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Abstract

Background: The loop-mediated isothermal amplification (LAMP) assay, with its advantages of simplicity, rapidity and cost
effectiveness, has evolved as one of the most sensitive and specific methods for the detection of a broad range of
pathogenic microorganisms including African trypanosomes. While many LAMP-based assays are sufficiently sensitive to
detect DNA well below the amount present in a single parasite, the detection limit of the assay is restricted by the number
of parasites present in the volume of sample assayed; i.e. 1 per mL or 103 per mL. We hypothesized that clinical sensitivities
that mimic analytical limits based on parasite DNA could be approached or even obtained by simply adding detergent to
the samples prior to LAMP assay.

Methodology/Principal Findings: For proof of principle we used two different LAMP assays capable of detecting 0.1 fg
genomic DNA (0.001 parasite). The assay was tested on dilution series of intact bloodstream form Trypanosoma brucei
rhodesiense in human cerebrospinal fluid (CSF) or blood with or without the addition of the detergent Triton X-100 and
60 min incubation at ambient temperature. With human CSF and in the absence of detergent, the LAMP detection limit for
live intact parasites using 1 mL of CSF as the source of template was at best 103 parasites/mL. Remarkably, detergent
enhanced LAMP assay reaches sensitivity about 100 to 1000-fold lower; i.e. 10 to 1 parasite/mL. Similar detergent-mediated
increases in LAMP assay analytical sensitivity were also found using DNA extracted from filter paper cards containing blood
pretreated with detergent before card spotting or blood samples spotted on detergent pretreated cards.

Conclusions/Significance: This simple procedure for the enhanced detection of live African trypanosomes in biological
fluids by LAMP paves the way for the adaptation of LAMP for the economical and sensitive diagnosis of other protozoan
parasites and microorganisms that cause diseases that plague the developing world.
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Introduction

Tsetse fly-transmitted African trypanosomes are major pathogens

of humans and livestock. Two subspecies of Trypanosoma brucei (T. b.

rhodesiense and T. b. gambiense) cause human African trypanosomiasis

(HAT, commonly called sleeping sickness). After replicating at the

tsetse fly bite site, trypanosomes enter the hemolymphatic system

(early stage or stage 1) (5, 9). Without treatment, the parasites go on

to invade the central nervous system (CNS; late stage or stage 2), a

process that takes months to years with T. b. gambiense (West and

Central African HAT) or weeks to months with T. b. rhodesiense (East

African HAT). The parasites cause a meningoencephalitis leading

to progressive neurologic involvement with concomitant psychiatric

disorders, fragmentation of the circadian sleep-wake cycle and

ultimately to death if untreated (4, 5, 9).

A key issue in the treatment of HAT is to distinguish stage 1

from stage 2 disease, as the drugs used for the treatment of stage 2

need to cross the blood-brain barrier [1,2]. The most widely used

drug is melarsoprol (developed in 1949), which is effective for T. b.

gambiense and T. b. rhodesiense HAT, but unfortunately, melarsoprol

leads to severe and fatal encephalitis in about 5–10% of recipients

despite treatment for this condition [3,4,5]. Therefore, where

HAT is endemic, accurate staging is critical, because failure to

treat CNS involvement leads to death, yet inappropriate CNS

treatment exposes an early-stage patient unnecessarily to highly

toxic and life-threatening drugs.

The diagnosis of HAT in the rural clinical setting, where most

patients are found, still relies largely on the detection of

parasitemia by blood smear and/or CSF microscopy [6,7]. While

T. b. rhodesiense detection in blood is frequently successful, T. b.
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gambiense infections, which constitute over 90% of all HAT cases,

typically show very low parasitemias, and concentration tech-

niques such as centrifugation or mini-anion exchange columns are

usually necessary [6,7,8]. Stage determination still relies on lumbar

puncture to examine CSF for trypanosomes or white cell count/

protein concentration suggestive of chronic meningoencephalitis.

Threshold values for these parameters are controversial, with the

conventional value for stage 2 (.5 cells/mL) now increased to .10

or even 20 cells/mL [9]. In summary, diagnosis and staging of

HAT is currently time consuming, intensive and difficult.

