
Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

White, D.R., Arcuri, A., and Clark, J.A. (2011) Evolutionary
improvement of programs. IEEE Transactions on Evolutionary
Computation, 15 (4). pp. 515-538. ISSN 1089-778X

http://eprints.gla.ac.uk/55372/

Deposited on: 12 July 2012

1

Evolutionary Improvement of Programs
David R White, Andrea Arcuri, John A Clark.

Abstract—Most applications of Genetic Programming (GP) involve the creation of an entirely new function, program or expression to
solve a specific problem. In this paper we propose a new approach that applies GP to improve existing software by optimising its non-
functional properties such as execution time, memory usage or power consumption. In general, satisfying non-functional requirements
is a difficult task and often achieved in part by optimising compilers. However, modern compilers are in general not always able to
produce semantically equivalent alternatives that optimise non-functional properties, even if such alternatives are known to exist: this
is usually due to the limited local nature of such optimisations. In this paper we discuss how best to combine and extend the existing
evolutionary methods of GP, Multi-Objective Optimisation and coevolution in order to improve existing software. Given as input the
implementation of a function, we attempt to evolve a semantically equivalent version, in this case optimised to reduce execution time
subject to a given probability distribution of inputs. We demonstrate that our framework is able to produce non-obvious optimisations
that compilers are not yet able to generate on eight example functions. We employ a coevolved population of test cases to encourage
the preservation of the function’s semantics. We exploit the original program both through seeding of the population in order to focus
the search, and as an oracle for testing purposes. As well as discussing the issues that arise when attempting to improve software, we
employ rigorous experimental method to provide interesting and practical insights to suggest how to address these issues.

Index Terms—Genetic Programming, Coevolution, Multi-Objective Optimisation, Non-Functional Criteria, Search Based Software
Engineering, Embedded Systems, Execution Time.

F

1 INTRODUCTION

Increasingly, modern software must meet both functional
and non-functional requirements. For example, non-functional
requirements such as execution time, memory usage and
power consumption are of particular importance in designing
software for low-cost, low-power embedded systems. Even
where non-functional requirements are not specified explicitly,
it is often implicitly desirable to reduce resource consumption.

Producing software to meet non-functional requirements is a
difficult task for the programmers, because their primary con-
cerns usually lie elsewhere, and the programming language,
compiler and target platform constitute a complicated system.
Small changes at the source level can lead to starkly different
behaviours at execution time. Also, non-functional properties
are often highly interdependent and present trade-offs to the
programmer.

Compilers may aid the programmer by attempting to op-
timise non-functional properties. However, compilers must
apply a fixed set of transformations that guarantee to preserve
the semantics of the original code [1]. They usually apply local
transformations such as peep-hole optimisations, and they are
heavily constrained by the decisions a programmer makes.

In this paper, we propose the use of evolutionary computa-
tion to improve the non-functional properties of existing soft-
ware, in cooperation with the compiler and simulation of the
target platform. We employ several evolutionary techniques:

• David R White and John A Clark are at the Department of Computer
Science, University of York, YO10 5DD, UK. ˙
E-mail: {drw, jac}@cs.york.ac.uk

• Andrea Arcuri is with Simula Research Laboratory, P.O. Box 134, Lysaker,
Norway. ˙
E-mail: arcuri@simula.no

Genetic Programming (GP) for program manipulation, coevo-
lution for effective testing, and Multi-Objective Optimisation
(MOO) methods [2] to consider both functional and non-
functional objectives.

Given an existing C function to be optimised as input, we
describe a framework for optimising this function. We use
the original program to seed the population and then allow
GP to carry out arbitrary manipulation of the program. The
candidate solutions are tested separately for non-functional and
functional fitness, taking into account an expected distribution
of inputs, i.e. an operational profile [3]. The test cases are
executed via interpretation for functional fitness, and we use
a simulator to estimate the non-functional properties of the
software.

Preserving semantic equivalence is the most challenging
part of this optimisation process. We cannot guarantee that the
framework as it stands will produce output that is semantically
equivalent to the input program: results must be verified
manually. To gain confidence in the correctness of output we
used coevolved test cases to test the semantics of the program,
which we find to be an effective method.

In this paper, we compare our results against the GNU GCC
compiler using the -O2 flag, and discover that GP can find
improved optimisations that the compiler cannot. Perhaps a
more sophisticated machine-learning compiler will be able to
find the optimisations reported here, but we emphasise that
our approach is not directly competing with compiler design.
The proposed method can operate alongside a compiler as
a sophisticated preprocessor, or to find novel optimisation
methods that can subsequently be incorporated into compiler
design. To the best of our knowledge, we do not know of
any other system that is able to automatically suggest such
optimisations.

This work develops our previous preliminary results [4] in

2

several important directions: firstly, by validating this novel
methodology on a variety of example program functions, and
secondly by carrying out more detailed empirical analysis of
the method and reporting new results. Thirdly, we investigate
new ways of seeding a population. Thus the emphasis is on
further developing and testing this approach to non-functional
optimisation.

The paper is organised as follows: Section 2 describes re-
lated work. We then give a high-level background of evolution-
ary optimisation in Section 3. This is followed by a problem
definition in Section 4. Section 5 describes our framework, and
Section 6 presents our case studies. Implementation details are
discussed in Section 7. Sections 8 and 9 describe our results.
The limitations of our method are listed in Section 10. Section
11 suggests further work. Finally, Section 12 concludes.

2 RELATED WORK

Whilst we are not aware of any work that has proposed a
general approach to solving the problem we outline in this
paper, there are examples of related work in the literature that
apply evolutionary methods within the context of efficiency.

In this section we discuss compiler optimisation, almost
exclusively the current method employed to optimise software
in this way, we look at previous work involving GP that we
build upon, and finally review the important topic of seeding
that is crucial in exploiting the input program.

2.1 Improving Compiler Performance
Compilers employ a range of techniques to optimise non-
functional properties of code [5], albeit mostly through lo-
calised transformations. Most previous work has therefore
focused upon the use of evolutionary techniques at the com-
piler interface, to find the most effective combination of
such optimisations. For example, evolutionary algorithms have
been used to optimise solution methods for NP problems.
Stephenson et al. used GP for solving hyperblock formation,
register allocation and data prefetching [6]. Leventhal et al.
used evolutionary algorithms for offset assignment in digital
signal processors [7]. Kri and Feeley used genetic algorithms
for register allocation and instruction scheduling problems [8].

Compilers use sequences of code optimisation transforma-
tions, and these transformations are highly correlated with
each other. In particular, the order in which they are ap-
plied can have a dramatic impact on the final outcome. The
combination and order of selected transformations can be
optimised using evolutionary algorithms: for example, the use
of genetic algorithms to search for sequences that reduce code
size has been studied by Cooper et al. [9]. Similar work
with genetic algorithms has been done by Kulkarni et al.
[10], and Fursin et al. used machine learning techniques to
decide which sequence of code optimisation transformations
to employ when compiling new programs [11].

Compilers such as GCC give the user a choice of different
optimisation parameters, and to simplify their selection, pre-
defined subsets of possible optimisations (e.g., -O1, -O2 and
-O3 for optimising execution time and -Os to reduce size).
The benefits of a particular set of optimisations over another

are dependent on the specific code undergoing optimisation.
Hoste and Eeckhout therefore investigated the use of a multi-
objective evolutionary algorithm to optimise parameter con-
figurations for GCC [12].

2.2 High-Level Optimisation
Much less work has been published in optimisation of program
characteristics through direct manipulation of the software
itself, rather than the actions of the compiler.

Optimisation of a program must assume, explicitly or im-
plicitly, an expected distribution of input, and partitioning the
input space may aid conventional optimisation methods. Li
et al. investigated the use of genetic algorithms to evolve a
hierarchical sorting algorithm that analyses the input to choose
which sorting routine to use at each intermediate sorting
step [13]. This partitioning of the input space is conceptually
similar to the development of portfolio algorithms [14].

