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Abstract. In previous work, we have demonstrated that it is possible to
use Genetic Programming to minimise the resource consumption of soft-
ware, such as its power consumption or execution time. In this paper,
we investigate the extent to which Genetic Programming can be used
to gain fine-grained control over software timing. We introduce the ideas
behind our work, and carry out experimentation to find that Genetic Pro-
gramming is indeed able to produce software with unusual and desirable
timing properties, where it is not obvious how a manual approach could
replicate such results. In general, we discover that Genetic Programming
is most effective in controlling statistical properties of software rather
than precise control over its timing for individual inputs. This control
may find useful application in cryptography and embedded systems.

1 Introduction

In previous work, we have combined Genetic Programming (GP), Multi-objective
Optimisation (MOO) and simulation of hardware platforms to produce software
with low power consumption [1] and reduced execution time [2]. We found that
GP was indeed able to meet both functional and non-functional requirements,
and also provide trade-offs between the two. Here we propose the notion of fine-
grained resource control. For example, can we control the execution time of a
program p on input x, T (p, x), such that T can be an arbitrary function? Such
control might allow us to solve some problems more efficiently than with func-
tional computation alone, and to create software with useful security properties.

In this paper, we investigate the types of control that GP can achieve, and the
effectiveness of the search algorithm in achieving these goals. We do not attempt
to demonstrate that our solutions are the best, or that our parameter settings
are optimal: only that GP has the potential to finely control timing behaviour
in a way not previously considered. The results of single experimental runs are
presented as proof of concept. We discuss example potential applications of these
results to the domain of cryptography. Whilst we address timing properties,
alternatives include power consumption and memory usage.



2 Evolving Code with Specific Time Complexity

In this section, we demonstrate the difficulty of trying to manually control the
low-level timing properties of software, as we attempt to create code that has
a very specific time complexity relationship. This demonstrates the potential
superiority of GP against manual design alone as a tool for such tasks.

We evolve individuals in the ECJ 19 Toolkit [3] and evaluate them by writing
them out as C code, compiling them with a test harness using a cross-compiler,
and executing them within the M5 Simulator [4]. The simulator is targeted for an
Alpha architecture, using its default parameters. A trace file is produced, which is
parsed by ECJ to measure the number of cycles used by the evolved code in each
test case. Where handwritten solutions are examined in the following sections,
the C source code has been manually written, and the rest of the evaluation
method remains unchanged to ensure a fair comparison with evolved solutions.

2.1 Designing Linear Complexity

It is second nature to think about a program in terms of complexity: quadratic is
good, linear is better, exponential is undesirable. For a moment, let us focus only
on the complexity of a program rather than its purpose. Consider a program
A that has linear complexity with respect to quantity n. Quantity n may be
problem size, in which case we assume the conventional notion of the complexity
of the program. If n an input, we have a program that has a linear relationship
between its input values and its resource consumption. This is related to the
theory of pseudo-polynomial time algorithms.

If we wish to construct code that may have this behaviour, we find that it is
actually not as straightforward as one might assume, because the complex inter-
action of hardware and software can easily lead to outliers in the relationship.
For example, if we wish to construct a solution such that T (p, k) = mk + c, we
can suggest such a program without regard to its functionality as thus:

float tmp = 0;

while (tmp < k)

tmp++;

We have used float rather that int to maintain generality in the following sec-
tions, and because floating point operations have interesting timing properties.
We now test this program with k = 0 . . . 99. A test program provides these in-
puts, then parses a trace file to measure cycle usage for each call. Rather than
implement this as a function, we have actually used a C #define macro to force
the compiler to inline this code. This improves efficiency, and allows us to ma-
nipulate code embedded within a program rather than as an external function,
interacting fully with the machine context of the surrounding code.

Figure 1(a) gives a graph of the results. Note that we do not experience
a perfect relationship, due to the interaction between the test program and
machine state. The primary cause of the outliers is data cache misses for the
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(a) Ordered test data
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(b) Randomised test order

Fig. 1. Test results for handwritten linear solution

input values, such that the comparison operation causes a long delay prior to
the next instruction. If we randomise the order of the inputs, we can measure
the relationship in a more robust manner. The result is given in Figure 1(b).