DNA-based diagnostic methods such as PCR and LAMP now

offer greater sensitivity than existing diagnostic methods, detecting

DNA from the equivalent of 0.01 parasites or less. Based on PCR

protocols for HAT [10], we described LAMP targeting the

conserved paraflagellar rod A (PRFA) gene in all T. brucei

subspecies and T. evansi [11]. LAMP is an isothermal DNA

amplification method with excellent analytical sensitivity and

specificity when employed for the detection of a variety of

microorganisms (reviewed in [12]), including human and animal

infective African trypanosomes [11,13,14,15,16,17,18,19,20,21].

LAMP relies on autocycling strand displacement coupled to DNA

synthesis by Bst DNA polymerase, a reaction similar to rolling-

circle amplification [22] but with the added advantage that a heat-

denaturing step is not necessary to initiate rounds of amplification.

Specificity is dictated by four primers (F3, B3, FIP and BIP), and

the addition of two loop primers (LoopF and LoopB) significantly

reduces the reaction time [23].

LAMP is cost-effective (,1 US dollar/test), simple (the

isothermal reaction requires a simple heating device), and rapid

(within 60 minutes) [12,24]. Furthermore, Bst DNA polymerase

can be stored for weeks at ambient temperatures, a critical

property where maintaining a cold chain is difficult [13]. Positive

reactions are indicated by turbidity [25], color changes after

addition of hydroxynaphthol blue (HNB) [26], or changes in

fluorescence using indicator dyes [26,27,28].

Despite its advantages, the usefulness of LAMP for HAT

diagnosis is handicapped in the clinical setting by its inability to

directly detect live trypanosomes in blood or CSF below 1

parasite/mL (103 parasites/mL), the practical detection limit based

on a 1 mL sample volume often used in LAMP or PCR assays.

While sensitivity can be increased 5–10 fold by adding more

sample volume, significant improvement in the assay system for

the detection of live parasites in biologically relevant samples

would clearly be of benefit for diagnosis. Here, we introduce a very

simple modification to the LAMP assay recognizing multi-copy

gene targets that can increase the analytical sensitivity for the

detection of live parasites 100-fold or more.

Materials and Methods

LAMP
Two LAMP primer sets were tested. Data on analytical sensitivity

and specificity of a LAMP primer set for trypanosome DNA based

on the multicopy (approximately 500 copies) repetitive insertion

mobile element (RIME) of subgenus Trypanozoon (GenBank

Accession No. K01801) is well-documented [16,26,29]. Using

between 2–4 mL sample, this pan-T. brucei assay is reported to detect

DNA from ,0.001 trypanosome [16]. LAMP primers based on the

serum resistance associated (SRA) gene (GenBank AJ560644) (see

Table S1 for gene sequence) were designed using PrimerExplorer

version 4 software (http://primerexplorer.jp/e/) to create the basic

F3, B3, FIP, BIP [30] and loop LF, LB [23] primers (Fig. 1A). As this

assay recognized more than the SRA gene, this primer set is

designated PSEUDO-SRA. All RIME and PSEUDO-SRA LAMP

primers were synthesized and HPLC purified. For comparison, we

also used the SRA gene (GenBank accession number Z37159)-

specific LAMP assay [17]. Genomic DNA was prepared by using

Qiagen DNeasy Blood & Tissue Kits.

The LAMP reaction was performed as previously described

[11,14,15]. Briefly, the reaction contained 12.5 mL of 2x LAMP

buffer (40 mM Tris-HCl [pH 8.8], 20 mM KCl, 16 mM MgSO4,

20 mM [NH4]2SO4, 0.2% Tween 20, 1.6 M Betaine, 2.8 mM of

each deoxyribonucleotide triphosphate), 1.0 mL primer mix

(5 pmol each of F3 and B3, 40 pmol each of FIP and BIP) or

1.3 mL when LF and LB (20 pmol each) were included, 1 mL (8

units) Bst DNA polymerase (New England Biolabs, Tokyo, Japan),

1 mL of template DNA. Final volumes were adjusted to 25 mL with

distilled water. All reactions were conducted in 2 to 4 replicates

and were monitored in real-time in a LoopampH real-time

turbidimeter LA320C (Teramecs, Tokyo, Japan). The optimal

reaction temperatures were 62uC (RIME LAMP) and 63uC
(PSEUDO-SRA LAMP). The reaction was terminated by

increasing the temperature to 80uC for 5 min. In addition to

turbidity, the amplified products were analyzed on 2% agarose

gels using the E-Gel EX system with ethidium bromide or SYBR

green incorporated into the gels (Invitrogen), and/or after addition

of hydroxynaphthol blue (HNB) [26] to enable visual detection.

