The cryo-electron microscopy structure of feline calicivirus bound to junctional adhesion molecule A at 9-angstrom resolution reveals receptor-induced flexibility and two distinct conformational changes in the capsid protein VP1

Bhella, D. and Goodfellow, I. G. (2011) The cryo-electron microscopy structure of feline calicivirus bound to junctional adhesion molecule A at 9-angstrom resolution reveals receptor-induced flexibility and two distinct conformational changes in the capsid protein VP1. Journal of Virology, 85(21), pp. 11381-11390. (doi: 10.1128/JVI.05621-11) (PMID:21865392) (PMCID:PMC3194967)

[img]
Preview
Text
57627.pdf - Published Version

6MB

Abstract

Caliciviridae are small icosahedral positive-sense RNA-containing viruses and include the human noroviruses, a leading cause of infectious acute gastroenteritis and feline calicivirus (FCV), which causes respiratory illness and stomatitis in cats. FCV attachment and entry is mediated by feline junctional adhesion molecule A (fJAM-A), which binds to the outer face of the capsomere, inducing a conformational change in the capsid that may be important for viral uncoating. Here we present the results of our structural investigation of the virus-receptor interaction and ensuing conformational changes. Cryo-electron microscopy and three-dimensional image reconstruction were used to solve the structure of the virus decorated with a soluble fragment of the receptor at subnanometer resolution. In initial reconstructions, the P domains of the capsid protein VP1 and fJAM-A were poorly resolved. Sorting experiments led to improved reconstructions of the FCV-fJAM-A complex both before and after the induced conformational change, as well as in three transition states. These data showed that the P domain becomes flexible following fJAM-A binding, leading to a loss of icosahedral symmetry. Furthermore, two distinct conformational changes were seen; an anticlockwise rotation of up to 15 degrees of the P domain was observed in the AB dimers, while tilting of the P domain away from the icosahedral 2-fold axis was seen in the CC dimers. A list of putative contact residues was calculated by fitting high-resolution coordinates for fJAM-A and VP1 to the reconstructed density maps, highlighting regions in both virus and receptor important for virus attachment and entry.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Bhella, Professor David
Authors: Bhella, D., and Goodfellow, I. G.
Subjects:Q Science > QR Microbiology > QR355 Virology
College/School:College of Medical Veterinary and Life Sciences > School of Infection & Immunity
College of Medical Veterinary and Life Sciences > School of Infection & Immunity > Centre for Virus Research
Journal Name:Journal of Virology
Journal Abbr.:J. Virol.
Publisher:Society for General Microbiology
ISSN:0022-538X
ISSN (Online):1098-5514
Published Online:01 August 2011
Copyright Holders:Copyright © 2011 American Society for General Microbiology
First Published:First published in Journal of Virology 85(21):11381-11390
Publisher Policy:Reproduced in accordance with the copyright policy of the publisher

University Staff: Request a correction | Enlighten Editors: Update this record

Project CodeAward NoProject NamePrincipal InvestigatorFunder's NameFunder RefLead Dept
656541Structural studies of human viruses and host interactionsDavid BhellaMedical Research Council (MRC)MC_UU_12014/7MVLS III - CENTRE FOR VIRUS RESEARCH