Here we have even larger outliers, but they are spread throughout the input
range rather than concentrated at the beginning. We can quantify the relation-
ship by estimating Pearson’s correlation coefficient for this sample:

r(k, T ) =
∑n

i=1(ki − k̄)(Ti − T̄ )√∑n
i=1(ki − k̄)2

√∑n
i=1(Ti − T̄ )2

(1)

Where ki is the ith test case and Ti is the time taken to execute a code
fragment p on this input. A perfect positive correlation would be 1, a negative
correlation -1 and 0 for no correlation. The correlation coefficient for this manual
attempt at linearity is 0.978, and by no means a perfect correlation due to the
subtle interaction with the program’s context. An interesting question, therefore,
is: can evolution find a better solution?

2.2 Experiment A: Linear Behaviour

Experimental parameters are given in Table 1, chosen arbitrarily, and no tuning
has been attempted. The intention is to demonstrate what is possible with GP,
and not the most efficient way to achieve these results. The maximum number
of instructions is limited to a similar value to that used by the handwritten solu-
tion, preventing GP from using larger solutions to mask the “noise” of program
context. The randomised order of tests is varied at each generation, to avoid
overfitting. “Increment tmp” increases the temporary variable by 1, whereas
“update tmp” assigns a new value. FixedLoop(n) will loop for n iterations.

Genetic Programming is indeed able to locate a better solution, with a cor-
relation coefficient of 0.993. A graph of this function’s relationship and the code



Objective Find a program p∗(k) such that Θ(f) =
mk + c

Terminal set k, tmp

Function set FixedLoop, ≤, increment tmp, +, ∗, −, /,
if, sequence, skip, update tmp

Fitness cases k ∈ {i|0 ≤ i < 100}
Fitness function r(k, T )

Parameters Initial tree depth = 3, generations = 10,
population size = 20, prob(xo) = 0.9,
prob(mutation) = 0.1

Table 1. Experiment A: Settings to evolve linear time behaviour

of the individual evolved is given in Figure 2. The key differences between the
evolved and handwritten solutions are:

if (k) {

for (c=0;c<k;c++) {

};

} else {

tmp++;

tmp++;

tmp++;

}

(a) Source code
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(b) Time against input

Fig. 2. Evolved linear solution

– When k = 0, work will still be performed in the evolved version, namely
testing for this case, and moving through further branches.

– When k > 0, an additional if statement evaluation will be performed.

If we examine the trace output for this evolved solution, we see that it includes
exactly the same instructions executed in the manual solution, and adds some
to either side of the loop. This effectively “smooths” the response (time taken)
by suitably padding the instruction pipeline, as well as increasing the time taken
for k = 0, i.e. setting a larger value for the intercept.

Note that we can now (approximately) calculate f(k) by running the program
and observing the time taken to execute, where in this case f(k) = mk + c.



2.3 Experiment B: Quadratic Behaviour

What if we wish instead to create a nonlinear relationship such as a quadratic
curve with no linear term? We may try a handwritten solution as in Figure 3.

tmp = k * k;

for (c=0;c<tmp;c++) {

}

(a) Source code
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Fig. 3. Test results for handwritten quadratic solution

This solution takes the general approach of calculating f(k) prior to repeat-
ing the strategy of looping to perform a multiple of a minimal unit of work
(increasing c). This relationship appears to be a great improvement on the man-
ual attempt at a linear solution, but we must quantify the relationship to be
sure. We can estimate the derivative of the evolved function as:

f(k + 1) − f(k) = m(2k + 1) (2)

Thus we can measure the correlation between the differences of successive
timings and k in order to evaluate the fit of the quadratic relationship. For the
handwritten solution above, we find a correlation of 0.962. Can we improve on
this using evolution? We first used the correlation measure as a fitness function,
and after some manual experimentation and analysis it became apparent that
rewarding a certain amount of first-order correlation is also desirable in order to
guide the search, and hence the fitness function was modified thus:

F (p) = w0 · r(k, T (p, k)) + w1 · r(k, T (p, k + 1) − T (p, k)) (3)

A simple selection of 0.2 and 0.8 for w0 and w1 respectively was sufficient
to guide the search to a successful solution, found using the same parameter
settings as given in in Table 1. The best individual evolved had a correlation
of 0.967 between the input and derivative, a very modest improvement over the
manually written version. The individual was:

for (c=0;c<(k * k );c++)

tmp = tmp;



3 Time as a Functional Output

In the preceding section, we demonstrated that it is possible to search for pro-
grams that have simple relationships between their numerical input and total
absolute execution time, and that exhibit those relationships more accurately
than “obvious” handwritten alternatives.

Consider now a more complex relationship such as a Boolean function. Given
two Boolean inputs a and b, can we evolve a program p with execution time
T (p, a, b) = f(a, b), where f could be a Boolean OR? For this to be literally
true, the program’s execution would have to take either 0 or 1 cycles, which is
unrealistic as even a simple if will take more than a single cycle. Hence, we
must find an interpretation of the timing output, denoted I(T (p, a, b)). This is
an idea with much generality, and is illustrated in Figure 4.

Fig. 4. Visualising the use of timing in calculation

A very simple interpretation that can be employed here is to measure the
number of cycles the machine has executed and then take modulo 2 of this
number. Thus the lowest “bit” of the execution time is used as output, and
there are two output states: an even and odd number of cycles consumed. An
interpretation such as this is arbitrary, and the idea can be generalised: perhaps
interpretations can be cooperatively coevolved? The most interesting question
here is: do such code fragments even exist, given the context of the test program
within which they will be used?

It is not obvious how to go about manually constructing a solution, but we
can imagine two ways in which it may be achieved: through something we could
describe as either implicit or explicit time variation. In the former, we hope to
rely purely on the low-level mechanics of the processor and memory subsystem
to provide variation, such as floating point operations that consume a variable
number of cycles. In the latter, we rely on some logical test to choose a path



through the code. In practice, the latter cannot succeed without the former in
order to “iron out” variation as in the handwritten solution from Section 2.2.

3.1 Experiment C: Timing OR Function

In this experiment, we give as input the four possible combinations of a pair of
Boolean-valued floats and try to evolve a program that outputs their OR on the
lowest bit of the cycle count. Initial experimentation revealed the following:

– the test cases could be passed by code that did not even evaluate the inputs.
– degenerate behaviours taking a single cycle (“always 1”) were common.
– the ordering of test cases affected the performance of the search.

The code was therefore subsequently tested with the four possible inputs
over four repetitions, and a randomised ordering of these 16 test cases used. In
order to ensure that both inputs were evaluated at least once in any solution,
the fitness function was specified as follows:

f(p) = w1 · c(p, a)+w2 · c(p, b)+w3 · (n−
n∑
1

|(T (p, an, bn)%2)− (an ∨ bn)|) (4)

Where c(p, a) is 1 if program p reads variable a, and 0 otherwise. The weight-
ings w1, w2 and w3 were 0.25, 0.25 and 0.5 respectively (an arbitrary choice).
The parameters to the experiment are given in Table 2. Note that we added the
constants 1 and Float MAX (3.40282e38) to the terminal set. GP was indeed
able to provide such a solution:

Objective Find a program p∗(a, b) such that
T (p, a, b)%2 = OR(a, b)

Terminal set a, b, tmp, 1, Float MAX

Function set FixedLoop, ≤, increment tmp, +, ∗, −, /,
if, sequence, skip, update tmp

Fitness cases a, b ∈ {{0, 0}, {0, 1}, {1, 0}, {1, 1}}
(four reps, order randomised)

Fitness function f(p) = w1 · c(p, a) + w2 · c(p, b) + w3 · (n −∑n

i=1
|T (p, ai, bi) − (ai ∨ bi)|)

Parameters Initial tree depth = 3, generations = 20,
population size = 100, prob(xo) = 0.9,
prob(mutation) = 0.1

