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Abstract. Optimising non-functional properties of software is an important part
of the implementation process. One such property is execution time, and compil-
ers target a reduction in execution time using a variety of optimisation techniques.
Compiler optimisation is not always able to produce semantically equivalent al-
ternatives that improve execution times, even if such alternatives are known to
exist. Often, this is due to the local nature of such optimisations. In this paper
we present a novel framework for optimising existing software using a hybrid
of evolutionary optimisation techniques. Given as input the implementation of a
program or function, we use Genetic Programming to evolve a new semantically
equivalent version, optimised to reduce execution time subject to a given proba-
bility distribution of inputs. We employ a co-evolved population of test cases to
encourage the preservation of the program’s semantics, and exploit the original
program through seeding of the population in order to focus the search. We carry
out experiments to identify the important factors in maximising efficiency gains.
Although in this work we have optimised execution time, other non-functional
criteria could be optimised in a similar manner.

1 Introduction

Software developers must not only implement code that adheres to the customer’s func-
tional requirements, but they should also pay attention to performance details. There
are many contexts in which the execution time is important, for example to aid perfor-
mance in high-load server applications, or to maximise time spent in a power-saving
mode in software for low-resource systems. Typical programmer mistakes may include
the use of an inefficient algorithm or data structure, such as employing anΘ(n2) sorting
algorithm.

Even if the correct data structures and algorithms are employed, their actual im-
plementations might still be improved. In general, compilers cannot restructure a pro-
gram’s implementation without restriction, even if employing semantics-preserving trans-
formations. The alternative of relying on manual optimisation is not always possible:
the performance implications of design decisions may be dependent on low-level details
hidden from the programmer, or be subject to subtle interactions with other properties
of the software.

To complicate the problem, external factors contribute to the execution time of soft-
ware, such as operating system and memory caches events. Taking into account these



factors is difficult, and so compilers usually focus on optimising localised areas of code,
rather than restructuring entire functions.

More sophisticated optimisations can be applied if we take into account the prob-
ability distribution of the usage of the software. For example, if a function takes an
integer input and if we know that this input will usually be positive, this information
could be exploited by optimising the software for positive input values.

In this paper we present a novel framework based on evolutionary optimisation tech-
niques for optimising software. Given the code of a function as input to the framework,
the optimisations are performed at the program level and consider the probability dis-
tribution of inputs to the program. To our best knowledge, we do not know of any other
system that is able to automatically perform such optimisations.

Our approach uses Multi-Objective Optimisation (MOO) and Genetic Programming
(GP) [1]. In order to preserve semantic integrity whilst improving efficiency, we apply
two sets of test cases. The first is co-evolved with the program population [2] to test the
semantics of the programs. The second is drawn from a distribution modelling expected
input, and is used to assess the non-functional properties of the code. The original func-
tion is used as an oracle to obtain the expected results of these test cases.

Evolving correct software from scratch is a difficult task [2], so we exploit the code
of the input function by seeding the first generation of GP. The first generation will not
be a random sample of the search space as is usually standard in GP applications, but
it will contain genetic material taken from the original input function. Note that this
approach is similar to our previous work on Automatic Bug Fixing [3], in which all the
individuals of the first generation were equal to the original incorrect software, and the
goal is to evolve a bugfree version. A similar approach has also been previously taken
in attempting to reduce the size of existing software [4].

We present a preliminary implementation of the novel framework, and we validate
it on a case study. We then apply systematic experimentation to determine the most im-
portant factors contributing to the success of the framework. Although our prototype is
still in an early stage of development, this paper gives the important contribution of pre-
senting a general method to automatically optimise code using evolutionary techniques.
We are also able to provide some guidance to other practitioners in applying such an
approach, based on our analysis of empirical results.

The paper is organised as follows. Section 2 describes in detail all the components
of the novel framework, whereas Section 3 presents our case study. Section 4 describes
our results and Section 5 suggets further work.

