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An algorithm for a super-stable roommates problem

Tamás Fleiner∗ Robert W. Irving† David F. Manlove‡

Abstract

In this paper we describe an efficient algorithm that decides if a stable
matching exists for a generalized stable roommates problem, where, instead of
linear preferences, agents have partial preference orders on potential partners.
Furthermore, we may forbid certain partnerships, that is, we are looking for
a matching such that none of the matched pairs is forbidden, and yet, no
blocking pair (forbidden or not) exists.

To solve the above problem, we generalize the first algorithm for the ordi-
nary stable roommates problem.

Keywords: stable marriages, stable roommates problem, polynomial time al-
gorithm

1 Introduction

The study of stable matching problems was initiated by Gale and Shapley who
introduced the stable marriage problem in [4]. In this problem, each of n men and
n women have a linear preference order on the members of the opposite gender.
We ask if there exists a marriage scheme in which no man and woman mutually
prefer one another to their eventual partners. The authors prove that the so called
deferred acceptance algorithm always finds a stable marriage scheme.

It is natural to ask the same question in a more general, non-bipartite model, in
which we have n agents with preference orders on all other agents. This is the so
called stable roommates problem, and we are looking for a matching (i.e. a pairing
of the agents) such that no two agents prefer one another to their assigned partners.
Such a matching is called a stable one. A significant difference between the stable
marriage and the stable roommates models is that for the latter, it might happen
that no stable matching exists [4]. A solution for the stable roommates problem was
proposed by Irving [5] as an efficient algorithm that either finds a stable matching
or concludes that no stable matching exists for the particular problem. Later, Tan
[9] used this algorithm to give a good characterization, that is, he proved that for
any stable roommates problem, there always exists a so called stable partition (that
can be regarded as a half integral fractional stable matching [1]) with the property
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that either it is a stable matching, or it is a compact proof for the non-existence of
a stable matching in the particular model.

In both the stable marriage and the stable roommates problems, strict prefer-
ences of the participating agents play a crucial role. However, in many practical
situations, we have to deal with indifferences in the preference orders. We model this
phenomenon such that preference orders are partial (rather than linear) orders. We
can extend the notion of a stable matching to this model in at least three different
ways [6]. One possibility is that a matching is weakly stable if no pair of agents a, b
exists such that they mutually prefer one another to their assigned partner. Ronn
proved that deciding the existence of a weakly stable matching is NP-complete for
the stable roommates problem [7]. A more restrictive notion is that a matching is
strongly stable if there are no agents a and b such that a prefers b to his assigned
partner and b does not prefer his assigned partner to a. Scott gave an algorithm
that finds a strongly stable matching or reports if none exists in O(m2) time [8].
(Here m stands for the number of edges in the underlying graph.) The most re-
strictive notion is that of super-stability. A matching is super-stable if there exist
no two agents a and b such that neither of them prefers his assigned situation in
the matching to being a partner of the other. In other words, a matching is super-
stable, if it is stable for any linear extensions of the preference orders of the agents.
For the case where indifference is transitive (that is, if preferences are determined
by scores that can be equal), Irving and Manlove gave an O(m) algorithm to find
a super-stable matching, if such a matching exists [6]. Interestingly, the algorithm
has two phases, just like Irving’s [5], but its second phase is completely different.
It is also noted in [6] that the algorithm works without modification for the more
general case where preferences are partial (rather than linear) orders.

The motivation of our present work is to give a direct algorithm for an extension
of the super-stable matching problem. Our algorithm works similarly to Irving’s
original algorithm in [5]. This latter algorithm keeps on deleting edges of the un-
derlying graph until it concludes that no stable matching exists or a single stable
matching is left. It turns out that deleting an edge is too harsh a transformation:
our algorithm uses a finer one as well. For this reason, we extend our model such
that we allow so-called forbidden edges and beyond deleting, our algorithm may
forbid certain edges. This way we solve a problem that is a common generalization
of the stable marriage problem with forbidden pairs (solved by Dias et al. with an
O(m) algorithm in [2]) and the stable roommates problem with ties in [6]. Note that
in our model we also allow that certain edges are “missing” from the underlying
graph, that is, some agents might be unacceptable to one another. In particular, a
stable matching might contain several agents that have no partners in the matching.