The HNB color change from violet to sky blue has been

consistently interpreted by independent observers as the easiest

to see [26].

Analytical sensitivity using human CSF spiked with
trypanosomes

Human CSF was obtained as discarded samples from The Johns

Hopkins Hospital Microbiology laboratory with approval of the

Johns Hopkins Medicine IRB. CSF were adjusted to contain either

1/20 volume deionized water (untreated CSF) or 1/20 volume 10%

(w/v) Triton X-100 (final concentration 0.5% Triton). A 10% (w/v)

Triton X-100 stock solution was made by adding 1 g Triton X-100

to a final volume of 10 mL DNase/RNase free water (Qiagen). We

used bloodstream form T. b. rhodesiense IL1852, a CSF isolate from a

patient in Kenya [31,32]. Originally thought to be T. b. gambiense it

Author Summary

Human African trypanosomiasis or sleeping sickness is a
fatal disease (if untreated) spread by bloodsucking tsetse
flies. Trypanosome parasites first enter the blood and
lymph and eventually invade the brain. In rural clinical
settings, diagnosis still relies on the detection of these
microbes in blood and cerebrospinal fluid (CSF) by
microscopy. LAMP, or loop-mediated isothermal amplifi-
cation of DNA, is a technique that can specifically detect
very small amounts of DNA from an organism. It is similar
to PCR, the polymerase chain reaction, another DNA
amplification technique widely used for diagnosis of
infectious diseases. LAMP’s advantages are that the
reaction works at one temperature, whereas PCR needs a
thermocycler, and LAMP is not affected by blood
components that inhibit PCR. We show that by simply
adding detergent during sample preparation, the an-
alytical sensitivity of LAMP targeting many gene copies is
greatly improved, presumably because DNA is released
from the pathogen cells and dispersed through the
sample. To demonstrate proof of principle, we used
pathogenic trypanosomes in different human body fluids
(CSF or blood), but this simple modification should be
applicable for diagnosis of other microbial infections
where cells are sensitive to detergent lysis.

LAMP for Detection of Live African Trypanosomes
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Figure 1. PSEUDO-SRA LAMP for the detection of T. b. rhodesiense genomic DNA. The PSEUDO-SRA LAMP primer set (Panel A) was tested
with 1:10 serially diluted T. b. rhodesiense IL1852 DNA (1700 fg to 0.017 fg) (Panel B). Replicates: Samples with DNA, n = 2; without DNA, n = 4. The data
for each individual sample is presented as real-time turbidity values versus LAMP reaction time. As shown in Panel C, 5 mL reaction product after
PSEUDO-SRA LAMP or SRA LAMP amplification of differing concentrations of T. b. rhodesiense IL1852 template were electrophoresed through 2%
agarose gel containing ethidium bromide. From left to right: Lane 1, 1 kb DNA ladder (Fermentas); Lane 2, 17 pg IL 1852 DNA after SRA LAMP (Njiru
[18]). Lane 3, 17 pg IL 1852 DNA after PSEUDO-SRA LAMP. Lanes 4–10, show a dilution series of template IL1852 DNA as follows: Lane 4, 1700 fg;
Lane 5, 170 fg; Lane 6,17 fg; Lane 7, 1.7 fg; Lane 8, 0.17 fg; Lane 9, 0.017 fg; Lane 10, no DNA template.
doi:10.1371/journal.pntd.0001249.g001
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has been reclassified as T. b. rhodesiense [33] based on the presence of

the SRA gene [34] and the absence of the TgsGP gene [35,36] (Fig.

S1). Human CSF was spiked with bloodstream form T. b. rhodesiense

IL1852 and the samples serially diluted 1:10 in CSF with or without

0.5% detergent to cover a range of parasite concentrations from 104

to 1021 parasites/mL. After 60 min incubation at ambient

temperature to allow for lysis, the LAMP assays were done using

1 mL CSF.