A more involved technique is to allow arbitrary manip-
ulation of software code through automated programming
methods. By far the most popular evolutionary method of
creating new software is GP, thanks to its applicability and
versatility. The most immediate example of considering non-
functional properties of software with GP is the control of
bloat (see Section 3.1), although we do not treat bloat itself as
a program characteristic: it is simply an artefact of the search
algorithm.

Perhaps the only prior work with explicit goals similar to
our own is that on program compression by Langdon and
Nordin [15], where the authors attempted to reduce the size
of existing programs using GP. They use a multi-objective
approach to control the size of programs, having started with
existing solutions. They applied this approach to classification
and image compression problems. They were particularly
interested in the impact such a method would have on the
ability of final solutions to generalise. Interestingly, they too
used seeding, as discussed in the next section.

During the software life-cycle, code changes may decrease
the quality of software. There are different metrics to de-
scribe the quality of software [16], which is a non-functional
property. Re-factoring aims to reverse this decline in software
quality by using sequences of semantics preserving transfor-
mations on the software to improve those quality measures.
An example of transformation is to move one static method
from one class to another one (in the case of object-oriented
software). Harman and Tratt [17] analysed the performance of
a pareto-based MOO to address this task.

Automatic parallelisation of code is important to improve
the performance of sequential software when it is run on
parallel hardware. Ryan et al. [18] investigated the use of GP
to evolve sequences of semantics preserving transformations
to automatically parallelise sequential code.

2.3 Seeding
It is well-known that the starting point of a search within
the solution space can have a large impact on its outcome.
It may be considered surprising, then, that more research
has not focused on the best methods to sample the search

3

space when creating the initial generation within GP. The
crucial importance of domain-specific knowledge in solving
optimisation problems is also clear: yet little sound advice can
be given on how best to incorporate existing information, such
as low-quality or partially complete solutions to a problem,
into an evolutionary run.

There are, however, examples of previous applications that
employ some kind of seeding, by incorporating solutions gen-
erated manually or through other machine learning methods.
Langdon [19] initialised a GP population based on the results
of a genetic algorithm, whereas Westerberg and Levine used
advanced seeding methods based on heuristics and search
strategies such as depth first and best first search [20]. In
both cases, these seeding strategies obtained better results
than random sampling. Marek et al. [21] seeded the initial
population based on solutions generated manually.

Our approach here is similar to our previous work on Auto-
matic Bug Fixing [22], in which all the individuals of the first
generation were copies of the original incorrect software, and
the goal is to evolve a bug-free version. Similarly, subsequent
work by Forrest et al. [23] shares similarities with our original
work [4], in that they used seeding and attempt to improve
an existing program using GP, although their focus is on
functional correctness alone.

The most relevant application of seeding in the literature
is from Langdon and Nordin [15], who employed a seeding
strategy in order to improve one aspect of a solution’s func-
tional behaviour: its ability to generalise. The initial population
was created based on perfect individuals, where the goal of
the evolutionary run was to produce solutions that were more
parsimonious and had an improved ability to generalise.

Recently, Schmidt and Lipson [24] investigated six different
seeding strategies for GP. Their experiments were carried out
on 1000 randomly generated symbolic regression problems.
In their empirical analysis, they found that seeding strategies
that use only parts of the input program give better results
than using exact copies.

3 BACKGROUND

In this section we give an overview of the three key areas
of evolutionary computation used: GP, coevolution and MOO.
A reader well-versed in these areas should be able to omit
reading this section without any loss of clarity.

3.1 Genetic Programming
GP [25] is a paradigm for evolving programs and can be
regarded as a branch of machine learning [26]. Although first
applications of evolutionary techniques to produce software
can be traced back to at least as early as 1985 with Cramer
[27], it was not until Koza [28] popularised the technique in
1992 that the method became widely adopted and subsequent
successful applications in many fields followed (e.g., [29]).

It is commonly the case that solutions within GP are
evaluated based on a set of test cases, which are pairs of
input and corresponding desired behaviour (xi,yi). A training
set T is a subset of all possible pairs, and the goal is to
evolve a program p that can correctly pass these test cases

i.e. ∀(xi,yi) ∈ T, p(xi) = yi . The fitness function provides
a measure of the distance an individual resides from the
desired behaviour yi, usually based on the difference between
evaluations of p(xi) and yi.

Issues such as generalisation of the resulting programs and
noise in the training data are common to all machine learning
algorithms [26]. A program that learns how to pass those test
cases in T will not necessarily perform well on those not in
T . In some applications, the available data are noisy such that
yi is not a perfect representation of desired behaviour for the
input xi. In these cases, a program that completely fits the
training data would have also learnt the error and therefore it
is likely that it will not perform well on unseen data outside
of T .

In GP, a tree-based representation is the predominant choice.
Each node in the tree is a function whose inputs are the
children of that node. A population of programs is maintained
at each generation, where individuals are chosen to fill the next
population according to their performance as evaluated by a
problem-specific fitness function. Often the fitness function
rewards the minimisation of the error of the programs when
run on a training set.

The programs are modified at each generation by
evolutionary-inspired search operators, principally a form of
crossover and mutation. When programs are evolved with GP,
the search operators can break the syntactic constraints of
the domain language. To avoid this problem, Strongly Typed
Genetic Programming [30] employs a set-based type system
along with enforced constraints on the search operators. We
employ Strongly Typed GP in this paper, which avoids creating
syntactically invalid children to a large extent (see Section 7.3).

One of the main issues of tree-based GP is bloat [31], [25],
where an increasing growth of the sizes of individual trees
is observed with no significant improvement of the fitness
values of individuals. Large programs are not only more
computationally expensive to evaluate, but are also less able
to correctly classify new unseen data (i.e., are vulnerable to
over-fitting). Common bloat control techniques are to limit the
maximum depth of a tree or to penalise larger trees through a
parsimony component in the fitness function [28].

3.2 Coevolution

In coevolutionary algorithms, one or more populations coe-
volve, such that the fitness values of individuals within the
separate populations are interdependent. There are two types
of such relationships: cooperative coevolution in which the
populations work together to accomplish the same task, and
competitive coevolution as predators and prey in nature. In
the framework presented in this paper we employ competitive
coevolution.

Coevolutionary algorithms are subject to the Red Queen
effect [32]: the fitness value of an individual depends on the
interactions with other individuals and therefore the fitness
function is not static. For example, exactly the same individual
can obtain different fitness values in different generations. One
consequence is that it is difficult to assess whether a population
is actually “improving” or not [33], [34], [35]. In fact, there

4

could be mediocre stable states [36] in which the coevolution
begins a circular behaviour in which the fitness values are
high at each generation. To try to avoid this problem, archives
[37], [38], [39] can be used to store old individuals. The fitness
values of the current generations are also dependent upon the
old individuals in the archive.

Another issue in competitive coevolution is the loss of
gradient [40], [34]. If the individuals in one population are
either too difficult or too easy to “kill”, then the individuals
in the other population (assuming for simplicity just two
opposing populations) may all be assigned the same fitness
value. This can preclude the reward of individuals that are
technically better, as interaction with the other population may
not be sufficient to expose their superiority.

One of the first applications of competitive coevolutionary
algorithms was the work of Hillis on generating sorting
networks [41], where he attempted to find a correct sorting
network that employed as few comparisons of the elements as
possible. He used evolutionary techniques to search the space
of sorting networks, where the fitness function was based on
a finite set of tests (i.e., sequences of elements to sort): the
more tests a network was able to correctly pass, the higher
fitness value it received. For the first time, Hillis investigated
the idea of coevolving the tests themselves alongside the
networks. Coevolving tests was superior to random test case
generation as they forced generalisation. The experiments of
Hillis showed that shorter networks could be found when
coevolution was used - enabling him to produce Human-
competitive solutions.

Ronge and Nordahl used coevolution of genetic programs
and test cases to evolve controllers for a simple “robot-
like” simulated vehicle [42]. In such work, the test cases are
instances of the environment in which the robot moves. Similar
work has been successively done by Ashlock et al. [43]. In
such work, the test cases are instances of the environment in
which the robot moves. Given as input a formal specification
of a program, Arcuri and Yao [44] used a coevolution of
GP and test cases to evolve programs that satisfy the input
specification.

