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Abstract

In solid-state NMR, the magic angle spinning (MAS) technique fails to suppress

anisotropic spin interactions fully if reorientational dynamics are present, resulting in a

decay of the rotational-echo train in the time-domain signal. We show that a simple

analytical model can be used to quantify this linebroadening effect as a function of the

MAS frequency, reorientational rate constant, and magnitude of the inhomogeneous

anisotropic broadening. We compare this model with other theoretical approaches and

with exact computer simulations, and show how it may be used to estimate rate constants

from experimental NMR data.
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1. Introduction

Magic angle spinning (MAS) is widely used in solid-state NMR to refocus the

effects of anisotropic interactions, such as dipolar coupling, chemical shift anisotropy and

quadrupolar coupling, permitting in favourable cases the recording of high-resolution

spectra [1, 2]. However, it has long been known that MAS can fail in the presence of

reorientational dynamics, causing linewidths to increase dramatically [3]. For example, we

have recently shown that the combination of solid-state dynamics on the microsecond

timescale with the large quadrupolar interaction causes considerable broadening in the

isotropic dimension of 27Al satellite-transition MAS (STMAS) NMR spectra of as-

synthesized aluminophosphates; by contrast, the corresponding isotropic 27Al multiple-

quantum MAS (MQMAS) NMR spectra remain relatively narrow in the presence of

motion, since the spin transitions involved are unaffected by the quadrupolar interaction

to first order [4, 5].

This dynamic broadening effect can be viewed as an obstacle to resolution or as a

useful probe of molecular motion [6-11]. However, it is sometimes possible to select

experiments that exhibit linebroadening in one dimension while retaining high-resolution

in a second dimension. As shown in our recent study of dynamics by 2H double-quantum

(DQ) MAS NMR spectroscopy [10], this allows motion to be probed without loss of

resolution.

In previous work, we have briefly introduced a simple analytical model to illustrate

and quantify the effects of dynamics on linewidths in MAS NMR spectra [4]. The purpose

of this Letter is to justify our use of this model and to widen its application: in section 2 we

describe the model and compare it with more conventional theoretical approaches; in

section 3, by comparison with exact numerical simulations, we show that the model

provides a surprisingly quantitative description; finally, in sections 4 and 5, we show how

MAS NMR spectroscopy, in conjunction with a simple model for linebroadening, can be

used to estimate timescales for dynamic processes in solids.
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2. Theories of motional broadening under MAS

A. Overview

For an NMR transition experiencing a traceless second-rank inhomogeneous

interaction under sample rotation at a frequency   

� 

νR , the contribution to the frequency of a

transition can be written as a Fourier series [12]:

    

� 

ν(t) =  ν(m)exp 2πimνRt( )
m=−2

2
∑    . (1)

The coefficient   

� 

ν(0) is equal to zero when spinning is performed at the magic angle and, as

a result, the net phase accrued during a complete rotor period is zero. The effect of the

anisotropy is therefore eliminated if spectra are acquired in a rotor-synchronized, or

"stroboscopic", manner.

In the presence of reorientational dynamics, this conclusion is no longer valid, since

the coefficients     

� 

ν(m) become time-dependent. The result is that the evolution is no longer

refocused and the rotor-synchronized MAS linewidth becomes dependent on the size of

the interaction, the kinetics of the motion, and the spinning rate.

B. Maricq and Waugh approximation

An early description of motional linebroadening under MAS was provided by

Maricq and Waugh [3]. Their analysis is valid in the fast-spinning regime, where the

spinning rate   

� 

νR  is large compared with the size of the anisotropy   

� 

νan . In this regime, the

full MAS linewidth at half-height   

� 

Δν1 2  is small compared with the spinning rate and the

signal from a single crystallite at the end of a rotor period can be approximated by a

power series truncated to first order:
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� 

s(τR ) =  s(0)exp −πΔν1 2 τR( )
  ≈  s(0) 1−πΔν1 2 τR( )

  , (2)

where τR = 1/νR. This signal can also be written in terms of the phase   

� 

φ(τR ) acquired by a

spin, which under solid-state dynamics is randomly distributed with a mean of zero:

    

� 

s(τR ) =  s(0)exp iφ(τR )( )

≈  s(0) 1− 1
2φ

2(τR )( )
    , (3)

where the overbar implies ensemble averaging and we have assumed the phase acquired

by any spin during a rotor period is small. By comparing eqs (2) and (3), an expression for

the MAS linewidth is obtained:

    

� 

Δν1 2  =  νR

2π
φ2(τR )

=  2πνR ν( ′ t )ν(t)
0

τR

∫
0

τR

∫ d ′ t dt

    . (4)

The value of this expression depends on the details of the spin interaction and solid-state

dynamics. In their analysis, Maricq and Waugh assume an axially symmetric anisotropy

  

� 

νan , the principal axis system (PAS) of which is oriented at 90º to the rotor axis. Random

molecular motion is modelled by allowing the azimuthal angle of the PAS with respect to

the rotor-fixed frame, αPR, to be time dependent, with rate constant k and the following

correlation function:

    

� 

cos2αPR (t)cos2αPR ( ′ t ) =  sin2αPR (t)sin2αPR ( ′ t ) =  1
2 exp −k t− ′ t ( )    . (5)

Using this formula, eq (4) is evaluated to yield a simple analytical expression for the

linewidth in the fast-spinning regime:
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� 

Δν1 2  =  πνan
2

2νR 16π2 + x2( )2 −16π2e−x +16π2 +16π2x+ x2e−x −x2 +x3( )     , (6)

where     

� 

x  =  k νR . In the slow-motion limit x << 1, this reduces to the expression given in

ref [3]:

    

� 

Δν1 2  =  kνan
2

16πνR
2    . (7)

According to eq (6), maximum linebroadening occurs when     

� 

2πνR k  ≈  0.55 . In the regime

close to this maximum, we can neglect all but the two largest terms to obtain a formula

with the same form as the (order-of-magnitude) expression quoted by Virlet [13]:

    

� 

Δν1 2  =  kπνan
2

2k2 +32π2νR
2    . (8)

C. Extension of Maricq and Waugh approximation

Although the approach taken by Maricq and Waugh provides a qualitative

description of motional broadening in the fast-spinning regime, the calculation assumes a

single-crystal sample and the characteristics of the motion are somewhat arbitrary.

However, it is easy to extend their methodology to take into account both powder

averaging and a specific motional model, and still obtain analytical expressions for the

linewidth.

For 2H (spin I = 1) nuclei in D2O molecules undergoing 180° flips about the C2

symmetry axis, and experiencing an axially symmetric quadrupolar interaction, it is

straightforward to evaluate eq (4):
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� 

Δν1 2  =  27πCQ
2 sin2θ

320νR 4π4 +5π2x2 + x4( )2

12π6 −12π6 e−2x + 24π6x−3π4x2 +3π4x2e−2x

+38π4x3 −4π2x4 + 4π2x4e−2x +16π2x5

−x6 + x6e−2x + 2x7

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ 

(9)

where     

� 

x  =  k νR and CQ = e2qQ/h is the 2H quadrupolar coupling constant (for the case of a

spin I = 1 nucleus experiencing the first-order quadrupolar interaction     

� 

νan  =  3
4 CQ ) and θ is

the DOD angle. In the limit of slow motion, the MAS linewidth is given by the following

equation, which has the same form as eq (7):

    

� 

Δν1 2  =  81k CQ
2 sin2θ

320πνR
2      . (10)

D. Spin-echo model

In an attempt to describe motional broadening under all regimes, Wimperis and co-

workers introduced a new model, in which MAS is approximated by a spin-echo train

with the spacing between π pulses defining the "rotor period" τR = 1/νR; reorientational

motion is modelled by two-site exchange [4]. Mathematically, this is most easily described

in the interaction representation using the stochastic-Liouville equation, with the

coherences on the two sites represented by a vector M(t):

    

� 

M(τR ) =  exp L+τR/2( )exp L−τR/2( )M(0)    , (11)

where the time-independent Liouvillians L– and L+ describe evolution during the first and

second halves of the rotor period respectively:

      

� 

L±  =  
−k± i2πνA k

k −k±i2πνB

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟    , (12)

where   

� 

νA and   

� 

νB  are the frequencies of the two sites. An average Liouvillian can then be

calculated for the rotor period:
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� 

M(τR ) =  exp LavτR( )M(0)    . (13)

The resulting spectrum is the sum of two Lorentzian lines, with linewidths     

� 

Δν1 2
i( )  directly

proportional to the eigenvalues of the average Liouvillian,     

� 

Li
av :

    

� 

Δν1 2
i( )  =  −1

πτR
Li

av . (14)