2 Evolutionary Framework

An overview of our framework is given in Figure 1. The framework takes as input the
code of a function or program, along with an expected input distribution, and then it
applies GP to optimise one or more non-functional criteria. Note that in our experimen-
tation, we chose to parameterise the use of MOO and Coevolution in order to assess
their impact on the ability of the framework to optimise non-functional properties of
the software. The main differences from previous GP work are how the first genera-
tion is seeded, how the training set is used and generated, the particular use of multi-
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Fig. 2. The Relationship between a Program and
the Semantic Test Set Population

objective optimisation, and the employment of simulation and models in estimating
non-functional properties of individuals.

2.1 Seeding Strategies

Usually, in GP applications the first generation is sampled at random, for example, us-
ing Koza’s ramped half-and-half initialisation method. Evolving bugfree software from
scratch with GP is an hard task [5], but in our case we have as input the entire code of
the function that we want to optimise, and we can exploit this information.

Different seeding strategies can be designed, and this is a case of the classic “explo-
ration versus exploitation” trade-off that is so often an issue in heuristic search, and in
particular evolutionary computation. On one hand, if we over-exploit the original pro-
gram we might constrain the search in a particular sub-optimal area of the search space,
i.e. the resulting programs will be very similar to the input one. On the other hand, ig-
noring the input genetic material would likely make the search too difficult. The point
here is that, although we do not want a final program that is identical to the input one,
its genetic material can be used as building blocks in evolving a better program. This
has interesting implications for understanding how GP achieves its goal: can building
blocks be recombined in different ways to improve performance?

In this work we consider a simple strategy: given a fraction δ of the initial random
population, then δ individuals will be replaced by a copy of the input function. The
remaining individuals are generated using a standard initialisation method.

2.2 Preserving Semantic Equivalence

Modifications to the input program can compromise its original semantics and our goal
is to output an improved yet semantically equivalent program. It is important that our
evaluation of individuals is effective in testing the semantics of new programs against
the original. Exhaustive testing is usually impossible, and any testing strategy is there-
fore open to exploitation by an evolutionary algorithm through over-fitting.



To improve the effectiveness of our fitness evaluation method, we employ a form
of coevolution, in principle similar to that used by Hillis [6]. Before the evolutionary
algorithm begins, we first generate a large set of test cases using a White Box testing
criterion [7], specifically branch coverage. This set is partitioned into subsets, one for
each branch of the program. The partitioning ensures a degree of behavioural diversity
amongst test cases.

The test set is then co-evolved as a separate population (the “training set”), from
a selection from the larger pool produced prior to evolution. This training set is also
partitioned, so that it samples each branch of the original program.

At each generation, the GP individuals are tested with the test cases in the train-
ing set. The sum of the errors from the expected results is referred to as the semantic
score and is one component of the fitness of a GP individual. Figure 2 illustrates the
relationships between the program and test set populations.
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2.3 Evaluating Non-functional Criteria

To evaluate non-functional properties of individuals, a separate training set from that
used to evaluate the semantic score is employed. The set is drawn from the expected
input distribution provided to the framework, which could be based on probe measure-
ment of software. For each non-functional criterion, a score is calculated for GP indi-
viduals using this set. The final fitness function of a GP individual will be composed
of these scores and the semantic score. The set of tests is resampled at the start of each
generation, to prevent overfitting of non-functional fitness for a particular set of inputs.

In this paper, we will estimate (by modelling and simulation) the number of CPU cy-
cles consumed by each individual, assuming a uniform distribution of integer inputs for
the case study. Note that this work is distinct from previous work on program compres-
sion [4] as the number of cycles used will depend on the path taken within a program.
The framework can be extended to handle other types of non-functional criteria.



Simulation The cycle usage of an individual can be estimated using a processor simu-
lator and here we have used the M5 Simulator [8], targeted for an ARM Microprocessor.
The parameters of the simulator were left unchanged from their default values. Individ-
uals are written out by the framework as C Code and compiled with an ARM-Targeted
GCC cross-compiler. A single program is executed along with test code that executes
the given test cases, and a total cycle usage estimate provided.

Whilst simulation does not perfectly reflect a physical system, it is worth noting
that we are only concerned with relative accuracy between individuals, and also that
the accuracy of simulation is an issue beyond the scope of our framework: we can
easily incorporate alternatives or improvements.