3.3 Multi-Objective Optimisation

MOO is the process of optimising more than one objective
(fitness) function. A formal definition based on [45] is:

Minimise fm(p) m = 1,2 . . .M

subject to gj(p) ≥ 0 j = 1,2 . . . J

hk(p) = 0 k = 1,2 . . .K

That is, to find a solution p (a program function, in the
context of this paper) that optimises M objective functions
and also meets J inequality and K equality constraints. For
more details on MOO please see [45] and [46].

A straightforward method of satisfying multiple objectives
is to combine them in a weighted fitness function:

f(p) =

M∑
m=1

wm · fm(p)

However, if objectives are conflicting then we must decide
upon the values of the weights w1 . . . wm. We must establish
the relative importance of particular objectives, and this may
not be possible.

In contrast to this weighted sum method, traditional pareto-
based optimisation seeks to discover a set P of individuals
offering differing levels of trade-offs between objectives, such
that they are pareto non-dominated:

P = {p | ¬∃p′ : (∀m, fm(p′) ≤ fm(p)∧∃n, fn(p′) < fn(p))}

Thus we now intend to find a set of individuals, where each
individual cannot be matched in all objectives and improve
upon in at least one. This set represents the possible trade-
offs between objectives.

4 PROBLEM FORMULATION

Given an existing program function as input, p0, and an
expected distribution over input values, find an improved
function p∗ such that:

fe(p
∗) = 0 for the functional objective e

Minimise fl(p
∗) for each non-functional objective l

Where achieving fe(p∗) = 0 ensures semantic equivalence
between p∗ and p0 with respect to a test set T . In this paper,
we consider only two objectives: the functional objective fe
and finst, the instruction count over a fixed set of test cases,
but the work can be extended to satisfy multiple non-functional
objectives.

5 FRAMEWORK

We now propose a framework to solve the problem us-
ing a combination of evolutionary optimisation methods. An
overview of the framework is given in Figure 1. The frame-
work takes as input the code of a function, expressed in
the C programming language, along with an expected input
distribution. The general nature of the approach means it can
easily be applied to other target languages and platforms.

If we take into account the probability distribution of the
usage of the software (i.e., the operational profile [3]), we
can allow for more sophisticated improvements. For example,
if a function takes an integer input and if we know that
this input will usually be positive, this information could be
exploited by optimising the software for positive input values.
Here, we sample integer values according to a simple uniform
distribution in {−127 . . . 128} and array sizes in {1 . . . 16}.

The framework applies GP to optimise one or more non-
functional criteria, whilst maintaining semantic equivalence
with the original program. This framework is a prototype, and
part of the purpose of our experimentation is to assess whether

5

Fig. 1. Evolutionary Framework

Original Program

Test Distribution

Population

Fitness Evaluation
Interpret / Simulate

Selection
From Pop/Archive

Breeding Pipeline
Crossover / Mutation

Populate Archive
(MOO Only)

Candidate
Semantic Tests

Co-evolved
 Subset

Inputs

Create New Pop
From Pop/Archive

Output

Improved Program

Seeding White-Box
Analysis

Termination
Criteria met

Termination
Criteria
not met

Expected Input
Distribution

the proposed use of MOO and coevolution is beneficial, in
terms of their impact on the ability of the framework to
optimise non-functional properties of the software.

The main differences from previous applications of GP
are: how the population at the first generation is initialised
(seeded), how the training set is generated and subsequently
used, the particular rationale for adopting MOO, and the
employment of simulation and models in estimating non-
functional properties of individuals.

5.1 Seeding

Evolving faultless software from scratch with GP is a difficult
task [47], but part of our interest in this problem is that
we have as input the source code of the function that we
want to optimise, and we can exploit this information when
creating our initial population. Invariably, GP systems create
an initial population using Koza’s established ramped half-
and-half method [28], but here we investigate three alternatives
based on the concept of using the input program as a starting
point.

In designing a different seeding strategy we immediately
encounter a classic “exploration versus exploitation” trade-
off that is so often an issue in heuristic search, and in
particular evolutionary computation. On one hand, if we over-
exploit the original program we might constrain the search
to a particular sub-optimal area of the search space, i.e. the

resulting programs will be very similar to the input one. On
the other hand, ignoring the input genetic material would
potentially make the search too difficult.

Although we do not want a final program that is identical
to the input one, its genetic material can be used as building
blocks in evolving a better program.

There are further dangers, as discussed in Poli et al.
[25]: including many highly fit individuals along with those
generated by other means may lead to a lack of diversity in
the following generations, and including too few fit individuals
may result in the loss of this initial guidance.

We therefore make the seeding strategy the subject of
experimental investigation, and in this work we consider the
following types of seeding:
• Standard: Koza’s ramped half-and-half initialisation

method.
• Cloning: a fraction of the initial population will be

replaced by a copy of the input function. The remaining
individuals are then generated using the standard initial-
isation method.

• Delta: a fraction of the initial population will be created
by making a copy of the input program and by applying
n random mutations to each individual using one of the
mutation methods to be employed during the rest of the
evolutionary run. If we consider a mutation as a step
away from the original program in the search space, then
we could use the parameter n to trade-off exploration

6

and exploitation through selection of an appropriate value
for n. The remaining individuals are generated using the
standard initialisation method.

• Sub-tree: a fraction of the initial population will be
composed of copies chosen at random from those sub-
trees within the input program that have a root node
type-compatible with the root node of the input program
(recalling that we are using Strongly-Typed GP). The
remaining individuals are generated using the standard
initialisation method. This method may be most effective
if the building block hypothesis applies to GP: allowing
recombination of these subtrees in ways that are more
efficient than the original program in terms of the non-
functional properties of the final solution.

5.2 Preserving Semantic Equivalence
Maintaining semantic equivalence is the biggest challenge
facing any attempt to solve the problem outlined in Section
4. At this stage, we cannot guarantee semantic equivalence
and thus can only recommend the proposed technique as a
method of gaining insight into potential optimisations, rather
than a fully automated approach to optimisation. For example,
the output from the framework could be verified by manual
inspection. However, the raw optimised output function may
be immediately useful in applications that do not have a
Boolean measure of acceptable functionality, such as lossy
compression or pseudorandom number generation.

In this paper, we recast the problem of software optimi-
sation. Rather than assuming we will make only semantics-
preserving operations, and then attempting to find the best
such operations in order to achieve maximum improvement of
a quality metric, we take a dramatically different approach.
We try to optimise the software for the quality metric, which
is easily done (e.g., if it is execution time then we can simply
remove an instruction), and turn the problem into one of
mutation testing [48]: can we tell the difference between the
two programs? If we fail to find test cases that can discern
between the original program and the optimised one, despite
a good deal of effort, we have a good degree of confidence
that we found a semantically equivalent yet optimised version.
We can describe the latter as “Search and Filter” optimisation.
This is illustrated in Figure 2.

Within the framework, the “filter” employed is our test-
ing method. It is therefore important that our evaluation
of individuals is effective in testing the semantics of new
programs against the original. Exhaustive testing is usually
impossible, and any testing strategy is open to exploitation by
an evolutionary algorithm through over-fitting.

A program P is semantically equivalent to another program
P ′ if and only if for each input that satisfies the precondition
of the program they have the same behaviour. For example,
we can assume that a Merge Sort is semantically equivalent
to a Bubble Sort [49], although their implementation is very
different. If P has a fault (i.e., it does not confirm to the
expected behaviour), then a semantically equivalent program
P ′ should manifest the same type of faulty behaviour.

Coevolution is employed to improve the effectiveness of
program fitness evaluation, such that the set of tests used to

Fig. 2. Optimising Software by Search and Filter, rather
than Semantics-Preserving Transformations.

p
0 p*

p
0

p
1

p
n

Testing
as a filter

p*

Semantics-Preserving Transformations

Evolutionary
Search

evaluate the program population changes at each generation.
This application of coevolution is similar to the approach
used by Hillis [41]. Prior to evolution, we first generate a
large set of test cases that satisfies a branch coverage criterion
[50]. Any automated test-case generation technique may be
employed, for example [51], [52]. We produce a set of test
cases for each branch within the input program, in an attempt
to ensure that our testing always encapsulates the semantic
notions effectively encoded in the input program.