Analytical sensitivity using human blood spiked with
trypanosomes

In the field, biological samples are often shipped to another

geographical site for later analyses. They are often preserved by

spotting on paper cards designed for short-term protein, RNA and

DNA storage (2 weeks at ambient temperature) such as Whatman

Protein Saver 903, or long-term (years) DNA storage/archiving on

Whatman FTA cards. To simulate these conditions, human blood

obtained as discarded samples from The Johns Hopkins Hospital

Microbiology laboratory with approval of the Johns Hopkins

Medicine IRB was spiked with T. b. rhodesiense (104 to 1022

parasites/mL). Protein Saver 903 cards were pretreated with

50 mL 0.5% Triton X-100, which was sufficient to fill the

designated circle on the cards, and dried overnight prior to whole

blood spotting. For assay standardization, three 2 mm punches

made from the 1 cm2 dried blood spots (DBS) and DNA was

extracted using standard methods [37]. The LAMP assays were

done using 1 mL DBS DNA template. Alternatively, untreated and

0.5% Triton X-100 treated trypanosome-spiked blood were

spotted on untreated Protein Saver 903 cards and dried overnight

with subsequent DBS DNA extraction as above.

Results and Discussion

LAMP with genomic parasite DNA
Based on experiments repeated at least 3 times, LAMP assays

successfully amplified T. b. rhodesiense DNA within 55–60 min at

62uC (RIME LAMP) or 63uC (PSEUDO-SRA LAMP). As

Figure 2. Detergent increases analytical sensitivity of RIME LAMP for the direct detection of T. b. rhodesiense in human CSF. Fifty mL
water (DNAse/RNAse free) or 10% Triton X-100 was added to human CSF. T. b. rhodesiense IL1852 was spiked into 950 mL human CSF without and
with 0.5% Triton X-100. The samples were serially diluted in duplicate in normal or detergent treated CSF and incubated at ambient temperature for
60 min. One mL aliquots were assayed for 1 hr at 62uC using RIME LAMP primers. Normal CSF (1 mL) with or without Triton X-100 was used as a
control. Each panel shows hydroxynaphthol blue reaction tubes (top), agarose gel (center) and real-time turbidity data (bottom) from the same
samples.
doi:10.1371/journal.pntd.0001249.g002
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reported previously [16], we found that RIME LAMP detected 0.1

fg genomic DNA (0.001 parasite) from T. b. rhodesiense IL1852 (not

shown). PSEUDO-SRA LAMP was as sensitive and reliably

detected 0.1 fg (0.001 parasite) or less T. b. rhodesiense IL1852

genomic DNA (Fig. 1B and 1C). Nonetheless, when using the SRA

gene specific LAMP assay [17] the detection limit for T. b.

rhodesiense IL1852 genomic DNA was 0.1–1.0 pg (1–10 parasites),

comparing favorably to reported values [17].

The standard curves with PSEUDO-SRA LAMP seem to

display biphasic kinetics with an early initial phase (15–20 min)

followed by a late second phase (35 and 55 min) with a break point

around 1.7 fg DNA (Fig. 1B) suggesting that it targets other

genomic components besides the SRA gene. As SRA is a truncated

VSG, it is likely that the PSEUDO-SRA LAMP is amplifying other

VSG sequences, albeit not efficiently (see below). Although the

PSEUDO-SRA LAMP primer sequences were verified as being

unique by BLAST analysis of the T. b. brucei TREU 927 genome

sequence and the VSG database (TriTrypDB: http://tritrypdb.

org/tritrypdb/), VSG repertoires are diverse between strains, and

we were unable to assess the primers against sequences of the full

IL1852 VSG repertoire as its genome has not been sequenced.