Table 2. Experiment C: Settings to evolve a Boolean OR function using time as an
output channel



if (( 3.40282e+038f - b )) {

for (c=0;c<(b + a );c++) {

tmp++;

};

} else {

tmp = 3.40282e+038f;

}

This code passed all 16 test cases; it is quite straightforward to see how this might
work. However, running the code again with a different test case order resulted
in the code failing two test cases. This is because T is a function not only of p, a
and b, but also of the machine context φ. We are trying to evolve code such that
T (p, a, b, φ) % 2 is equivalent to a ∨ b. The context is the machine state: stack
contents, the instruction pipeline, cache etc. This reliance on context is both a
difficulty, where we wish to eliminate its effects, and also a useful resource, in
the case where we want to exploit the machine state to achieve certain timing
properties. This context caused problems for the manual solution in Section 2.1.

If we wish to implement this OR gate robustly, we must test on all 4! = 24
input sequences. Even then, however, we cannot be sure that the context of the
test program is not being exploited, such that if we wish to use the code in a new
program we would have to again evolve and exhaustively test a new solution.
Thus any such “absolute time manipulation” must be done in situ.

We did indeed attempt to evolve a program that is robust to input ordering,
but failed to successfully do so even when testing each bit of timing output as
a potential interpretation. Every run provided an individual with a few failed
test cases out of 96. To achieve such control over absolute cycle usage it may be
necessary to construct a function set exhibiting a variety of timing behaviours.

4 Timing Avalanche Criterion

In previous work [1], we have demonstrated that it is possible to evolve low-
power pseudorandom number generators (PRNGs) using GP and simulation.
As a measure of the randomness of the PRNG, we used the Strict Avalanche
Criterion (SAC) [5], a cryptographic measure that estimates the nonlinearity of
a function. SAC analyses the expected distance between outputs given a single
bit flip in the input. SAC is an efficient measure of randomness that generalises
well to other statistical qualities. Note that in this experiment we have used a
single 32-bit input rather than 8 as in previous work, for the sake of simplicity.

Each output bit should have a probability of 0.5 of being flipped when a
single input bit is changed, in order to maximise the nonlinearity of the PRNG.
Hence, the Hamming distance between the two outputs should follow the bino-
mial distribution B(n, 1

2 ). By recording the Hamming distance between p(a) and
p(a′) for each test case, a χ2 squared goodness-of-fit measure can be calculated
against the ideal binomial distribution of bit flips. The performance measure of
an individual program p is given by:



SAC(p) =
n∑

i=0

(Ci − Ei)2

Ei
(5)

Ci is the counted frequency of i bit flip events, and Ei the expected number.
In this experiment, we take the radical step of applying the avalanche criterion
to its timing behaviour, T (a, p, σ). We refer to this as the Timing Avalanche
Criterion (TAC). This is a fascinating concept, which we suggest has never been
considered due to the lack of any manual method capable of implementing it.
It may enable us to evolve programs resistant to side-channel cryptanalysis, a
major problem in designing secure algorithms. Kelsey [6] notes “It is probably
not possible to protect against side-channel attacks in the design of algorithms.”

Kocher et al. [7] were amongst the first to demonstrate that cryptographic
primitives provably secure in the mathematical domain can become exposed to
unseen vulnerabilities when implemented in a physical system. By monitoring
the timing properties or power consumption [8] of a system, it is possible to
deduce information about the state of executing software and compromise its
security. A wide variety of attacks exist, from simple timing of operations to
statistical analysis of power traces.

Counteracting such attacks is difficult: one method is to design code to con-
sume the same number of cycles regardless of both the data input or output and
the state of the system. For example, this can be achieved through the insertion
of NOP instructions through the implementation. This defence is usually vul-
nerable to other forms of attack, such as detecting NOPs through other means,
and a more robust method of defence is desirable.