Figure 3 illustrates the relationships between the program
and test set populations. The group labelled “Pool of Test
Cases” are those test cases generated prior to evolution. During
evolution, we select only a subset of these test cases at each
generation, labelled the “Test Case Population” in Figure 3.
As with the original pool, this coevolved test population is
partitioned by the branches of the original program that each
test case exercises. This coevolutionary approach has many
advantages (see Section 3.2).

The computational effort directly depends on how many test
cases are used for the fitness evaluation of the GP individuals.
We can generate as many test cases as we want, but we cannot
run all of them due to time constraints. Once this number
of test cases is fixed (e.g., 200 test cases), we still want to
have diversity at each generation of the GP process. This
is the reason why we sample a larger set of test cases (for
example, ten times larger), and at each generation we choose
only a subset to use. On one hand, using other strategies
such as choosing only a fixed set of “difficult” test cases
for the original input program would lead to problems of
over-fitting. What is difficult for the input program is not
necessarily difficult for the evolving programs, and vice-versa.
Furthermore, if we use a seeding strategy in which copies of
the input program are introduced in the GP population, then
for them all the test cases would pass. On the other hand,
using a coevolutionary approach to choose these subsets of
test cases has several benefits (see Section 3.2), therefore it

7

Fig. 3. The Relationship between a Program and the Semantic Test Set Population

If a > b then

z := 1;

else

if (b > c) then

z := 2;

else

z := 3;

end if;

end if;

return z; Test Case PopulationPool of Test Cases

Branch 1

Branch 2

Branch 3

9,2,0 6,3,8

1,0,4 3,1,0

1,2,0 8,9,8

1,5,2 3,4,2

1,3,4 4,6,8

7,8,9 2,3,7

Subpop 1

Subpop 2

Subpop 3

6,3,8

3,1,0

1,5,2

8,9,8

2,3,7

1,3,4

was a natural first choice to follow. However, other techniques
could be considered.

Note that we generate only test cases with valid inputs.
Inputs for which the pre-condition of the program is not
satisfied are not tested, because for these inputs any output
would be valid. For example, for functions that take as input
a pointer to an array and a variable representing its length, we
only test valid values for the length variable.

At each generation, the GP individuals are tested with the
test cases in the training set. The sum of the errors from the
expected results is referred to as the semantic score and is one
component of the fitness of a GP individual. These semantic
scores are also used for the fitness value of the test cases.
Each program tries to minimise the semantic score on each test
case, whereas each test case tries to maximise this score on
each program. Figure 4 shows the relations in the coevolution
between evolving programs and test cases.

At each generation, for each subset of test cases we retain
only the best half (based on their fitness values). The other half
is randomly replaced by test cases in the large pool produced
prior to evolution. When we perform these replacements,
we ensure each test case in the training set is unique. For
each subset, we store the best individual in a Hall of Fame
archive [37]. The fitness of the programs is also based on their
execution on these old test cases.

When in our empirical study coevolution is not employed,
then the test cases are chosen at random at each generation.
Their probability distribution is the same used for choosing test
cases for evaluating the non-functional properties (i.e., they are
randomly chosen based on the operational profile).

5.3 Evaluating Non-functional Criteria

In order to search for individuals with some improved level
of a non-functional property, we must be able to quantify that
property. To do so, we must execute the program on a set of
test cases, and here a separate training set from that used to

evaluate the semantic score is employed. The set is drawn from
the expected input distribution provided to the framework,
which could for example be based on probe measurement of
software.

The set of non-functional tests is resampled from the
expected input distribution at each generation, to prevent
overfitting of non-functional fitness for a particular set of
inputs.

The final fitness of a potential solution (a GP individual) will
be composed of both its semantic scores and this measurement
of its non-functional property.

We must be able to reliably (in a repeatable and relatively
accurate manner) estimate or measure the property concerned,
and in this case we use the number of instructions executed.
This is a fairly reliable high-level estimate of execution time.
It also reflects the predominantly one-instruction-per-cycle
nature of many modern embedded systems such as those
using ARM and Alpha ISAs. Embedded systems dominate
the computing landscape and place much greater emphasis on
non-functional requirements than traditional platforms, hence
they are a prime target for the fine-grained optimisation we are
investigating [53]. More detailed simulation may be desirable
when the computation time can be afforded.

In this paper we use both simulation and modelling of
instruction count. We use modelling because the goals of the
paper require large-scale experimentation that would not be
feasible if we used simulation. Similarly, the case studies
chosen are fairly small in size to make the large-scale ex-
perimentation possible. As a consequence of the small code
sizes, native execution using hardware cycle counters would
be too noisy to be reliable, as well as too slow. When trying
to achieve the best possible optimisations, native execution or
simulation would be employed.

Although we are concerned here with execution time, it
is worth noting that any property that can be estimated in a
similar manner may be used.

8

Fig. 4. G is the population of programs, whereas T is the population of test cases. (a) shows the test cases used to
calculate the fitness of the first program p0, (b) shows the programs used to calculate the fitness of the first test case
t0. Note the common arc between the first program and the first test case. Finally, picture (c) presents all possible
|G| · |T | connections.

G T

p0

p1

p2

t0

t1

t2

(a)

G T

p0

p1

p2

t0

t1

t2

(b)

G T

p0

p1

p2

t0

t1

t2

(c)

5.3.1 Simulation
The instruction count of an individual can be estimated using
a processor simulator and here we have used the M5 Simulator
[54], targeted for an Alpha Microprocessor. The parameters of
the simulator were left unchanged from their default values,
although a few small code changes for convenience and
efficiency were applied. The choice of this particular target
micro-processor was motivated by the goals of replicability,
efficiency and accuracy. The free availability of the simulator
allows others to replicate our work, and its source code and
implicit processor model are available for anyone to review.
The Alpha is the most mature target platforms of the M5
simulator, and reflects the type of embedded architectures that
we may hope to target with such optimisation.

When employing simulation, individuals are written out by
the framework as C code and compiled with an Alpha-Targeted
GCC cross-compiler. A single function is linked with test code
that executes the given test cases, and a total instruction usage
estimate provided by a trace file.

We use total instruction count, rather than fine-grained
measures such as cycle-count, because it is faster to estimate
and a more repeatable measure than cycle-count. Cycle usage
is heavily dependent on machine-state, and repeating tests to
average out cycle consumption leads to a longer evaluation
time. For similar reasons, no operating system is loaded into
the simulator prior to testing.

Whilst simulation does not perfectly reflect a physical
system, it is worth noting that we are concerned only with
relative accuracy between individuals, i.e. we wish to im-
prove efficiency rather than precisely determine it. Incorrect
relative evaluation of two individuals will add noise to the
fitness function. The difficulties and intricacies of accurately
simulating complex hardware platforms is an issue beyond the
scope of our work: we can easily incorporate alternatives or
improvements in both the simulator and compiler.

5.3.2 Model Construction
In this work we have carried out a large numbers of experi-
ments as part of the analysis of the problem, and compiling and

simulating each individual is very computationally expensive
in the context of such large-scale experimentation. We there-
fore opted to study the approach of modelling the instruction
usage as a linear model of the high-level primitives executed.
This technique could be used as part of a hybrid approach
using both modelling and simulation in the future.

To achieve this, we make the assumption that a program’s
execution time can be estimated by the number of instructions
it executes, and that such a predictive model can be expressed
linearly:

Y = β0 + β1x1 + β2x2 + . . . βnxn + ε

Where Y is the estimated instruction count of a program,
x1 . . . xn are the frequencies with which each of the n
instructions are executed within a program, and the coeffi-
cients β1 . . . βn are an estimate of the number of machine-
level instructions each higher-level instruction will create. The
intercept is given by β0 and ε is the noise term, introduced
by factors not considered by the other components of the
model. We acknowledge that this is a simplification, because
subsequent compiler optimisations will be dependent on the
program structure and there is not a simple mapping between
high level source code and low level instruction execution.