In most cases, the two components either have nearly equal linewidth, or the line is

dominated by just one of the components. The MAS linewidth can therefore be expressed

by a single analytical formula:

    

� 

Δν1 2  =  k
π

 −  νR

π
ln 1

z2

−π2Δν J
2 + k2 cosh z

νR

+ 2ksgn z2( ) k2 −2π2Δν J
2 + k2 cosh z

νR

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ sinh2 z

2νR

⎛ 

⎝ 

⎜ 
⎜ 
⎜ 
⎜ 
⎜ ⎜ 

⎞ 

⎠ 

⎟ 
⎟ 
⎟ 
⎟ 
⎟ ⎟ 

⎡ 

⎣ 

⎢ 
⎢ 
⎢ 
⎢ 
⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 
⎥ 
⎥ 
⎥ 
⎥ 

(15)

where     

� 

z = k2 −π2Δν J
2  and   

� 

Δν J =νA −νB  is the magnitude of the "frequency jump" resulting

from reorientation (and fulfills the same role as that of νan in the Maricq and Waugh

model).

Fig. 1 shows the variation of   

� 

Δν1 2 as a function of k for different values of the MAS

rate and frequency jump. Two regimes can be identified: (i) in the fast-spinning regime (νR

>> ΔνJ), the anisotropy is efficiently suppressed by magic angle spinning. However,

exchange interferes with this process and the value of k that maximizes the linewidth

depends on the spinning rate (see Fig. 1(b)) rather than on the frequency jump (see Fig.

1(a)). Nevertheless, the actual linewidth depends on both spinning rate and frequency

jump. (ii) In the slow-spinning regime (νR << ΔνJ),  analogy may be drawn with chemical

exchange in liquids and static solids, where the value of k that causes maximum

broadening is determined by the magnitude of the frequency jump (see Fig. 1(c)); the

linebroadening is almost independent of the spinning rate (see Fig. 1(d)).
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Although eq (15) is a rather complicated expression, it simplifies in the obvious

limits. In the slow-exchange (k << ΔνJ) and slow-spinning regime (  

� 

νR <<Δν J), the expression

for liquid (or static single-crystal) samples in slow exchange is recovered:

    

� 

Δν1 2  ≈  k
π

    . (16)

In the slow-exchange (k << ΔνJ) and fast-spinning regime (  

� 

νR >>Δν J), the reduced expression

agrees with that of Maricq and Waugh (eq (7)) to within a numerical factor:

    

� 

Δν1 2  ≈  
kπΔν J

2

24νR
2    . (17)

And, finally, for all MAS rates, in the fast-exchange limit  (k >> ΔνJ), the expression applied

to liquid (or static single-crystal) samples is obtained:

    

� 

Δν1 2  ≈  
πΔν J

2

2k
   . (18)

E. Calculation of ΔνJ

One of the main limitations of the spin-echo model described above is that a single

frequency jump is assumed while, in a real powder under MAS, the frequency jump is

both orientation- and time-dependent. Since the frequency jump cannot exceed the width

of the static powder pattern, the latter gives an order-of-magnitude value for the

frequency jump. A better estimate can be made by calculating the root-mean-square (RMS)

frequency jump for a static powder. In 2H NMR of D2O molecules undergoing 180º flips

about the C2 symmetry axis and experiencing a quadrupolar coupling, the RMS frequency

jump is given by:

    

� 

Δν J
RMS  =  CQ

27
80

sinθ   , (19)
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where the quadrupolar coupling tensor is assumed to be axially symmetric and aligned

with its principal axis co-linear to the OD bond.

3. Comparison with exact simulations

The spin-echo model described above makes plausible predictions of MAS

linewidths in the presence of motion. To determine the extent to which these predictions

are quantitative, comparison was made with exact numerical simulations of 2H MAS NMR

spectra, assuming the dynamic D2O system described in section 2E. To properly take into

account MAS and molecular flips, the spin dynamics were modelled using a time-

dependent Liouville equation:

      

� 

dM(t)
dt

 =  
i2πνQ

A(t)−k−R k
k i2πνQ

B (t)−k−R

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ M(t)      , (20)

where R/π is the linewidth in the absence of exchange;     

� 

νQ
A(t)  and     

� 

νQ
B (t) represent the time-

dependent quadrupolar frequencies of the two possible orientations of the molecule in the

molecular frame of reference (the two orientations are related by 180º rotation about the C2

axis) and are of the form given by eq (1). The Liouville equation was solved by dividing

the rotor period into ten equal time periods, during each of which the rotor is assumed to

be stationary, and calculating the evolution in a stepwise manner. Since ideal pulses are

assumed, the initial state is given by 
    

� 

M 0( ) = 1
1
⎛ 
⎝ 
⎜ ⎞ 
⎠ 
⎟ .