4.1 Experiment D: Simple TAC

In this section, we attempt to evolve an expression that has a good TAC measure
across the lowest 10 bits of its cycle count, which allows for up to 1023 cycles,
sufficient for the evaluation of small expressions. Does such an expression even
exist, given the context of a simple test loop that repeatedly uses the code with
inputs separated by a single bit flip? It is not clear to us how we would proceed
in designing such an expression, but can GP design one for us?

We use a sample size of 4000, which is generous according to our previous
work, and the same function set as we have previous employed. The experiment
is summarised in Table 3. The best individual was subsequently tested over a
sample size of 10000, which gave a good TAC measure of 0.0228. The p value
of this result, effectively giving the probability that this sample is drawn from
the ideal Binomial distribution, is 1.00 (to 3 s.f.). The distribution of bit flips is
give in Figure 5. The individual is also reasonably small:
tmp = ( ( ( a > (3594493887u) ) ˆ ( ( a ∗ (1408948682u) ) > ( ( a > (3594493887u

) ) ˆ ( a ∗ (609711807u) ) ) ) ) ? ( ( ( a ∗ (1408948682u) ) >
((2302909662u) ˆ a ) ) << ( ( ( a > ( a ∗ (609711807u) ) ) ˆ ( a ∗
(609711807u) ) ) % 32u) ) : ( ( ( (2390510013u) ∗ ( ( ( a > (3594493887u) )
ˆ ( ( ( ( a ∗ (1408948682u) ) > ( ( ( a ∗ (1408948682u) ) > ((2302909662u)
ˆ a ) ) << ( ( ( a > ( a ∗ (609711807u) ) ) ˆ ( a ∗ (609711807u) ) ) % 32u

) ) ) ∗ (2540811676u) ) ∗ ( ( ( a ∗ (1408948682u) ) & ( ( a > (3594493887u



Objective Find a program p∗(a) such that
HD(T (p, a, σ), T (p, a′, σ) ≈ B(n, 1

2
)

where HD(a, a′) = 1.

Terminal set a, Integer ERCs

Function set If, <, LogicalShiftLeft (LSL), LSR, MULT,
SUM, AND, NOT, OR, XOR

Fitness cases a, a′ where HD(a, a′) = 1, sample size
4000

Fitness function
∑n

i=0

(Ci−Ei)
2

Ei
over n = 10 bits of timing

measurement, where Ci is the resulting fre-
quency of i bits flipping and Ei is the ex-
pected frequency.

Parameters Initial tree depth = 3, generations = 25,
population size = 100, prob(xo) = 0.9,
prob(mutation) = 0.1

Table 3. Experiment E: Settings to evolve an expression with a good Timing Avalanche
Criterion measurement

) ) ˆ ( a ∗ (609711807u) ) ) ) + a ) ) ) & (2490185230u) ) ) ˆ ( a ∗
(609711807u) ) ) & (1135240832u) ) )

4.2 Experiment E: TAC and SAC

We now ask: is it possible to produce programs that perform two tasks at once,
with both desirable functional and timing outputs? We attempt to produce code
that has both good functional SAC (that is, it is a good random number genera-
tor) and also good TAC (it is resistant to side-channel analysis). Such a solution
provides evidence that GP can evolve primitives resistant to side-channel analy-
sis. It also suggests the feasibility of combining timing and functional properties
of the software to improve the random number generator, or even to feedback
the timing measure as input to improve the nonlinearity of the code over a series
of evaluations, assuming we have the capability to measure time from the code.

The fitness function used was an even weighted combination of SAC and
TAC, i.e. we assumed that the two objectives were not necessarily conflicting
and that consequently Multi-objective Optimisation was not required. With a
larger run of 25 generations, one of the best individuals produced was:
tmp = ( ( ( ( a ∗ (1408948682u) ) ˆ ( ( ( ( ( ( ( ( 1106785805 u) ∗ a ) >>