To use such a model, the coefficients must be estimated. We
achieved this by executing one large evolutionary run of the
framework for each case study, and separately evaluating each
program through interpretation to record the frequencies with
which each high-level primitive (if, loop, array access etc.)
is executed and logging the corresponding instruction count
of an individual as measured by the simulator. Least Squares
Linear Regression is then used to fit this model.

It is possible to verify the relative accuracy of this model
for the data points used in constructing it, as detailed in the
results on this part of our work in Section 9.3.

5.4 Multi-Objective Optimisation
In this paper, we consider two objectives and use both
weighted sum and pareto-based MOO. The two objectives are:

9

1) Minimise error across test cases, as in Section 3.1.
2) Minimise the number of instructions executed.
We are concerned primarily with minimisation of error, and

secondly with reducing execution count. Ultimately, we are not
concerned with individuals that do not meet their functional
specification as estimated by the test set, and so it is possible
to combine our objectives with a weighted sum method, as
described in Section 3.3.

By normalising the fitness values and setting the weighting
of the functional fitness to be greater than the weighting given
to the instruction count, we can create an arbitrarily sized
bias towards favouring improvement in functional performance
over the instruction count of a solution.

As well as employing weighted sum methods, we also aim
to use MOO methods in an unusual application. The difference
between the goal of our optimisation against a traditional
pareto-based method is illustrated by Figure 5. Given the input
program at the bottom-right of the figure, we are ultimately
interested only in locating the desired output program that lies
on the x axis as close to the origin as possible.

However, we still employ traditional MOO techniques
within this work: this is because we are interested in the bal-
ance between exploration and exploitation. A MOO approach
explicitly forces the search to discover and retain solutions in
Figure 5 that are not on the x axis, that is those solutions we
may actually regard as inferior. It is part of our goal here
to identify if employing MOO allows the search to locate
smaller, instruction-efficient subtrees of a program that may be
reassembled by the search algorithm into improved solutions
later in the execution of an evolutionary run. This proposal and
its effectiveness are linked to the building block hypothesis and
GP Schema theory: readers are encouraged to consult [55] for
further details.

We therefore adopted two approaches to combine objectives
in fitness evaluation. The first was to use a simple linear com-
bination of the functional and non-functional fitness measures.
The second is to use the Strength Pareto Evolutionary Algo-
rithm Two (SPEA2) [56], a popular pareto-based method that
attempts to approximate the pareto-front in objective space.
The choice of which to use is the subject of experimental
evaluation in Section 8.1.

Any advantage we may find by using a pareto-based
method has interesting implications for understanding how
GP achieves its goal: can building blocks be recombined in
different ways to improve performance?

Note that in some experiments we will therefore be using
both MOO and coevolution of test-cases. Coevolution effec-
tively creates a “moving target” for optimisation. Thus the
dominance of an individual, its relation to other solutions
in a trade-off space, will change with this moving target.
Thus an individual considered pareto non-dominated in one
generation may not be considered so in the next. This is not
an unusual situation, as it may occur when employing other
types of test case sampling alongside MOO, or when using
a noisy fitness function. This raises an important question as
to the tolerance of multi-objective optimisation algorithms to
variability in pareto non-dominance, such that it may be the
case that MOO without coevolution is actually more effective.

Fig. 5. A Pareto Front Composed of Five Programs in
Objective Space

Non-functional Property

E
rr

o
r

Correct Program
Input to Framework

Desired Output P'

5.5 Fitness Function

Given a population of programs G, we use two sets of test
cases T0 and T1. The fitness function of the programs in G is
based on their execution on these test case sets. The set T0 is
used to evaluate the semantic score of the programs. It is this
set that is coevolved at each generation. Note that although
T0 is partitioned in different subsets and an archive, we are
considering their union. The set T1 is used to assess the non-
functional value of the programs, i.e. the instruction count in
our case.

Given s(p,t) a function to calculate the semantic score of a
program p ∈ G run on a test t ∈ T0, and given c(p,t) another
function to calculate its instruction count, the fitness function
f(p,T0,T1) for the programs to minimise is:

f(p,T0,T1) = αn
(∑

t∈T0

s(p,t)
)
+ βn

(∑
t∈T1

c(p,t)
)
,

where n is any normalising function in [0,1], in particular we
used n(x) = x/(x + 1), as suggested in [57]. α and β are
constants to give different emphasis on each objective. We use
the arbitrary values α = 128 and β = 1 to give more emphasis
on the semantic score, see [31]. Note that we are not penalising
bloat directly, because the instruction count already does it. In
the cases in which a program is either not compilable or it has
runtime errors (see Section 7), then we apply a death penalty,
i.e. its fitness value would be α+ β.

When MOO is used, these two objectives (normalised sum
of the semantic score and cycle score) are treated separately.

The fitness function f(t,G) for the test cases in T0 to
maximise is:

f(t,G) =
∑
p∈G

s(p,t) .

There can be different ways to define the function s(p,t).
A simple way would be:

s(p,t) =

{
0 if t is passed ,
1 otherwise .

However, we can try to use some heuristics to give more
gradient to that binary function s(g,t). For example, in this
paper when the programs return an integer value yg and that

10

is compared in the test case against the expected value y∗t ,
then we can use:

s(p,t) = |yp − y∗t | .

This however would not be particularly useful if the integer
output is actually encoding an enumerated type, as for example
the classification of the triangles in the program in Figure 11
in Section 9.1.

In more complex cases (e.g., comparisons of arrays as for
example in a sorting routine), the heuristic depends on the
state of the memory after the computation. For example, in
our case study for the sorting algorithms we use test cases
that have assertions on the equality of each compared cell of
the arrays. In other words, each value in the modified array
A′ (after the computation is finished) is compared against the
value in the same location in the input array A. The heuristic
we use is simply adding up these errors:

s(p,t) =

length−1∑
i=0

|A′[i]−A[i]| .

Depending on the type of outputs, different heuristics can
be designed. However, a complete analysis of this problem is
not in the scope of this paper. We simply define heuristics for
the types of outputs we have in our case study.

6 CASE STUDIES
In our experiments, we consider eight different C functions.
Table 1 summarises their properties and their source code
listings are given in Section 9.1.

When selecting case studies, we were interested in finding
functions that had been studied for their execution time,
represented a variety of program structures, used simple data
types in order to greatly simplify our coevolutionary testing,
component, and from a source readily available and well-
documented.

We use two different implementations of the Triangle Clas-
sification program published in [51], [58], and two different
implementations of a Bubble-Sort algorithm [49]. We also
consider a recursive implementation of the factorial function
[49]. From [59] we use the Remainder routine. Finally, from
a library of worst-case execution benchmarks [60], we con-
sider the Swi10 and Select (returning the kth order statistic)
functions.

The programs include a variety of structures: branching and
nesting, loops over arrays, internal state altered multiple times
within a function, switch and case statements, use of both
temporary variables and arrays, and recursive calls. Two pairs
of functions also solve the same problem, which provides for
an interesting comparison of their optimisation.

The program functions used in our case study are fairly
small, with the largest containing only around 90 lines of code,
which is advantageous in allowing us to perform large-scale
experimentation. The solving of industrial-scale problems can
require a lot of computational effort [29] and a study of
the scalability of our approach is important, a matter of
future investigation and likely to reflect the scalability of the
underlying search algorithm, GP.

TABLE 1
Summary of the programs used in the case study. The

lines of code (LOC) and the number of GP nodes in their
tree representation is displayed. It is also specified what

type of input these functions take and the number of
local variables (LV).

