodelled dynamics were negligible.

• SME:N = 180, n = 119 andD(z) = 1 − 0.4757z−1 − 0.3543z−2

• Motor Torque:N = 180, n = 119 andD(z) = 1 − 0.7942z−1 − 0.0843z−2

• Die Pressure:N = 280, n = 119 andD(z) = 1 − 1.5477z−1 + 0.1617z−2 + 0.6247z−3 −
0.1083z−4 − 0.095z−5

where the noise model orders were selected using the PRESS criterion given in Wang and Cluett
(1996). The step response models with confidence bounds are shown in Figures 7-9. The raw
experimental data shown in Figure 6 are compressed into three individual step response models. In
this application, the raw data set contains1800 samples for each pair of physical variables whilst the
maximum number of samples in the step response models is280 (Die Pressure has a long settling
time). It is seen from these Figures that the confidence bounds are relatively large, particularly
in the steady state parts of the responses, which indicates the plant disturbances have frequency
contents that are concentrated in the low frequency regions. Essentially, the confidence bounds for
steady state correspond to the variance of the estimateG(ej0) in the frequency sampling filter model
(Wang and Cluett, 2000).

5.3 Continuous-time Transfer-function Identification

Upon obtaining the continuous time step response data, the identification algorithm with model
structure selection given in Wang and Gawthrop (2001) was used in the estimation of a continuous
time transfer function model. Both sum of squares of step response errorsEs =

∑N−1
k=1 [ĝ(tk) −

g(tk)]
2 and the sum of squares of prediction errorsEp =

∑M
k=1 |y(tk)−

B(p)
A(p)u(tk)|

2 were used for
model structure determination. The relative model order isselected to be one for the three cases;
and the denominators of the state variable filters are selected to be in the form ofC(s) = (s + γ)5,
whereγ = 0.12, 0.12 and0.012 respectively for SME, Motor Torque and Die Pressure. The model
errors are summarized in Tables (5.3)-(5.3). Based on theseTables, the model orders are selected
and the estimated continuous time transfer functions are given below:
SME

G(s) =
10 × 10−3(1.68s3 − 0.0396s2 − 0.0312s − 0.001)

s4 + 0.1119s3 + 0.0195s2 + 5.78 × 10−4s+ 2.4 × 10−5
(33)

Motor Torque

G(s) =
0.168 × 10−3s2 − 0.345 × 10−4s− 2.34 × 10−7

s3 + 0.1402s2 + 0.7733 × 10−2s+ 0.1305 × 10−3
(34)

Die Pressure

G(s) =
−1.332 × 10−3s3 + 3.144 × 10−4s2 − 2.2011 × 10−5s+ 1.134 × 10−7

s4 + 0.108s3 + 9.59 × 10−3s2 + 3 × 10−4s+ 5.13 × 10−6
(35)

The step responses of the continuous time models are compared to their respective responses in
Figures 7- 9. In addition, the predicted output responses using the continuous time models are
compared with experimental data shown in Figures 10-12.
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Model Order SME Motor Torque Die Pressure
α = 1 0.0562 3.11 × 10

−4
0.3793

α = 2 0.007 2.52 × 10
−5

α = 3 0.0017 7.17 × 10
−6

0.0152

α = 4 0.0015 6.41 × 10
−6

0.0045

α = 5 0.0014 6.8 × 10
−6

0.0043

Table 1: Sum of Squares of Step Response Errors

Model Order SME Motor Torque Die Pressure
α = 1 2.09 × 10

6
8.9 × 10

3
5.25 × 10

6

α = 2 1.09 × 10
6

4.01 × 10
3

α = 3 6.64 × 10
5

2.69 × 10
3

2.39 × 10
6

α = 4 6.38 × 10
5

2.65 × 10
3

1.77 × 10
6

α = 5 6.73 × 10
5

2.81 × 10
3

1.75 × 10
6

Table 2: Sum of Squares of Prediction Errors

6 Conclusions

This paper has presented a three-stage approach to system identification in the continuous-time
which is appropriate for day-to-day application by plant engineers in the process industry. The
three stages are: data acquisition using relay feedback; non-parametric identification of the system
step response; and parametric model fitting of the identifiedstep-response. One of the contributions
of the paper is to combine them in a novel way to provide an indirect continuous time identification
method. Within this framework, discrete time noise model isnaturally adopted into continuous time
system identification.

The method has been evaluated on a pilot-scale food-cookingextruder. As discussed in Section
5, each stage has a clear intuitive output which enhances theconfidence of the process engineer in
the final result.

Comparison results using different continuous time identification methods for this set of food
extruder data are currently under investigation. The results will be reported in a future work (Wang,
Young and Gawthrop, 2003).

References
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Figure 1: Data Acquisition: Relay Feedback

13



−1

−0.8

−0.6

−0.4

−0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

−1 −0.5  0  0.5  1

Figure 2: Frequency-sampling filtern = 9,N = 50: ?: FSF poles;�: unit circle

14



1 1

1
1)

1N

z

e z

N

j
N

N

−

−

−

−
−

−
π(

......

+
......

......

1 1

1 1N

z

z

N−
−

−

−

1 1

1
2

1N

z

e z

N

j
N

−

−

−

−
π

G e
j

N( )
2π

G e
j

N

N( )
(π −1)

G e
j

N

N( )
(

−
−π 1)

G ej( )0

u(t)

1 1

1
1)

1N

z

e z

N

j
N

N

−

−

−

−
−

π (

∑

y(t)

v(t)

1 1

1
2

1N

z

e z

N

j
N

−

−

−

− −
π

G e
j

N( )
−

2π

Figure 3: Block Diagram of Frequency-sampling filter structure
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Figure 4: Schematic of the Food Extruder
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Figure 5: Data Acquisition: User Interface
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Figure 6: Experimental data. From top to bottom: A. feedrate; B. SME; C. Motor torque; D. Die
Pressure
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Figure 7: Step response of SME. Solid line-estimated step response with2σ confidence bounds; Dark
dotted line-step response from the continuous time model.
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Figure 8: Step response of Motor Torque. Solid line-estimated step response with2σ confidence
bounds; Dark dotted line-step response from the continuoustime model.

20



0 50 100 150 200 250 300
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

Sampling Instants

Figure 9: Step response of Die Pressure. Solid line-estimated step response with2σ confidence bounds;
Dark dotted line-step response from the continuous time model.
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Figure 10: Predicted and actual SME. Solid line-actual data; Dark dotted line-predicted response from
the continuous time model.
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Figure 11: Predicted and actual Motor Torque. Solid line-actual data; Dark dotted line-predicted re-
sponse from the continuous time model.
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Figure 12: Predicted and actual Die Pressure. Solid line-actual data; Dark dotted line-predicted re-
sponse from the continuous time model.
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