( ( ( ( (1167812458u) + (2754164240u) ) & (˜ a ) ) + ((2240102872u) > a ) )
% 32u) ) ∗ ( ( ( ( ( (1106785805u) ∗ a ) >> ( ( a ˆ a ) % 32u) ) >> ( ( a ˆ

a ) % 32u) ) ∗ ( ( ( ( ( (2390510013u) ∗ a ) >> (((1106785805u) ∗ a ) %
32u) ) ∗ (((1106785805u) ∗ a ) > (2390510013u) ) ) ˆ (˜ a ) ) ∗ a ) )
ˆ (˜ (( ( (1106785805u) ∗ a ) > (3594493887u) ) ˆ a ) ) ) ) ˆ
((1106785805u) ∗ (˜ ( ( ( (1106785805u) ∗ a ) > (3594493887u) ) ˆ a ) ) )
) >> ( a % 32u) ) ∗ (1408948682u) ) ˆ ( ( ( ( ( (2390510013u) ∗ a ) >> ( (

a ˆ (((1876056559u) + (3922502476u) ) < ((1106785805u) ∗ a ) ) ) %
32u) ) ∗ (((2390510013u) ∗ a ) >> ( ( a ˆ ((1106785805u) ∗ a ) ) % 32u
) ) ) ˆ (˜ a ) ) ∗ a ) ) ) ∗ (1408948682u) ) ˆ ( ( ( ( (2390510013u) ∗ a
) >> ( ( ( ( ( ( ( ( ( a ˆ (((2641736152u) ∗ (1408948682u) ) ˆ ((3594493887u)
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Fig. 5. Bit flip distributions for simple TAC

∗ a ) ) ) >> ( ( a ˆ a ) % 32u) ) ∗ ( ( ( ( ( (2390510013u) ∗ a ) >>
(((1106785805u) ∗ a ) % 32u) ) ∗ (((1106785805u) ∗ a ) > (2390510013
u) ) ) ∗ a ) >> ( ( a ˆ ((1106785805u) ∗ a ) ) % 32u) ) ) ˆ (˜ a ) ) >>
( ( a ∗ (609711807u) ) % 32u) ) ∗ ( ( ( ( (1670273053u) | a ) &
((3825661740u) + (3105575741u) ) ) ∗ ( ( ( ( ( (2390510013u) ∗ a ) >>
(((1106785805u) ∗ a ) % 32u) ) ∗ (((1106785805u) ∗ a ) > (2390510013
u) ) ) ˆ (˜ a ) ) ∗ a ) ) ˆ (˜ (( ( (1106785805u) ∗ a ) > (3594493887u) )
ˆ a ) ) ) ) ˆ ((1106785805u) ∗ a ) ) >> ( a % 32u) ) % 32u) ) ∗

(((2390510013u) ∗ a ) >> ( ( a ˆ ((1106785805u) ∗ a ) ) % 32u) ) ) ˆ
(˜ a ) ) )

Comparing this to past results, there is a wider use of constants. Constants
require memory access, introducing variation into the timing of the individual.
The TAC and SAC distributions over a sample of 10000 are given in Figure 6.
This individual had a SAC of 0.0189 and a TAC of 0.0399, equivalent to a p
value of 1.00 (to 3 s.f.). These are excellent values, achieved surprisingly easily.

5 Conclusion

In this paper we have introduced several ideas regarding the application of Ge-
netic Programming for fine-grained control over resource consumption. GP was
shown to be most useful in controlling the behaviour of code over a series of
evaluations, rather than the absolute value of a single evaluation. This opens up
an avenue of further exploration in the concept of “doing two things at once”, to
liberate software from its role as an object of abstract calculation into a process
that interacts with the host hardware platform and its execution context. At
such a complex level of interaction, methods such as Genetic Programming may
be essential to achieve desired behaviour.

Example applications can be found in cryptography, both in defending against
side-channel attacks and exploiting side-channel properties. By exploiting covert
timing channels [9], programs such as that evolved in Section 4.2 can be used
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Fig. 6. Bit flip distributions for best individual

to transfer information such that a program is a key, and the timing output of
that program on a given input reveals the message. Only a party with the same
code and platform can decode it. Another scenario is using such a program as a
keystream generator, incorporating the timing properties of the software by (for
example) XORing the functional output with the time taken.
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