Name LOC GP Nodes Input LV

Triangle1 35 107 int , int , int 1
Triangle2 38 175 int , int , int 1
Sort1 11 63 int[] , int 3
Sort2 18 69 int[] , int 4
Factorial 7 16 int 0
Remainder 40 208 int , int 3
Swi10 22 68 int 1
Select 94 392 int[] , int , int 9

There could be several approaches to address larger pro-
grams. If a program is composed of two or more functions,
then each function can be independently optimised by our
framework, one at a time. If a function is very long, then it
could be divided into subdivisions of code of manageable size.
Our framework would try to optimise only these subdivisions,
one at the time. It will be matter of future work to analyse
whether it would still be possible in this context to obtain
types of optimisations that current compilers cannot produce.
Note that, in our empirical study, for each problem we only
used 50,000 fitness evaluations. For larger software, more
computational resources (i.e., larger GP populations and more
generations) would be necessary.

7 IMPLEMENTATION

7.1 Introduction
In this section, we describe the implementation of the frame-
work, including parameter values that were not the subject
of experimentation. We also discuss potential pitfalls in eval-
uating programs in a language such as C, which are often
hidden from the practitioner when manipulating programs in
an abstract language and executing them through interpre-
tation. For example, consider a protected-division primitive
commonly used in the GP literature: implementing this in C
would require a macro to check for a division-by-zero, which
can be inefficient. One advantage of using a simulator is that
the evolved programs are demonstrably compilable and can be
declared free of run-time errors for those inputs tested.

7.2 Framework Implementation
The framework was implemented in Java, and we used ECJ
18 [61] for the GP system. We use Strongly Typed GP [30]
to assign return and argument types to each primitive in the
function set. This assures that syntactically invalid trees are
not created when applying crossover and mutation.

The primitives used within the GP algorithm are listed in
Table 2. This is the superset of all primitives required to
represent each of the chosen case studies as an S-Expression.
Consequently, we must search a large space of possible trees,
and the extensive (necessary) use of strongly-typed GP results

11

Fig. 6. Source code of Factorial.
i n t F a c t o r i a l (i n t a)
{

i f (a <= 0)
re turn 1 ;

e l s e
re turn (a ∗ F a c t o r i a l (a−1)) ;

}

Fig. 7. GP representation of Factorial.

if

<=

a

0

return

1 *
Read

Variable

fac

-

1

return

a

a

Read
Variable

Read
Variable

in a representation that does not easily lead to valid programs
when carrying out crossover or mutation. Figure 6 shows
the implementation of a factorial function, whereas its GP
representation is depicted in Figure 7. The translation from
Java code to the GP representation is done automatically. To
parse the Java code, we use the program JavaCC [62].

ECJ parameters not detailed here or specified in Section 8
were left to the defaults as inherited from koza.params,
provided with the distribution. The default method of initial-
ising the population is to use Koza’s ramped half-and-half
method, with a minimum depth of 2 and a maximum depth
of 6 for the half method, minimum and maximum 5 for the
grow method.

We use three methods to populate the next generation:
mutation, crossover and reproduction. The probability of re-
production is fixed at 0.1, whereas the balance between the
remaining operators is the subject of experimentation. We
use all six methods of mutation ECJ provides with equal
probability. Each of the three ways of generating the next
population selects individuals from the current population us-
ing standard tournament selection. When selecting a terminal
or non-terminal for crossover or mutation, we do so with
probability 0.1 and 0.9 respectively.

Fig. 8. Example of Crossover.

Crossover: swap of
two random subtrees

Mutation is used to copy the parents with a single change
in their trees to generate slightly different offspring. In case
of a mutation event, one of the following different mutations
provided by ECJ is randomly chosen with a uniform probabil-
ity, where n is a randomly chosen node in the program tree.
Note that the following is just a brief description, for more
details please see [61].

• Point Mutation: the sub-tree rooted at n is replaced with
a new random sub-tree with depth 5.

• OneNode Mutation: n is replaced by a random node with
the same constraints and arity.

• AllNodes Mutation: each node of the sub-tree of n is
randomly replaced with a new node, but with the same
type constraints and arity.

• Demote Mutation: a new node m is inserted between n
and the parent of n. Hence, n becomes a child of m. The
other children of m will be random terminals.

• Promote Mutation: the sub-tree rooted at the parent of n
will be replaced by the sub-tree rooted in n.

• Swap Mutation: two children of n are randomly chosen.
The sub-trees rooted at these two nodes are swapped.

Crossover of two individuals consists of choosing one
random subtree in each of them (with the constraint that their
roots should be compatible), and then these two subtrees are
swapped. Note that in our case neither crossover nor mutation
generates syntactically incorrect offspring.

These types of crossover and mutations are the typical ones
used in the literature, for more details see [25]. For the sake
of clarity, Figure 8 shows an example of the application of the
employed crossover, whereas Figure 9 depicts the application
of a point mutation.

12

Fig. 9. Example of Point Mutation.

For each problem, we generated a set of potential tests
containing 2000 individual test cases. The set fulfils the branch
coverage criterion for the input function and as such could be
generated with any automated software testing technique prior
to the execution of our framework, although in this work we
manually wrote specific scripts to generate these test cases.
The test case population size is 200, with a further archive
of 50 elements. The test case population is partitioned in a
number of subsets that depends on the number of branches in
the original input program.

The cycle score is evaluated on 100 test cases that are
randomly sampled at each generation. Integer variables are
chosen according to a uniform distribution of values in
{−127, . . . ,128}. The length of the arrays is uniformly chosen
in {1, . . . ,16}. We are interested in improving programs when
they are called with valid inputs, and so we only assess its
non-functional properties using valid input data. Thus, where
a length is supplied to a particular case study function, we give
the correct value corresponding to the current input array.

With the inclusion of loops and recursion in the primitive
set, we must limit the number of iterations that may occur:
we set this figure to an arbitrary value of 1000, which is large
enough for the case study functions to produce the correct
output on all possible inputs without reaching the limit.

7.3 Non-Compilable GP Individuals
The type constraints on the GP primitives are of a local
nature, specifying the type of each node and the type of parent
and children they can have. This is sufficient for most GP
applications, but it is not sufficient when modelling a higher
level language such as C. In order to evaluate individuals
through simulation, we must first translate them to C. It
is possible that valid GP trees would generate compilation
errors once translated. For example, we encountered two such
problems during our experimentation, both with the switch
statement:
• The indexes of a case within a switch statement are not

constant, i.e. they cannot be calculated at compile time.

• The indexes of the cases within a switch statement are
not all unique, i.e. at least one index is used more than
once.

Instead of complicating the constraint system to forbid the
generation of non-compilable individuals, we allow them and
punish any such individuals. Through checking for these two
cases, we are able to identify invalid individuals and penalise
their fitness by setting it to the worst possible value. Com-
pilation and simulation of such an individual is subsequently
suppressed.

7.4 Run-time Errors
Using such a rich subset of the C language in our represen-
tation can lead to program errors discovered at run-time. For
example, an array may be accessed out of bounds, corrupting
memory. This can lead to unpredictable behaviour and our
system must be robust with respect to such eventualities. We
elected to follow a similar policy to that of uncompilable
programs: the individual is flagged as not having completed
every test case and punished via their fitness value.

7.5 Exceeding the Iteration Limit
Long or infinite iteration is inefficient, costly or impossible
to evaluate. The M5 simulator provides support for an upper
limit on simulated cycles, and we use this feature to enforce
an execution “timeout” on each individual. The timeout is set
to a value twice that of the original input program’s instruction
count on a representative sample of fitness cases.

8 EXPERIMENTAL METHOD
8.1 Overview
Given our proposed framework, there were several issues we
wished to investigate: firstly, was it possible to optimise our
case studies using the framework? What kinds of optimisation
is it capable of producing? These questions are potentially
answerable with a single execution of the framework for each
case study, or a set of repetitions to ensure repeatability. The
remaining questions required extensive experimentation. These
were:

1) How well can we model the instruction count of an
individual without executing the simulator?

2) Which of the components and parameters of our frame-
work are important in determining the level of improve-
ment that can be achieved?

3) What is the impact of using a model rather than the
simulator to estimate instruction count?

4) How does the use of MOO affect the amount of explo-
ration?