Our present problem, the super-stable matching problem with forbidden edges
is known to be polynomial-time solvable. Fleiner et al. exhibited a reduction of
this problem to 2-SAT [3]. Though the algorithm based on [3] (that applies known
algorithms for the reduced problem) works faster than our presented algorithm,
an advantage of our direct approach is that there is more hope to find structural
results on (super-)stable matchings. Also, by generalizing Irving’s algorithm, we
can understand what are those crucial properties that allow the algorithm to work.
For this reason, our goal here is not a “streamlined” and fast algorithm based on
elaborate data structures but a polynomial-time procedure with a compact proof of
correctness.

To formalize our problem, we define a preference model as a triple (G,F,O),
where G = (V,E) is a finite graph, the set F of forbidden edges is a subset of the
edge set E of G, and O = {≤v: v ∈ V }, where ≤v is a partial order on the star
E(v) of v (that is, the set of those edges of G that are incident with vertex v). It
is convenient to think that we deal with a market situation: vertices of G are the
acting agents and edges of G represent possible partnerships between them. Parallel
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edges are allowed in G: the same two agents may form different partnerships, that
may yield different profits for them. (For example agents u and v may play tennis
or chess and their preferences on these two games might be different.) Partial order
<v is the preference order of agent v on his possible partnerships. Our convention
is that partnership e is preferred to partnership f by agent v if e <v f . In this
situation, we say that v prefers e to f or e dominates f at v. A subset M of E
is a matching if edges of M do not share a vertex, that is, each agent participates
in at most one partnership. Matching M is stable (we omit the ‘super’ prefix for
convenience), if M ⊆ E \ F (in other words, no edge of M is forbidden, that is,
all edges of M are free), and each edge e of E is dominated by M , that is, there is
an edge m ∈ M and a vertex v ∈ V such that m ≤v e. (This means that either
e ∈ M and then because of m = e, m ≤v e holds for any vertex v of e or e 6∈ M

and then there must be an edge m of M that is better: m <v e. In particular, m
and e cannot be incomparable in ≤v.) If M is a matching and e is not dominated
by M then e is a blocking edge of M . The stable roommates problem with partial
orders and forbidden pairs is the search problem on an input preference model to
find a stable matching or to report that no such matching exists. Note that the
stable roommates problem with partial orders and forbidden edges can be reduced
to the stable roommates problem with partial orders (and no forbidden edges) the
following way. For each forbidden edge e, introduce a copy e′ parallel to e into
the model such that e and e′ are equivalent (and incomparable) for vertices of e.
Furthermore, in this new model, declare all edges to be free. It is easy to check
that the set of stable matchings in the new model is the same as the set of stable
matchings (containing no forbidden edges) in the original model.

Note that in the standard terminology, agents have preferences on possible part-
ners, rather than on partnerships. It is easy to see that in our approach, this
corresponds to the case where the underlying graph G in the preference model is
simple. We also have a slightly different way of defining stability via dominance.
Traditionally, we first define the notion of blocking and then we say that a stable
matching is a matching that has no blocking edge. Also note that the stable room-
mates problem [4, 5] is the special case where G is simple, F = ∅, and each order
<v is linear.

2 The generalized algorithm

Let us fix a preference model (G0, F0,O0), as the input of our algorithm. We should
find a stable matching, if it exists. The algorithm shall handle so-called 1-arcs and
2-arcs that are oriented versions of certain edges of the underlying model. The
sets of these arcs after the ith step of the algorithm are denoted by A1

i and A2
i ,

respectively. In the beginning, A1
0 = A2

0 = ∅. The algorithm works step by step. In
the (i+1)st step, it changes the actual instance (Gi, Fi, A