Model Construction Compiling and then testing each individual in a simulator can
be computationally expensive. In this work we have carried out a large quantity of
experiments as part of the analysis of the problem. Thus, we opted to study the approach
of modelling the cycle usage as a linear model of instructions executed:

Y = β0 + β1x1 + β2x2 + . . . βnxn + ε

Where Y is the estimated cycles consumed by a program, x1 . . . xn are the fre-
quencies that each of the n instructions appear within a program, and the coefficients
β1 . . . βn are an estimate of the cost of each instruction. ε is the noise term, introduced
by factors not considered by the other components of the model. This is a simplification,
because the ordering of the instructions affects the total cycles consumed due to pipelin-
ing and caching and because subsequent compiler optimisations will be dependent on
the program structure.

To use such a model, the coefficients must be estimated. We achieved this by exe-
cuting one large evolutionary run of the framework, and logging the frequencies with
which each instruction appeared in each individual, and their corresponding cycle us-
age. Least Squares Linear Regression was then used to fit this model. It was possible
to verify the relative accuracy of this model for the data points used in constructing
it. As we are using tournament selection, we compared the results of using a model
to carry out a tournament size 2 against the results of using the simulator results. The
model was found to be in agreement with the simulator 65% of the time. It was not
clear if this would be sufficient, and therefore the model was treated as a parameter of
our experiments.

Using the Model During experimentation, we execute the individuals through inter-
pration within the framework, whilst storing a profile of the nodes visited during evalu-
ation. This profile is then used in conjunction with the model provided to the framework
to estimate the number of the cycles the individual would consume. Thus a combination
of interpretation and model-based estimation (or alternatively, simulation) can be used
by the framework.



2.4 Multi-Objective Optimisation

Our framework is faced with the challenge of optimising one or more non-functional
properties, whilst retaining the correct semantics of the original program provided as
input. This problem can be formulated as Multi-Objective Optimisation (MOO), indeed
this is the approach we have taken previously to a similar problem [9]. In that work,
we were searching for a set of possible trade-offs between non-functional and function
properties, but here we are concerned only with finding a single program. Hence it was
unclear whether a fully MOO approach based on pareto-dominance was necessary.

We therefore adopted two approaches to combining objectives in fitness evaluation.
The first was to use a simple linear combination of the functional and non-functional
fitness measures. The second is to use the Strength Pareto Evolutionary Algorithm Two
(SPEA2) [10]. This is a popular pareto-based method that attempts to approximate the
pareto-front in objective space, as illustrated by Figure 4.

In Figure 4, it is assumed that the aim is to minimise both the non-functional prop-
erty of the software and its error, that is both fitness components are cost functions. A
pareto front would consist of the darker points, where no improvement in one objec-
tive can be made without worsening fitness in one of the other objectives. Our frame-
work would like to find the point P ′, a program with zero error and an improved non-
functional fitness.

One possible justification of using a pareto-based MOO approach is the building
block hypothesis often used to provide some rational for genetic recombination in evo-
lutionary algorithms. SPEA2 should find a set of programs that provide varying lev-
els of error for different non-functional property values. Recombination between these
smaller building blocks may produce re-orderings of instructions and new combinations
that provide the same functionality but at a lower non-functional cost.

In our experimentation, we chose to make the MOO component of the framework
a parameter, in order to establish what impact the two approaches would have on the
success of the optimisation process.

3 Case Study

3.1 Software Under Analysis

In our experiments, we analysed the Triangle Classification (TC) problem [7]. We
choose that particular function because it is commonly used in the software testing
literature, and the first one on which theoretical results have been obtained [11]. Given
three integers as input, the output is a number representing whether the inputs can be
classified as the sides of either an invalid, scalene, isosceles or equilateral triangle.