The PSEUDO-SRA LAMP was specific and recognized DNA

equally well from other T. b. rhodesiense strains (LouTat 1A, GYBO,

IL1501), but did not recognize DNA from T. b. gambiense isolates

Figure 3. Analytical sensitivity of real-time PSEUDO-SRA LAMP for the direct detection of T. b. rhodesiense in human CSF. T. b.
rhodesiense IL1852 was spiked into human CSF without and with 0.5% Triton X-100 (+Tx). The samples were serially diluted in normal or detergent
treated CSF. After 60 min incubation at ambient temperature, 1 mL aliquots were assayed using the PSEUDO-SRA LAMP primers. Normal CSF with or
without Triton X-100 was used as a control. The data for each individual sample is presented as real-time turbidity values versus LAMP reaction time.
The number of parasites/mL CSF originally present in the sample used for the assays in the panels shown are: [A], 104/mL; [B], 103/mL; [C], 102/mL;
[D], 101/mL; [E], 100/mL; [F], CSF alone.
doi:10.1371/journal.pntd.0001249.g003
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(IL 3258, DAL 972, DAL 072, DAL 069, IPR SG-1020, FONT

l993, JUA, MOS, MA 002) (not shown). It also recognized T. b.

brucei strain 927 genomic DNA at very high concentrations (i.e.

.1 ng DNA/mL equivalent to .104 parasites/mL), but it was

specific for T. b. rhodesiense at the concentrations tested (10 pg to

0.1 fg DNA/mL equivalent to 102 to 1023 parasites/mL). Negative

controls included the eukaryotic protozoan parasites Babesia microti,

Plasmodium falciparum, Plasmodium ovale, and Toxoplasma gondii, as well

as DNA from clinical samples or spiked blood samples, such as

Borrelia burgdorferi, Borrelia crocidurae, Enterococcus spp., Ehrlichia

chaffeensis, Escherichia coli, Pseudomonas aeruginosa, Rickettsia parkeri,

Staphylococcus spp., and DNA from mouse and human blood.

Furthermore, using PSEUDO-SRA LAMP under carefully con-

trolled conditions, no false positives were found when DNA from

192 normal human CSF samples was tested. Although it is possible

to detect very low parasite numbers using Psuedo-SRA LAMP, the

assay’s sensitivity is a potential drawback because of risk for

amplicon contamination. Therefore, until more validation is done,

we do not propose PSEUDO-SRA LAMP for diagnosis of T. b.

rhodesiense. However, the range of sensitivity made it an ideal choice

to study the effects of detergent on increasing the ability of LAMP

to detect live parasites in biological samples.

LAMP in human CSF spiked with parasites
To mimic a clinical situation, we first tested RIME LAMP and

PSEUDO-SRA LAMP on human CSF spiked with live T. b.

rhodesiense IL1852 and analyzed the reaction products on agarose

gels, HNB reaction, and/or real-time LAMP based on turbidimetric

readings. As predicted, the LAMP assays had a detection limit of 103

parasites per mL based on 1 mL assay samples for RIME (Fig. 2) and

PSEUDO-SRA LAMP (Fig. 3). While sensitivity could be increased

up to 10 fold by increasing CSF sample volume to 10 mL (not

shown), the presence of detergent (i.e. 0.5% Triton X-100) alone

added to the CSF samples improved detection to 10 and 1 parasite/

mL, representing a 100 to 1000-fold increase in RIME LAMP and

PSEUDO-SRA LAMP assay analytical sensitivity, respectively

(Figs 2 and 3; Table 1). Release of parasite DNA by 0.5% Triton

required between 30 and 60 min incubation.

LAMP assay using dried blood spots (DBS) of human
blood spiked with parasites

The transport and storage of DBS or CSF on filter paper cards is a

common practice in the field. DBS on Whatman Protein Saver 903

cards are used for parasite pathogen detection (DNA, RNA and/or

protein) and genotyping [38,39,40,41,42,43]. Depending on the paper

matrix, DNA, RNA and/or protein to be tested are first extracted

from defined diameter punches (e.g. 2 mm) and 1–5 uL are assayed.

Assay sensitivity for trypanosomes is limited by the stoichiometric

presence of the parasite in the assayed sample. Analytical sensitivity is

further reduced since sample volumes in filter paper punches represent

,1% of the total captured on the paper itself [44].

We used parasite-spiked human blood spotted on dry Protein

Saver 903 cards pretreated with detergent. Remarkably, the

presence of detergent greatly enhanced LAMP detection limits for

parasite DNA by about 100 fold for RIME and PSEUDO-SRA

LAMP (Figs 4 and 5; Table 1). Enhanced detection sensitivity was

also found when T. b. rhodesiense IL1852 DNA was extracted from

DBS from Protein Saver 903 cards containing normal or

detergent-treated parasite-spiked human blood (Figs S2 and S3).