1
i , A

2
i ,Oi) into a “simpler”

model (Gi+1, Fi+1, A
1
i+1, A

2
i+1,Oi+1) in such a way that the answer to the latter

problem is also a valid answer to the former one. That is,

any stable matching in (Gi+1, Fi+1,Oi+1)

is a stable matching in (Gi, Fi,Oi) and
(1)

and

if there is a stable matching in (Gi, Fi,Oi) then

there has to be a stable matching in (Gi+1, Fi+1,Oi+1) as well.
(2)

We employ four different kinds of transformations to achieve this goal: we find
1-arcs and 2-arcs, we forbid edges and we delete forbidden edges.
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To describe these transformations, we need a couple of definitions. We say that
edge e ∈ Ei(v) of Gi (forbidden or not) is a first choice edge of v, if there is no edge
f ∈ Ei(v) \ Fi with f <v e (i.e., if no free edge dominates e at vertex v). Note that
there can be more than one first choice of v present, moreover, an edge e can be
a first choice of both of its vertices and if v is not an isolated vertex then there is
at least one first choice of v. If e = vu is a first choice of v then we may change
our current instance (Gi, Fi, A

1
i , A

2
i ,Oi) into (Gi+1, Fi+1, A

1
i+1, A

2
i+1,Oi+1) where

Gi+1 = Gi, Ei+1 = Ei, A
1
i+1 = A1

i ∪ {(vu)}, A2
i+1 = A2

i ,Oi+1 = Oi and we say that
(vu) is a 1-arc. This 1-arc finding transformation clearly satisfies conditions (1) and
(2).

An edge e ∈ Ei(v) is a second choice of v if e is not a first choice of v and
e >v f 6∈ Fi implies that f is a first choice of v. In other words, e is a second
choice if any free edge that dominates e at v is a first choice of v and there is at
least one such free edge. Note that there can be several second choices of v present
in an instance. Moreover, the set of second choices of v is nonempty if and only
if there exist two free edges incident to v such that one dominates the other at
v. If e = vu is a second choice of v then we may change our current instance
(Gi, Fi, A

1
i , A

2
i ,Oi) into (Gi+1, Fi+1, A

1
i+1, A

2
i+1,Oi+1) where Gi+1 = Gi, Ei+1 =

Ei, A
1
i+1 = A1

i , A
2
i+1 = A2

i ∪ {(uv)},Oi+1 = Oi and we say that (uv) is a 2-arc.
This 2-arc finding transformation clearly satisfies conditions (1) and (2). Note that
the definition of a 2-arc is somewhat counterintuitive: unlike in case of a 1-arc, a
2-arc points to that vertex whose second choice it represents. Later we shall see the
reason for this. For each j, we require the following property after the jth step of
our algorithm.

Each arc of A1
j is a 1-arc of (Gj , Fj ,Oj) and (3)

each arc of A2
j is a 2-arc of (Gj , Fj ,Oj). (4)

Clearly, 1-arc finding and 2-arc finding steps do not violate conditions (3) and (4).
If e is a free edge of Gi, then forbidding e means that Gi+1 := Gi, Fi+1 :=

Fi ∪ {e}, and Oi+1 := Oi. After forbidding, A1
i+1 = A1

i and A2
i+1 = A2

i , unless we
explicitly state otherwise. The algorithm may forbid e if either no stable matching
contains e or if e is not contained in all stable matchings of (Gi, Fi,Oi). (Note that
neither of these conditions implies the other.) Such a forbidding transformation
clearly satisfies (1) and (2). Forbidding a subset C of E means that we simulta-
neously forbid all edges of C. We shall do so if properties (1) and (2) hold for
j = i+ 1.

If e is a forbidden edge of Gi then deleting e means that we delete e from Gi and
Fi to get Gi+1: Ei+1 := Ei \ {e}, Fi+1 := Fi \ {e}, A1

i+1 := A1
i \ {a ∈ A1

i : a = ~e},
A2

i+1 := A2
i \ {a ∈ A2

i : a = ~e} (where a = ~e means that 1-arc or 2-arc a is coming
from first or second choice e) and the partial orders in Oi+1 are the restrictions
of the corresponding partial orders of Oi, to the corresponding stars of Gi+1. The
algorithm may delete forbidden edge e if there exists no matching in (Gi, Fi,Oi)
that is blocked exclusively by e. This implies that the set of stable matchings in
(Gi, Fi,Oi) and in (Gi+1, Fi+1,Oi+1) is the same, so (1) and (2) clearly hold for
j = i+1. As first and second choices do not change after deleting a forbidden edge,
properties (3) and (4) are true for j = i+ 1.