We used two different implementations, respectively published in [12] and [13] and
expressed in Java in Figures 5 and 6 respectively. Note that their return values have
been changed to make them consistent. The two implementations are not semantically
equivalent, because they have contain related to arithmetic overflows.



public int triangleClassification
(int a, int b, int c) {
if (a > b) {int tmp = a; a = b; b = tmp;}
if (a > c) {int tmp = a; a = c; c = tmp;}
if (b > c) {int tmp = b; b = c; c = tmp;}
if(a+b <= c)

return 1;
else {

if(a == b && b == c) return 4;
else if(a == b || b == c) return 3;
else return 2;}

}

Fig. 5. 1st TC version [12].

public int triangleClassification
(int a, int b, int c) {
if(a<=0 || b<=0 || c<=0) return 1;
int tmp = 0;
if(a==b) tmp += 1;
if(a==c) tmp += 2;
if(b==c) tmp += 3;
if(tmp == 0){
if((a+b<=c) || (b+c <=a) || (a+c<=b)) tmp = 1;
else tmp = 2;
return tmp;}

if(tmp > 3) tmp = 4;
else if(tmp==1 && (a+b>c)) tmp = 3;
else if(tmp==2 && (a+c>b)) tmp = 3;
else if(tmp==3 && (b+c>a)) tmp = 3;
else tmp = 1;
return tmp;

}

Fig. 6. 2nd TC version [13].

3.2 Experimental Method

The framework was implemented in Java, and we used ECJ 16 [14] for the GP system.
In particular, we used Strongly Typed Genetic Programming [15]. All the parameters of
the framework that are not stated in paper have the default values in ECJ, as inherited
from the koza.params parameter file.

For each TC version (V 1 and V 2) we carried out distinct experiments with 2 dif-
ferent cost models (M1 and M2), for a total of 4 independent sets of experiments. In
one model, each GP primitive has unitary estimated cycle cost (M1), whereas in the
second model (M2) these costs have been estimated by least squares regression on data
collected from a run using simulator.

For each group of experiments, we performed a full factorial design [16] of 8 pa-
rameters that we considered most important. Table 1 shows their high and low values.
The total number of tested configurations was 4 · 28 = 1024. However, the SPEA2
archive is used only when MOO is employed, hence 256 experiments are redundant.

The probability that a tree is not affected by either crossover or mutation is 0.1; test
case population size of 200, with an archive of 50 elements and a main pool of 2000 test
cases; the cycle score is evaluated on 100 test cases that are sample at each generation
with uniform distribution of values in {−127, . . . , 128}.

There are 36 GP primitives: 3 input variables, 1 other integer variable, read and
write of variables, 1 variable wrapper, 10 integer constants, 5 arithmetic operators, 2
boolean constants, 8 boolean operators and 4 commands. There are 4 node return val-
ues: command, integer value, integer variable and boolean value.

If P is the program given as output by the framework, we are interested whether P
is faster than the input program. Given an output, we validate P against an independent
set of 10, 000 test cases. If P fails any of those test cases, the framework has failed
to produce a semantically equivalent program, and P will be replaced by the original
program. Note that passing 10, 000 test cases does not guarantee the equivalence of
semantics, so the output programs need to be manually checked at the end of a run.



Parameter Id Low Value High Value
Probability of Crossover (Pc)/Mutation(Pm) X1 0.1/0.8 0.8/0.1
Population Size (S) and Generations (G) X2 50/1000 1000/50
Tournament Selection Size X3 2 7
Types of Mutations X4 1 6
Clone Proportion δ X5 0 1
Co-evolution Enabled X6 false true
SPEA2 MOO Used X7 false true
SPEA2 Archive Proportion X8 1

9
1

Table 1. Factorial design of 8 parameters. Note that Pm = 0.9 − Pc and S · G = 50000 such
that the total number of fitness evaluations remains constant. For the same reason, when MOO is
employed, the population is reduced by the SPEA2 archive size. If co-evolution is not employed,
the test cases are simply sampled at random at each generation. If MOO is not employed, the
semantic and the cycle scores are linearly combined, with a weight of 128 for the semantic score.
A mutation event is a single mutation from a pool of ECJ mutation operators is applied.

The performance of P is evaluated with the gain score, that is the difference of the
cycle scores of the original program and P . These cycle scores are evaluated on 100
test cases. The faster P is, the higher gain score it will receive. If P is not correct, then
the gain score is 0. It is possible that the gain score assumes a negative value.

For each of the 1024 configurations, we ran them 100 times and recorded the gain
score. For each of the 4 groups of experiments we report an ANOVA analysis of the
results in Table 2, whereas the configurations that gives the highest single and average
gain score are reported in Table 3. Moreover, for each best configuration in Table 3 we
chose the best program (out of 100 trials), and we evaluated the estimated real gain
score by running it in the simulator against the original program (on 1,000 input triplets
over the expected input distribution).