In general, replicates were more reproducible in assays where the

detergent was present in the paper. The presence of detergent had

no effect on analytical sensitivity by HNB [26], confirming its use

for easy, inexpensive, accurate, and reliable field detection of

LAMP-amplified DNA. As with any DNA amplification method,

standard precautions for avoiding template contamination [45]

also apply for LAMP-based assays.

Added Advantages
It has been shown that sensitivity, including detection of type 1

T. b. gambiense [20], can be greatly enhanced after heat denaturing

the samples before LAMP assay [16,17,20]. However, this

procedure is less convenient than simply incubating samples at

ambient temperature with detergent or allowing samples to dry on

detergent-pretreated filter cards. Aerosol effects by heating the

samples could also increase the risk of cross-contamination prior to

addition of the reaction mixture. Furthermore, the extra steps

required for techniques such as quantitative buffy coat, microhe-

Table 1. Summary of LAMP assays conducted using trypanosome spiked human CSF and blood.

LAMP assay conditions Trypanosomes/mL

Source of DNA
How sample
assayed Triton added to Primer set 104 103 102 101 100 1021 1022 None

Sample Card

CSF Direct No N/A RIME + + 2 2 2 2 nd 2

Yes N/A RIME + + + + 2 2 nd 2

No N/A PSEUDO-SRA + + – – – – nd 2

Yes N/A PSEUDO-SRA + + + + + +/– nd 2

Blood DBS No No RIME + + 2 2 2 2 nd 2

No Yes RIME + + + + 2 2 nd 2

No No PSEUDO-SRA nd + +/2 2 2 2 2 2

No Yes PSEUDO-SRA nd + + + + + + 2

Blood DBS No No RIME + + 2 2 2 2 nd 2

Yes No RIME + + + + 2 2 nd 2

No No PSEUDO-SRA + + + + 2 2 nd 2

Yes No PSEUDO-SRA + + + + + +/2 nd 2

+ = All replicates positive; +/– = positive/negative mix; 2 = All replicates negative; nd = not done; N/A = not applicable; DBS = dried blood spot on 903 card.
doi:10.1371/journal.pntd.0001249.t001
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matocrit centrifugation (mHCT), mini-anion-exchange centrifu-

gation technique (mAECT) used to concentrate the parasites from

blood or CSF [6,7] also increase contamination risk. The addition

of samples directly in the reaction helps reduce contamination.

Recent findings by Deborggraeve et al. [46] suggest that while

PCR performed better than, or similar to current parasite

detection techniques for T. b. gambiense sleeping sickness diagnosis

and staging, it cannot be used for post-treatment follow-up

because of persistence of living or dead parasites or their DNA

after successful treatment. The use of LAMP on serially diluted

sample in the absence and presence of detergent could be useful

for differentiating between these scenarios; large difference might

indicate a recent infection with small differences indicating

persistent or relapse infection. While we have not yet optimized

conditions with regards to detergent concentration or class

(nonionic, ionic or zwitterionic), our preliminary evidence supports

the concept that a detergent such as Triton X-100 can be used in a

variety of ways to enhance the analytical sensitivity of multi-copy

gene LAMP-based assays for the detection of intact African

trypanosomes in blood and CSF approximately approaching or

reaching the detection limits of LAMP for genomic DNA.