As we mentioned already, our algorithm works in steps and in each step it
changes the instance according to some of the above transformations. There is a
certain hierarchy between these steps: the current move of the algorithm is always
chosen to have the highest priority among the executable steps. Our description of
the step types is in the order of this hierarchy.

0th priority (proposal) step If edge e = vw is a first choice of v and does
not belong to A1

i then find 1-arc vw, that is A1
i+1 = A1

i ∪ {(vw)}.
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We have seen that conditions (1) and (2) are satisfied after a proposal step and
by definition, (3) and (4) also hold for j = i + 1. As soon as the algorithm has
found all 1-arcs, it looks for a

1st priority (mild rejection) step If ~e = uv is a 1-arc of A1
i , A

2
i = ∅ and

Ei(v) ∋ f 6<v e (that is, f is not strictly better than e according to v in Gi) then
forbid f .

Obviously, if f belongs to some matching M then e 6∈ M , and hence e (being a
first choice at u) blocks M . So f does not belong to any stable matching, hence we
can safely forbid it. Clearly, any first choice remains a first choice after forbidding
edge e, hence (3) remains true for i+1. Moreover, after forbidding e a second choice
either remains as a second choice or it becomes a first choice. Consequently, for
j = i + 1, properties (3) and (4) are true with the default choice A1

i+1 = A1
i and

A2
i+1 = ∅.
Eventually, the algorithm deletes certain forbidden edges in the following way.
2nd priority (firm rejection) step If e = uv is a free 1-arc of A1

i and e <v

f ∈ Ei(v) (e is strictly better than f according to v in Gi) then we delete f .
Note that the above f is already forbidden by a 1st priority mild rejection step.

Assume that f blocks matching M , hence, in particular, e 6∈ M . But e, being a
first choice of u, also blocks M . So deleting f does not change the set of stable
matchings of the preference model.

Note that the so called 1st phase steps in Irving’s algorithm [5] for the stable
roommates problem are special cases of our proposal and firm rejection steps. It
is true for the stable roommates problem that as soon as no more 1st phase steps
can be executed, the preference model has the so called first-last property: if some
edge e = uv is a first choice of u, then e is the last choice of v. The next lemma
shows that generalization of this property holds also in our setting. Assume that
the algorithm cannot execute a 0th, 1st or 2nd priority step for (Gi, Fi, A

1
i , A

2
i ,Oi).

Let V 0
i denote the set of those vertices of Gi that are not incident with any free

edges, V 1
i stand for the set of those vertices of Gi that are incident with a bioriented

free 1-arc and V 2
i refer to the set of the remaining vertices of Gi. The following

properties are true.

Lemma 2.1. Assume that no proposal or rejection step is possible in instance
(Gi, Fi, A

1
i , A

2
i ,Oi) and let V 0

i , V
1
i and V 2

i be defined as above.
If v ∈ V 1

i ∪ V 2
i then there is a unique 1-arc entering v and there is a unique

1-arc leaving v and both of these 1-arcs are free. There is no edge of Gi that leaves
V 0
i . Bioriented free 1-arcs form a matching M1 that covers V 1

i and no more edges
are incident with V 1

i in Gi.
M is a stable matching of (Gi, Fi,Oi) if and only if the following properties hold:

(1) each vertex of V 0
i is isolated and (2) M1 ⊆ M and

(3) M \M1 is a stable matching of the model restricted to V 2
i .