8.2 Method
Our experimentation consists of the following steps, each one
designed to answer the corresponding numbered question in
the previous section:

1) Produce a model estimating instruction usage for each
problem and evaluate those models using resampling to
simulate tournament selection.

13

TABLE 2
Primitives grouped by type

Type Name Number Description

Arithmetic + , − , ∗ , / , % 5 Typical arithmetic operators. % is the module operator.
Unary Modification ++ , −− 2 ++ is the post unary increment, whereas −− is the

post unary decrement.
Boolean &&, || , ! , > , ≥ , == , < , ≤ 10 Typical operators to handle Boolean predicates.
Constant true , false , 0 , 1 , 2 , 3 , 4 , 5 , 6 ,

7 , 8 , 9
12 Boolean and 10 integer constants.

Statement for,while,if,switch,case,
return,skip,statement_sequence,
case_sequence

9 Typical statements. skip is the empty statement.
statement_sequence is used to hold two
child statements to create statement sequences, and
case_sequence is used in a similar manner to link
the cases of a switch statement.

Variable ReadVariable, WriteVariable,
VariableWrapper, V_tmp

≥ 4 Primitives to read and write variables.
VariableWrapper is a single child node used
to simplify the GP breeding operators. V_tmp is an
integer variable. We also supply primitives representing
the inputs and the local variables specific to each
individual case study (see Table 1).

Array ReadArray, WriteArray,
ArrayWrapper

3 Primitives to read and write array variables.
ArrayWrapper is used to simplify the GP breeding
operators. These three primitives are used only if the
program under test manipulates an array.

Special fac 1 Miscellaneous primitives. fac is only used in the Fac-
torial problem to call the function recursively.

2) Carry out a factorial experiment and further comparisons
to evaluate the importance of components of our frame-
work.

3) Select parameter settings that performed well in the fac-
torial experiments, and use them to compare simulation
to using a model of instruction usage.

4) Collect and analyse data on the impact of using MOO
on the exploration of the search space.

8.3 Factorial Experimentation
In order to determine which components were important in
affecting the performance of our framework, we carried out
a full factorial experiment, a robust approach that has previ-
ously been demonstrated to be effective when using GP [63].
After initial experimentation we identified key parameters that
appeared to affect the performance of the algorithm most, and
these were chosen for experimentation. Their levels are given
in Table 3. As well as components of our framework, we
also included general GP parameters we considered to be of
large importance, so we could allow for their impact on the
behaviour of other parameter settings.

With 7 parameters at 2 levels and one at 3 levels, we had
27 ∗ 3 = 384 design points per problem. We carried out 30
repetitions at each design point to allow for variation in the
response caused by the random seed. Thus a total of 11520
design points per problem, 92160 experimental runs in total
for this part of our experimentation.

8.4 Response Measure
At the end of an evolutionary run, we select the best individual
from the final population as defined by the weighted sum given
in Section 3.3 as our response. This individual is then tested
on new data to evaluate its functional correctness, and is run

through the simulator to estimate its non-functional fitness. We
use a separate set of 1000 test cases that have not been used
in the coevolution to validate the final output.

This does not guarantee that a program is truly semanti-
cally equivalent, but it does test the individual against tests
independent of, for example, any coevolved test set.

9 RESULTS

9.1 Example Optimisations
It is of immediate interest as to how optimisations were
successfully made by the framework, and here we report a
selection of optimisations that we came across and found
interesting. Note that there are thousands of unique output
programs, and those we have looked at are only a small
selection. Perhaps some form of data mining could be used
to extract commonly produced optimisations.

Boxplots of the instruction counts across design points
that generated solutions passing the final test set for each
problem are given in Figure 10. The variance of the instruction
count of optimised programs is quite low for each problem,
which demonstrates how robust the technique is to parameter
changes. In some cases it is necessary to examine the outliers
to see real improvements in instruction count.

9.1.1 Triangle1
In the implementation of Triangle1 (see Figure 11), the three
inputs are ordered in the three variables (a,b,c). There are three
if statements controlling three swap operations to achieve
this ordering. In a valid triangle, the sum of the two shortest
edges should be greater than the length of the third edge. To
see whether these edge lengths represent a valid triangle, there
is the check a + b ≤ c. But it is not important to guarantee
a ≤ b, we just want that a and b represent the shortest edges.

14

TABLE 3
Experimental Parameters

Parameter Description Low High
x1 Probability of crossover 0.1 0.8
x2 Population Size 50 1000
x3 Tournament Size 2 7
x4 Seeding proportion 0.1 0.9
x5 Coevolution Enabled? FALSE TRUE
x6 SPEA2 Enabled FALSE TRUE
x7 SPEA2 Archive Size 0.1x2 0.9x2

x8 Seeding Method Clone, Mutation or Subtree
Dependent Parameters

x9 Probability of Mutation 0.9 - x1

x10 Generations 50,000 / x2

Fig. 10. Boxplots illustrating the distribution of instruction
counts for valid program outputs. The dashed lines indi-
cates the performance of the original programs.

1
0

0
0

0
2

0
0

0
0

3
0

0
0

0
4

0
0
0

0

Triangle 1

In
st

ru
ct

io
n
s

5
0

0
0

1
5

0
0

0
2

5
0

0
0

Triangle 2

2
0

0
0

0
3

0
0

0
0

4
0
0

0
0

Remainder

6
0

0
0
0

0
9

0
0

0
0

0
1
2

0
0

0
0

0

Sort 1

5
0

0
0

0
0

1
5

0
0

0
0

0
2

5
0

0
0

0
0

Sort 2

In
st

ru
ct

io
n
s

1
e

+
0

5
3

e
+

0
5

5
e

+
0

5
7

e
+

0
5

Factorial

0
4
0

0
0

0
8

0
0

0
0

1
2

0
0
0

0

Switch 10

7
0

0
0
0

9
0
0

0
0

1
1

0
0

0
0

Select

Therefore, a true order of the three variables is not necessary.
GP is able to learn this property. In the evolved programs, most
of the times GP removes the first if statement with its swap
block. This does not change the semantics of the program.
Notice that this is a very easy optimisation that compilers
such as GCC are not able to make.

In a swap operation, a temporary variable is employed and
there are three assignments. After the three if statements with
the three swaps at the beginning of the code, that temporary
variable is not used anymore. GP learns to use only two
assignments for the last swap and then to use the temporary
variable in the remaining of the code instead of the variable
c. In other words, in the last swap operation the command
c = tmp; is removed, and each successive occurrence of the
variable c is replaced by tmp.

The last optimisation we found that GP is able to do is quite
surprising. The following code structure has been evolved:
if(a > c) {/* swap a and c */}

Fig. 11. Source code of Triangle1.
i n t T r i a n g l e 1 (i n t a , i n t b , i n t c)
{

i f (a > b)
{

i n t tmp = a ;
a = b ;
b = tmp ;

}

i f (a > c)
{

i n t tmp = a ;
a = c ;
c = tmp ;

}

i f (b > c)
{

i n t tmp = b ;
b = c ;
c = tmp ;

}

i f (a+b <= c)
re turn 1 ;

e l s e
{

i f (a == b && b == c)
re turn 4 ;

e l s e i f (a == b | | b == c)
re turn 3 ;

e l s e
re turn 2 ;

}
}

if(b > c) {/* swap b and c,
and use tmp instead of c */}

else {/* check type of triangle as in the
original code and return */}

if(a+b <= tmp) {return 1;}
else if (a == b) { return 3;}
else {return 2;}

To make the last swap, the predicate b > c needs to be
evaluated. If that is true, than the triangle cannot be equilateral.
Hence, GP learns to move the code that checks the type of
triangle directly in the else branch of that swap. Then it
replicates that code after that if statement to handle the case
b > c. But in this latter case, the triangle not only cannot be
equilateral, but also to check whether it is isosceles we only
need to evaluate a == b. So the code is significantly reduced.