The resulting data were then averaged over a set of 300 powder orientations

determined by the ZCW algorithm [14-17], and the resulting signal Fourier transformed.

  

� 

Δν1 2  values measured directly from the spectra are shown in Fig. 2, together with

theoretical predictions as described in section 2.

There is a high level of agreement between the linewidths obtained from exact

simulations (crosses) and those predicted by the spin-echo model (solid lines), especially
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in the slow-spinning regime. The difference is greater in the fast-spinning regime, but the

level of agreement is nevertheless remarkable given the primitive nature of the model.

Fig. 2 also displays linewidth predictions obtained using the Maricq and Waugh

model (dashed lines). These predictions compare relatively poorly with the simulated

data, which is not too surprising given the approximations used in the calculation. The

modified version of this theory (dotted lines) described in section 2C shows better

agreement in the fast-spinning regime (Fig. 2c) for which it is derived. It is also

noteworthy that for large values of k, the predictions agree closely with the simulation

data in all three graphs. This is a consequence of the small phase approximation in eq (3).

For small k, most spins will experience either no "reorientational jumps" or only a small

number of these; evolution of the former will be fully refocussed, while the latter are likely

to acquire large phases in the intermediate- or slow-spinning regimes, invalidating the

approximation. For large values of k, however, most spins will flip many times during a

rotor period, so any phase acquired is likely to be small, and the approximation is valid.

It should be noted that simulated linewidth data is absent for some values of k, CQ

and νR. This occurs when the width of the line approaches the spinning rate: in the rotor-

synchronized spectrum, this means that the spectrum is not wide enough to accommodate

the peak shape; in the non-rotor-synchronized spectrum, this corresponds to a merging

(and hence disappearance) of the spinning sidebands.

4. Experimental details

Experiments were performed at T = 335 K on a Bruker Avance NMR spectrometer

equipped with a widebore 9.4 T magnet and 4-mm MAS probe generating a

radiofrequency field strength of approximately 100 kHz. 2H (ν0 = 61.4 MHz) single- and

double-quantum MAS spectra were obtained using a two-dimensional correlation

experiment as described in ref [10]; the MAS rate was 10 kHz and a double-quantum
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excitation time of 4 µs was used. The static spectrum was acquired using the Exorcycled

quadrupolar-echo experiment [18], with a free-precession interval between pulses of 30 µs.

5. Experimental results

Rotor-synchronized single- and double-quantum 2H MAS NMR spectra of sodium

tetrathionate dihydrate-d4 are shown in Figs. 3a and 3b. For the single-quantum

transitions, the largest anisotropic interaction is the quadrupolar coupling, which is

therefore expected to be the dominant cause of motional linebroadening. The double-

quantum transition, however, is not affected by the quadrupolar interaction to first order,

and so any line broadening effects are likely to be small and caused by other interactions

such as the chemical shift anisotropy and dipolar coupling [10]. We assume the motion

responsible for the broadening to be 180º flips about the C2 axes of the D2O molecules.

As expected, the single-quantum spectrum in Fig. 3a shows much greater

broadening than the double-quantum spectrum in Fig. 3b. Determination of the

reorientational rate constant by the conventional method of static lineshape fitting (Fig. 3c)

using the quadrupolar-echo technique [19] yields k = 106.83±0.05 s–1. Fig. 3d shows the

linewidth predicted by the spin-echo model as a function of the rate constant k for the D2O

reorientation. The measured single-quantum linewidth (2.8 kHz), corresponds to k =

107.11±0.03 s–1 using this model (the model allows for two possible k values at this linewidth,

but variable-temperature measurements suggest the upper value is correct; i.e., linewidth

decreases with increasing temperature). If the single-quantum MAS lineshape is fitted

directly using exact numerical simulations, a value of k = 106.95±0.02 s–1 is obtained. The

difference in rate constant determined from static and MAS data is consistent with ~5 K

frictional heating caused by sample rotation.