Proof. Let v ∈ V 1
i ∪ V 2

i . By definition, there is at least one free edge incident with
v, hence there is at least one free 1-arc leaving v. On the other hand, no proposal
or rejection step (mild or firm) can be made in Gi, hence at most one free 1-arc
enters v. By definition, no free 1-arc enters any vertex of V 0

i , and this means that
1-arcs leaving vertices of V 1

i ∪ V 2
i enter this very same vertex set. Consequently,

there is a unique free 1-arc leaving and entering each vertex of V 1
i ∪ V 2

i . Can there
be a forbidden 1-arc e incident with a vertex v of V 1

i ∪ V 2
i ? The answer is no and

we prove it indirectly. Assume that ~e is such a 1-arc. If ~e enters v then v would be
able to reject, a contradiction. So ~e = (vw) is a 1-arc of A1

i from V 1
i ∪ V 2

i to V 0
i .

But w is not incident with any free arcs by definition, thus (vu) is also a 1-arc of
A1

i that enters vertex u of V 1
i ∪ V 2

i , contradiction again. Hence each 1-arc of A1
i

incident with V 1
i ∪ V 2

i is free.
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Let u ∈ V 0
i and e = uv be an edge of Gi. Clearly ~e = (uv) is a 1-arc and ~e ∈ Fi

by the definition of V 0
i , so v ∈ V 0

i holds. This means that each edge of Gi incident
with a vertex of V 0

i is completely inside V 0
i .

If v is in V 1
i then there is a unique 1-arc a that leaves v, so a must be bioriented

by the definition of V 1
i . If e = uv is an edge of Gi then either e is the unoriented

version of a or e is not a first choice of v, hence a <v e holds. But in this latter case
v should delete e in a firm rejection step as a is a 1-arc entering v. This argument
shows that edges of Gi that are incident with V 1

i are all bioriented and form a
matching M1 covering V 1

i .
Assume now that M is a stable matching of Gi. No edge of Gi incident with a

vertex of V 0
i can block M , hence V 0

i must consist of isolated vertices. As M is not
blocked by an edge of M1, edges of M1 all belong to M . As there is no edge of Gi

that leaves V 2
i , edges of M in V 2

i form a stable matching of the restricted model to
V 2
i .
Let now M2 be a stable matching of the model restricted to V 2

i and assume that
V 0
i consists of isolated vertices. Let M := M2 ∪ M1. Clearly, M is a matching.

If some edge e blocks M then e cannot be incident with V 0
i , as these vertices are

isolated, and e cannot have a vertex in V 1
i either, as vertices of V 1

i are only incident
with edges of M1. Hence e is an edge within V 2

i , contradicting to the fact that M2

is a stable matching of the model restricted to V 2
i .

Lemma 2.1 shows that as soon as we have a (forbidden) edge incident with some
vertex of V 0

i for an instance where no proposal or rejection step is possible then
there exists no stable matching in our instance, so the algorithm can stop with the
conclusion that in the original instance there is no stable matching whatsoever. An-
other possible conclusion of the algorithm is that eventually no proposal or rejection
step can be made and V 2

i = ∅ holds. In this case, if V 0
i consists of isolated vertices

then graph Gi is just matching M1 and this is a stable matching for the instance
after the ith step, hence it is also a stable matching for the original instance. So
our goal from now on is to get rid off the V 2 part and to achieve this, the algorithm
will work only on V 2

i .
Assume that in instance (Gi, Fi, A

1
i , A

2
i ,Oi), the algorithm can execute no 0th,

1st or 2nd priority step. By Lemma 2.1, every vertex v of V 2
i is incident with at

least one free second choice edge: in the “worst case” it is the unique 1-arc pointing
to v.

3rd priority (2-arc finding) step If e = vw 6∈ A2
i is a second choice of v then

find 2-arc wv.
What is the meaning of a 2-arc? Let vv′ and uu′ be 1-arcs and u′v be a 2-arc.

As vv′ is the only free edge dominating u′v at v, we get that if uu′ is present in
a stable matching M then uu′ does not dominate uv′, hence vv′ ∈ M follows. In
other words, 2-arcs represent implications on 1-arcs. This allows us to build an
implication structure on the set of 1-arcs.