Configuration X1 X2 X3 X4 X5 X6 X7 X8
V1 M1 0.0001 0 0 0.3396 0 0 0 0
V1 M2 0 0.0816 0.2707 0 0 0 0 0.8529
V2 M1 0.0026 0 0 0.2094 0 0 0 0
V2 M2 0 0 0 0 0 0 0 0.7858

Table 2. P-values of the ANOVA tests run on the 4 different types of experiments.

4 Results and Conclusions

Table 2 demonstrates that the design decisions made in selecting each parameter value
have a significant impact (i.e. have a small p-value) on the performance improvement
achieved. Only X3, X4 and X8 are significant for only part of the experiments. All are
concerned with the amount of exploration the search performs, and it is conjectured that
the significance of these parameters will be problem-specific.



Config. X1 X2 X3 X4 X5 X6 X7 X8 Average Max Variance Best
V1 M1 0.8/0.1 1000/50 2 6 1 true false - 1330.7 1826.0 163,700 7355

0.8/0.1 50/1000 7 1 1 true false - 1052.7 2507.0 305,100 11610
V1 M2 0.1/0.8 50/1000 7 1 1 true false - 175.8 3402.9 2,211,000 -1618

0.1/0.8 50/1000 7 6 1 true false - -1528.2 3609.5 1,991,800 -503
V2 M1 0.1/0.8 1000/50 7 6 1 true false - 570.3 1475.0 181,600 6645

0.8/0.1 50/1000 7 6 1 true false - 237.4 1519.0 105,700 6645
V2 M2 0.1/0.8 1000/50 2 1 1 true true 1 39.3 1490.4 77,700 -2198

0.8/0.1 50/1000 7 1 1 true false - -318.0 5401.1 2,688,700 -11242
Table 3. For each of the 4 configurations, the parameter settings that result in the highest average
and max gain scores are reported, as well as their best performance gains.

The best individual data in Table 3 shows that improvements were possible for both
original programs. Model 2, based on the simple linear model building approach, per-
formed poorly: we recommend that hand-crafted models of resource usage or full sim-
ulation should be used.

Seeding the initial population based on the original program is a useful technique
that should be used. Similarly, the application of co-evolution is an effective measure to
improve performance.

When employing Genetic Programming in general, a large population for a smaller
number of generations is usually more effective than a smaller one evolved over a large
number of generations, due to the prevalent problem of bloat [17]. However, in our ex-
periments we see exactly the opposite trend where small populations are more success-
ful in that they produce the largest improvements in program speed. It would usually
be expected that a higher number of generations tends to lead to over-fitting and fewer
correct programs over a succession of runs. However, the efficiency gains are best in
the very few cases in which the resulting programs are actually correct.

The fact that a pareto-based MOO approach mostly provides worse results may be
due to the fact that the programs we analysed in our case study can be optimised to
some extent using multiple mutations, and with few changes in the source code. Hence
a search concentrated around the input program gives better results, rather than spread
across a range of program shapes and sizes. It is therefore possible that pareto-based
MOO will find superior solutions than a linear combination given more resources.

It is worth noting that for the non-binary parameters (e.g., crossover rate) we anal-
ysed only low and high values in our experiments. The best tunings likely lie within
those extremes and it is likely that better results than in Table 3 could be obtained by
tuning these parameters.

5 Summary and Future Work

In this paper we have presented a novel framework for improving non-functional crite-
ria of software. The framework has been successfully used for evolving new correct and
faster versions of the programs in our case study. Regarding the quality of the final out-
comes, the experiments also showed expected and unexpected roles of some parameter
settings.



Immediate future work is to test if these results hold for other problems. We would
also like to further investigate optimal parameter settings, in particular the cloning pro-
portion used. Also, alternative seeding strategies could be investigated, potentially as an
opportunity to investigate GP schema theory [17] where seeding according to schemas
may have a beneficial effect.

As already discussed, further work using MOO and extended evolutionary runs may
allow us to provide more guidance on parameter selection.
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