Conclusion
In addition to LAMP, the implications of these findings are far

reaching and should also be applicable for improved lateral-flow

dipstick methods recently introduced [47], PCR, or other nucleic

acid amplification-based [Recombinase Polymerase Amplification

(TwistDX), Strand Displacement Amplification (Probetec ET,

Becton-Dickinson), Nucleic Acid Sequenced Base Amplification

(Primer Biosoft International)] technologies where microbial

pathogen, including protozoan parasite (e.g. Plasmodium) DNA/

RNA could be easily released by detergents. Unlocking the

potential power of LAMP for accurate HAT diagnosis presents an

excellent option for the administration of effective anti-trypano-

some treatment. In summary, the procedure paves the way for

the adaptation of LAMP and similar technologies as simple

cost-effective diagnostics for intact African trypanosomes in

humans, animals and tsetse flies, and also for other protozoan

Figure 4. Analytical sensitivity of RIME LAMP for detection of T. b. rhodesiense DNA in human blood. T. b. rhodesiense IL1852 was spiked
into whole human blood, serially diluted and spotted in duplicate on Protein Saver 903 cards or 903 cards pretreated with 0.5% Triton X-100 and
allowed to dry overnight. DNA from the DBS was extracted as described in the methods [37] and 1 mL aliquots assayed using RIME LAMP primers.
Normal blood (blood) or nuclease free water with or without Triton X-100 were used as controls. Each panel shows hydroxynaphthol blue reaction
tubes (top), agarose gel (center) and real-time turbidity data (bottom) from the same samples. DBS DNA from uninfected blood was used as a
negative control.
doi:10.1371/journal.pntd.0001249.g004
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parasites and microorganisms that cause diseases that plague the

developing world.

Supporting Information

Figure S1 T. b. rhodesiense IL1852 contains the SRA
gene. Genomic DNA isolated from IL1852 trypanosomes was

checked by PCR using oligonucleotide primers directed against

the SRA gene diagnostic for T. b. rhodesiense, and the TgsGP gene

diagnostic for T. b. gambiense. Positive controls included in each

reaction were ELIANE, a T. b. gambiense group 1 from Côte

d’Ivoire [49], and Z222, a confirmed T. b. rhodesiense from Zambia.

(TIF)

Figure S2 Analytical sensitivity of RIME LAMP for dried
blood spot detection of T. b. rhodesiense DNA from
detergent treated human blood spotted on 903 cards.

Fifty mL water (DNAse/RNAse free) or 10% Triton X-100 was

added to 950 mL human blood. T. b. rhodesiense IL1852 was spiked

into human blood without and with 0.5% (w/v) Triton X-100.

The samples were serially diluted in normal or detergent treated

blood and spotted on Protein Saver 903 cards. DNA from the DBS

was extracted [37] and 1 mL aliquots assayed using RIME LAMP

primers. Each panel shows hydroxynaphthol blue reaction tubes

(top), agarose gel (center) and real-time turbidity data (bottom)

from the same samples. DBS DNA from uninfected blood was

used as a negative control.

(TIF)

Figure S3 Analytical sensitivity of PSEUDO-SRA for
dried blood spot detection of T. b. rhodesiense DNA
from detergent treated human blood spotted on 903
cards. T. b. rhodesiense IL1852 was spiked and serially diluted into

human blood without and with 0.5% Triton X-100 (+Tx) and

Figure 5. Analytical sensitivity of PSEUDO-SRA LAMP for detection of T. b. rhodesiense DNA in human blood. T. b. rhodesiense IL1852
was spiked into whole human blood, serially diluted and spotted in duplicate on Protein Saver 903 cards or 903 cards pretreated with 0.5% Triton X-
100 (+ Tx) and allowed to dry overnight. Control blood samples without trypanosomes were spotted in quadruplicate. DNA from individual DBS
(n = 2) was extracted as described in the methods and 1 mL aliquots assayed using PSEUDO-SRA LAMP primers. DBS DNA from uninfected blood was
used as a negative control (n = 4 +/2 Triton). The number of parasites/mL blood originally present in the sample used for the assays in the panels
shown are: [A], 102/mL; [B], 101/mL; [C], 100/mL; [D], 1021/mL; [E], 1022/mL; [F], blood alone.
doi:10.1371/journal.pntd.0001249.g005
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spotted on paper cards as in Fig. 4. The DNA from the DBS was

extracted and 1 mL aliquots assayed using PSEUDO-SRA LAMP

primers. The data for each individual sample is presented as real-

time turbidity values versus LAMP reaction time. DBS DNA from

uninfected blood was used as a negative control. The number of

parasites/mL blood in the panels shown are: [A], 103/mL; [B],

102/mL; [C], 101/mL; [D], 100/mL; [E], 1021/mL; [F], blood

alone.

(TIF)

Table S1 SRA gene 59-39 sequence targeted by PSEUDO-
SRA (AJ560644).
(DOC)
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