In this structure, two 1-arcs e and f are called sm-equivalent, if there is a directed
cycle D formed by 1-arcs and 2-arcs in an alternating manner such that D contains
both e and f . (Note that D may use the same vertex more than once.) Sm-
equivalence is clearly an equivalence relation and if C is an sm-class and M is a
stable matching then either C is disjoint from M or C is contained in M .

Beyond determining sm-equivalence classes, 2-arcs yield further implications be-
tween sm-classes: if uu′ is a 1-arc of sm-class C and vv′ is a 1-arc of sm-class C′ and
u′v is a 2-arc, then sm-class C “implies” sm-class C′ in such a way that if C is not
disjoint from stable matching M then M contains both classes C and C′. Assume
that sm-class C is on the top of this implication structure, i.e. C is not implied by
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any other sm-class (but C may imply certain other classes). Formally, we have that

if vv′ is a 1-arc of C and w′v is a 2-arc

then (the unique) 1-arc ww′ is sm-equivalent to vv′.
(5)

To find a top sm-class C, introduce an auxiliary digraph on the vertices of Gi,
such that if uu′ is a 1-arc and u′v is a 2-arc, then we introduce an arc uv of the
auxiliary graph. It is well known that by depth first search, we can find a source
strong component of the auxiliary graph in linear time. If it contains vertices
u1, u2, . . . , uk then it determines a top sm-class C = {u1u

′

1, u2u
′

2, . . . , uku
′

k} formed
by 1-arcs. Note that it is possible here that ul = u′

t for different l and t. After
we have found all 2-arcs (and there are no proposal or rejection steps) in instance
(Gi, Fi, A

1
i , A

2
i ,Oi) then the algorithm looks for a

4th priority (2-arc elimination) step If for 1-arcs ulu
′

l, utu
′

t ∈ C there are
2-arcs vul and vut with vul 6<v vut then forbid vul and keep 1-arcs and 2-arcs:
A1

i+1 = A1
i and A2

i+1 = A2
i .

To justify this step, assume that vul ∈ M for some stable matching M of Gi. As
vul does not dominate vut, vut has to be dominated at ut by utu

′

t ∈ M . As ulu
′

l and
utu

′

t are sm-equivalent, this means that utu
′

t also belongs to M , a contradiction. So
vul does not belong to any stable matching and after forbidding it, the set of stable
matchings does not change. This proves (1) and (2). As the forbidden edge vul is
a second choice of ul and not ≤v-better than vut, vul is a first choice of neither v

nor ul. Consequently, after forbidding vul, first and second choices remain first and
second choices, respectively. It follows that a 4th priority step preserves conditions
(3) and (4). Note that though a 4th priority step does not change first choices,
it may create new second choices hence the algorithm might continue with a 3rd
priority step after executing a 4th priority one. Note also that if preferences are
linear (rather than partial) orders then no 4th priority step is possible.

If none of the above steps is possible any more then the top sm-equivalence class
C can be forbidden. This is the step that corresponds to the ’rotation elimination’
step in Irving’s algorithm. Note that by the impossibility of a 4th priority step, any
top sm-equivalence class C = {(ulu

′

l) : 1 ≤ l ≤ k} has the property that there is
exactly one 2-arc entering each ul, that is, there is a unique second choice of each
vertex ul.

5th priority (top class elimination) step Forbid all edges of C in (Gi, Fi,Oi)
and set A2

i+1 = ∅.
As we forbid 1-arcs, first and second choices along the vertices of C change after

a 5th priority step. In particular, the unique second choices of the ul vertices of C
become first choices. For this reason we change A1

i+1 = A1
i ∪ S−1, where S denotes

the set of those 2-arcs that enter some vertex ul of C and S−1 is the set of oppositely
oriented arcs of S. After these changes, all arcs in A1

i+1 are clearly first choices of
their initial nodes, hence (3) and (4) hold for j = i + 1. To justify properties (1)
and (2) for the 5th priority step, we distinguish two cases.

Case 1: C is not a matching. This means that ul = u′

t for some l 6= t. As a
subset of a matching is a matching, no matching (hence no stable matching) can
contain C. So by sm-equivalence, C is disjoint from any stable matching of Gi, and
forbidding C does not change the set of stable matchings.