At the exchange rate estimated from the single-quantum linewidth, the dashed line

in Fig. 3d predicts negligible motional broadening of the double-quantum lineshape. The

290 Hz measured linewidth is likely to be due to sources other than motion on the
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microsecond timescale, including B0 inhomogeneity, non-secular relaxation contributions,

and 150 Hz exponential damping applied during data processing.

6. Conclusions

Motionally-induced linebroadening in MAS spectra can be described analytically

by modelling MAS as a series of spin echoes. This intentionally simplistic, but very

general, model shows qualitative agreement with the earlier approach of Maricq and

Waugh under certain conditions. However, comparison with exact numerical simulations

suggests that our spin-echo model is applicable to both fast-spinning and (unlike Maricq

and Waugh) slow-spinning regimes and that there is a reasonable level of quantitative

agreement between the two.

The spin-echo model is, therefore, a useful tool for (i) estimating rate constants, (ii)

predicting whether a particular resonance will be observable in a given MAS experiment,

and (iii) judging how the experimental parameters may be modified to obtain narrower (or

broader) MAS resonances. The model is applicable to any inhomogeneous interaction that

is refocused, wholly or partially, by MAS (e.g., quadrupolar coupling, chemical and

paramagnetic shift anisotropy, heteronuclear dipolar coupling), and to the whole range of

MAS NMR experiments (including, e.g., MQMAS, STMAS and DQMAS spectroscopy).

Finally, it is interesting to speculate if the results shown here are applicable to

homogeneously broadened 1H NMR spectra of solids. The use of fast (> 25 kHz) MAS to

obtain relatively high-resolution 1H NMR spectra is increasingly popular and yet, with

individual 1H-1H dipolar couplings often as large as 30 kHz, the spin-echo model predicts

motionally broadened MAS linewidths in the range 102-104 Hz if dynamics-driven large-

amplitude modulations of dipolar couplings are occurring on the appropriate timescale.

This would have implications for the spectral resolution ultimately achievable in 1H MAS

NMR of dynamic solids and, indeed, for the observability of some 1H resonances using

this technique.
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Figure Captions

Fig. 1. Single-quantum 2H MAS NMR linewidths,   

� 

Δν1 2 , predicted by the spin-echo model

in eq. (15). The linewidth in the absence of exchange is 50 Hz. (a, b) Fast-spinning regime

(  

� 

νR >>Δν J); (c, d) slow-spinning regime (  

� 

νR <<Δν J). The effect of changing the frequency

jump ΔνJ is shown in (a, c) while that of changing the MAS rate   

� 

νR  is shown in (b, d).

Fig. 2. Comparison of analytical MAS linewidth models with results from exact

simulations in the (a) slow- (νR << CQ), (b) intermediate- (νR ∼ CQ) and (c) fast-spinning (νR

>>  C Q) regimes. Single-quantum 2H MAS NMR linewidths,   

� 

Δν1 2 , are calculated for

deuterium nuclei experiencing an axially symmetric quadrupolar interaction in D2O

molecules that have a DOD bond angle of 104.5º and are undergoing 180º flips about the

C2 symmetry axis; a MAS rate of 10 kHz and intrinsic linewidth of 50 Hz are assumed.

Exact simulations (+) were performed by stepwise integration of eq (20). The spin-echo

model (solid lines) uses eq (15) with   

� 

Δν J
RMS  calculated from eq (19). The Maricq and Waugh

approximation (dashed lines) uses eq (6) with     

� 

νan  =  3
4 CQ . The extended version of the

Maricq and Waugh approximation (dotted lines) uses eq (9).

Fig. 3. (a) Single-quantum and (b) double-quantum 2H MAS NMR spectra of sodium

tetrathionate dihydrate-d4 together with lineshape fitting (using exact numerical

simulations) of single-quantum spectrum (dashed line). (c) Static quadrupolar-echo 2H

NMR spectrum of sodium tetrathionate dihydrate-d4 and lineshape fitting (dashed line).

(d) Single-quantum (solid line) and double-quantum (dashed line) linewidths predicted

using the spin-echo model. For the single-quantum linewidth, eq (19) was used to estimate

the RMS frequency jump, assuming a DOD bond angle of 105.5º and CQ = 266 kHz; for the

double-quantum linewidth a much smaller frequency jump of 2 kHz was assumed.

Intrinsic linewidths of 3.7 kHz and 50 Hz are assumed for static and MAS simulations,

respectively, while 150 Hz exponential damping was applied in (b).
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