Case 2: C is a matching. Each ul is adjacent to at least two free edges: the
incoming and the outgoing 1-arcs. So each ul receives at least one free 2-arc. This
free 2-arc must come from some u′

t by property (5). Let C′ denote the set of free
2-arcs of the form u′

tul. As we have seen, each ul receives at least one arc of C′,
hence |C′| ≥ k. As we cannot execute any more 4th priority steps in (Gi, Fi,Oi),
from each u′

t there is at most one arc of C′ leaving, implying |C′| ≤ k. This means
that |C′| = k and each ul receives exactly one arc of C′ and each u′

l sends exactly
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one arc of C′. As sets {u1, u2, . . . , uk} and {u′

1, u
′

2, . . . , u
′

k} are disjoint, this means
that set C′ forms a perfect matching on vertices u1, u

′

1, u2, u
′

2, . . . , uk, u
′

k.
Let M be a stable matching of (Gi, Fi,Oi). If M is disjoint from C then M is

stable in (Gi+1, Fi+1,Oi+1) as well. Otherwise, by sm-equivalence, M contains all
edges of C and disjoint from C′. We claim that M ′ := M \C ∪C′ is another stable
matching of (Gi, Fi,Oi) and hence it is a stable matching of (Gi+1, Fi+1,Oi+1), as
well.

Indeed: M ′ is a matching, as C and C′ cover the same set of vertices. Each
edge ulu

′

l is dominated at u′

l by M ′ by Lemma 2.1. Each forbidden 2-arc of type
u′

tul is dominated at u′

t by the 4th priority step. For the remaining edges, if some
edge e does not have a vertex ul then e is dominated the same way in M ′ as in M .
Otherwise, if ul is a vertex of e then e is neither a first nor a second choice of ul as
we have already checked these edges. This means that the free 2-arc pointing to ul

is dominating e, so C′ and thus M ′ also dominates e at ul.
The pseudocode below summarizes how our algorithm works. The organiza-

tion of the steps is justified by the fact that a firm rejection step always deletes a
forbidden edge, hence no new first choice is created. Similarly, 2-arc finding and
2-arc elimination steps do not change the set of first choices and preserve properties
described in Lemma 2.1.

Input: (G0, F0,O0) Output: Super-stable matching, if exists
A1

0 :=A2
0 := ∅, i := 0

1 IF there is a first choice uv of u that is not a 1-arc
THEN (Gi+1, Fi+1,Oi+1, A

1
i+1, A

2
i+1) := (Gi, Fi,Oi, A

1
i ∪ {uv}, A2

i ),
i := i+ 1, GO TO 1

ELSE

2 IF mild rejection is possible for some edge uv of Gi

THEN (Gi+1, Fi+1,Oi+1, A
1
i+1, A

2
i+1) := (Gi, Fi ∪ {uv},Oi, A

1
i , A

2
i ),

i := i+ 1, GO TO 1

ELSE

3 IF firm rejection is possible for some edge uv of Gi

THEN (Gi+1, Fi+1,Oi+1, A
1
i+1, A

2
i+1) :=

:=(Gi − {uv}, Fi \ {uv},Oi|Gi+1
, A1

i \ {uv}, A
2
i ) \ {uv},

i := i+ 1, GO TO 3

ELSE

4 IF there is a second choice uv of u that is not a 2-arc
THEN (Gi+1, Fi+1,Oi+1, A

1
i+1, A

2
i+1) := (Gi, Fi,Oi, A

1
i , A

2
i ∪ {vu}),

i := i+ 1, GO TO 4

ELSE

5 IF some 2-arc uv ∈ A2
i can be eliminated

THEN (Gi+1, Fi+1,Oi+1, A
1
i+1, A

2
i+1) := (Gi, Fi ∪ {uv},Oi, A

1
i , A

2
i ),

i := i+ 1, GO TO 4

ELSE

6 IF some sm-equivalence class C can be eliminated
THEN (Gi+1, Fi+1,Oi+1, A

1
i+1, A

2
i+1) :=

(Gi −C,Fi \ C,Oi, A
1
i ∪ S−1, ∅), i := i+ 1, GO TO 1

ELSE

7 IF each vertex of V 0
i is isolated

THEN OUTPUT super-stable matching Ei

ELSE OUTPUT “No super-stable matching exists”
END IF

END IF

END IF

END IF

END IF

END IF

STOP
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The following theorem justifies the correctness of our algorithm.

Theorem 2.2. Assume that the algorithm cannot execute any more step at some
instance (Gi, Fi, A

1
i , A

2
i ,Oi). Then V 2

i = ∅.

Proof. Assume indirectly that v is a vertex of V 2
i , so by Lemma 2.1, v sends a free

1-arc, and also receives a free 1-arc different from the opposite of the previous one.
It follows that there is a 2-arc pointing to v. This implies that a 4th or a 5th priority
step can be executed, a contradiction.

To finish the description of the algorithm, we should recall our earlier remark.
By Theorem 2.2, when the algorithm terminates then we have V 2

i = ∅, so by Lemma
2.1, if V 0

i spans some edge then the conclusion is that there is no stable matching,
otherwise, if each vertex of V 0

i is isolated then there is a stable matching of the
original instance, and the edge set Ei of Gi forms such a matching. The following
theorem estimates the complexity of our algorithm.

Theorem 2.3. Assume that preference model (G,F,O) is such that G has n vertices
and m edges we can decide for each edge e = uv of G whether e is a first or
second choice of u in constant time for any preference model created from (G,F,O)
after forbidding and deleting edges. The algorithm we described above finds a stable
matching or concludes that no stable matching exists in O (m · (n+m)) time.

Proof. We have seen that if the algorithm terminates then it has the right answer,
so we only need to prove that the running time is O (m · (n+m)). As we have seen,
in each step, the algorithm changes the current instance by changing the set of 1-
arcs or 2-arcs or by forbidding or deleting certain edges. Let us call the latter two
transformations major events. Clearly, during the course of the algorithm there can
be at most 2mmajor events as there arem edges that can be forbidden or eventually
deleted. We show that between two consecutive major events the algorithm needs
O(n+m) time.

If a major event is a 1st priority (mild rejection) step, then previously we had to
find all 1-arcs (in O(n +m) time) and finding the forbidden edge after this can be
done in O(n +m) time again. If the major event is a 2nd priority (firm rejection)
step then it is preceded by 0th priority proposal steps (taking O(n+m) time again)
and checks for 1st priority (mild rejection) steps taking O(n +m) time. We need
againO(n+m) time to find the edge to be deleted in the 2nd priority (firm rejection)
step.

The next major event type is a 4th priority (2-arc eliminating) step. It is pre-
ceded by executing all 0th priority (proposal) steps and checking for 1st and 2nd
priority steps that take altogetherO(n+m) time. Then we find all 2-arcs inO(n+m)
time, find top sm-class C by depth first search in O(n+m) time and find the deleted
edge O(n+m) time again.

The remaining major event happens in a 5th priority step. So after the previous
major event we had at most O(n) 0th priority proposal steps that take O(n +m)
time, checks for 1st and 2nd priority rejection steps taking O(n+m) time, we had
to find all 2-arcs in O(n +m) time, we find top sm-class C in O(n +m) time and
check for 2-arc elimination in O(n+m) time again.

The above estimates prove that there is O(n + m) time between consecutive
major events. We have seen that there are O(m) major events, so our algorithm
terminates in O (m · (n+m)) time, just as we claimed in the theorem.

The time complexity in Theorem 2.3 is pretty rough. This is partly due to
the fact that in 5th priority (top class elimination) steps we throw away all 2-arcs
in spite of the fact that most of them can be reused. Probably by paying more
attention to the changes of second choices and by using more appropriate data
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structures one can streamline the algorithm to approach the complexity of Irving’s
original algorithm described in [5]. As we mentioned, our goal was not a competitive
algorithm but a description of a polynomial-time method with a compact proof of
correctness that gives hope to find further structural results on stable matchings.
We think that this goal is achieved.
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