15

Fig. 12. Source code of Triangle2.
i n t T r i a n g l e 2 (i n t a , i n t b , i n t c)
{

i f (a<=0 | | b<=0 | | c<=0)
re turn 1 ;

i n t tmp = 0 ;

i f (a==b)
tmp += 1 ;

i f (a==c)
tmp += 2 ;

i f (b==c)
tmp += 3 ;

i f (tmp == 0)
{

i f ((a+b<=c) | | (b+c <=a) | | (a+c<=b))
tmp = 1 ;

e l s e
tmp = 2 ;

re turn tmp ;
}

i f (tmp > 3)
tmp = 4 ;

e l s e i f (tmp==1 && (a+b>c))
tmp = 3 ;

e l s e i f (tmp==2 && (a+c>b))
tmp = 3 ;

e l s e i f (tmp==3 && (b+c>a))
tmp = 3 ;

e l s e
tmp = 1 ;

re turn tmp ;
}

This is a non-trivial optimisation because code is replicated
and reduced based on exploitation of the properties resulting
on the evaluation of the predicates in the branching statements.

9.1.2 Triangle2
In our experiments, GP was able to evolve faster versions for
the program Triangle2, given in Figure 12. Our analysis of
the resulting GP trees did not find any interesting optimisation.
This because GP learnt a undesired pattern in the test script we
used to generate the test cases. This pattern is easy to exploit
at the beginning of the code. So, any further optimisation of
the code cannot be rewarded because it does not provide any
improvement.

We found this property only once all the experiments
were finished and we analysed the results. Considering the
large amount of computational time required for the empirical
analysis, we decided to not change the script generator and
re-run all the experiments. Nevertheless, this case study is
still important to stress the role that the test cases play in
the coevolution. If there is an easy way to cheat, then very
likely GP is going to find this way (as it has done in this case
study).

9.1.3 Sort1
Sort1 implements a naive bubblesort. The best solutions found
by the framework improved on the original by omitting a
single iteration, and using an input variable as a loop counter,
rather than using a new variable.

Fig. 13. Source code of Sort1.
void S o r t 1 (i n t [] a , i n t l e n g t h)
{

f o r (i n t i = 0 ; i < l e n g t h ; i ++)
f o r (i n t j =0 ; j < l e n g t h − 1 ; j ++)

i f (a [j] > a [j + 1])
{

i n t k = a [j] ;
a [j] = a [j + 1] ;
a [j +1] = k ;

}
}

Fig. 14. Source code of Sort2.
void S o r t 2 (i n t [] a , i n t l e n g t h)
{

i n t f l a g = 0 ;
whi le (f l a g == 0)
{

f l a g = 1 ;
f o r (i n t j =0 ; j< l e n g t h − 1 ; j ++)
{

i f (a [j] > a [j + 1])
{

i n t tmp = a [j] ;
a [j] = a [j + 1] ;
a [j +1] = tmp ;
f l a g = 0 ;

}
}
}

}

The original code was as given in Figure 13.
The optimised output was:

void sort(int* a, int length) {
for (; 0 < (length - 1); length--) {

for (int j = 0; j < (length - 1); j++) {
if (a[j] > a[1 + j]) {

k = a[j];
a[j] = a[j + 1];
a[1 + j] = k;

}
}

}
}

These are sensible optimisations, but perhaps it is a little
disappointing that further optimisations were not discovered,
such as the use of a sorted flag to halt the algorithm once a
pass has been completed with a swap. Such an optimisation
was given as input to the next problem.

9.1.4 Sort2
Some of the optimisations were similar to those found in
Sort1, such as removing the initialisation of a loop counter
and using input variables as counters rather than separate
individual variables.

The original input is given in Figure 14. One simple
optimisation the system found was to “inline” the first pass
of the sort algorithm:

for (V_j = 0; V_j < (V_length - 1); V_j++) {
<main body>

}

while (V_flag == 0) {

16

for (V_j = 0; V_j < (V_length - 1); V_j++) {
<main body>

}
}

This saves on a single comparison-and-branch, which over
1000 test cases is certainly worthwhile. The system also
discovered multiple variants of:
void sort(int* a, int length) {

int flag=false;
int tmp = 0;
int i=0;
while (0 == flag) {

flag = 1;
for (j = 0; j < (length - 1); j++) {

if (a[V_j] > a[j + 1]) {
tmp = a[j];
a[j] = a[j + 1];
a[j + 1] = tmp;
flag = 0;

}
length--;

}
}

Note the decrement of length. Experienced human program-
mers may also make this optimisation.

9.1.5 Fac
Fac is a small function (see Figure 6), but one optimisation
made by the GP system is to change:
if (V_a <= 0) {

to
if (V_a <= 1) {

This saves one recursive call for test cases containing
positive inputs.

A more interesting optimisation is the exploitation of over-
flow behaviour in Java. We tested individuals in Java for
the most part, because we were interested in large-scale
experimentation and interpretation rather than simulation of
individuals is more efficient. Thus the system ensured semantic
equivalence with the Java version, whilst targeting a model of
execution time on an embedded processor. This can lead to
unforeseen issues if the Java interpreter does not match the
semantics of compiled C. We eliminated nearly all such cases,
but we were not able to prevent the system from exploiting
one such behaviour when optimising the factorial function.

Observing some of the most efficient individuals, it quickly
became apparent that evolution had “decided” it was beneficial
to add conditional statements such as the following:
if (!((2 * (9 + 8)) <= V_a))

while (V_a < (7 * (1 + 4))) {

if (V_a <= (8 + (8 + (8 + 9)))) {

Following this statement would be the usual factorial func-
tion. Each constant being compared to the input is 33, 34 or 35.
Clearly, not calculating fac(33) or fac(34) was an optimisation
in terms of timing - but surely this would break the semantics
of the program?

However, fac(34)=0 according to the original program. An
overflow results in a zero return. Therefore, for any value n ≥

Fig. 15. Source code of Remainder.
i n t Remainder (i n t a , i n t b)
{

i n t r = −1;
i n t cy = 0 ;
i n t ny = 0 ;

i f (a = = 0) ;
e l s e i f (b = = 0) ;

e l s e i f (a>0)
i f (b>0)

whi le ((a−ny)>=b)
{

ny=ny+b ;
r =a−ny ;
cy=cy +1;

}
e l s e / / b<0

whi le ((a+ny)>= ((b>=0) ? b : −b))
{

ny=ny+b ;
r =a+ny ;
cy=cy−1;

}
e l s e / / a<0

i f (b>0)
whi le (((a+ny)>=0 ? (a+ny) : −(a+ny)) >= b)
{

ny=ny+b ;
r =a+ny ;
cy=cy−1;

}
e l s e

whi l e (b>=(a−ny))
{

ny=ny+b ;
r = ((a−ny)>=0 ? (a−ny) : −(a−ny)) ;
cy=cy +1;

}
re turn r ;

}

34, we have fac(n)=0 because a multiplication by fac(34)=0
will occur during the computation of fac(n). The GP system
correctly discovered that cycles were being wasted in these
cases, and by adding this if statement, it enabled the code
to fall through to the default “return 0” at the end of our test
harness.

The factorial of numbers increases very rapidly, and already
for small input values their factorial cannot be stored in a 32
bit integer variable. When we ran our experiments, we did not
consider this case, so we did not specify any precondition for
the factorial function. Wrong outputs due to arithmetic errors
were hence considered as valid output. Therefore, the evolving
GP individuals try to behave on these inputs in the same way
as the original program depicted in Figure 6. Although the
value 0 is not the right factorial of the input 34, the actual
semantics of the input program in Figure 6 are preserved.
Our framework takes as input only the code of the program
we want to optimise. Without any further information, it is
impossible to evolve a program that satisfies the intended
behaviour of the input program if this latter one is faulty (or
if its precondition is not specified). Notice that optimisations
made by compilers would still result in programs that give 0
as output if the input is bigger or equal than 34.

17

Fig. 16. Source code of Swi10.
i n t Swi10 (i n t a)
{

f o r (i n t i =0 ; i <10; i ++)
{

sw i t ch (i)
{

case 0 : a ++; break ;
case 1 : a ++; break ;
case 2 : a ++; break ;
case 3 : a ++; break ;
case 4 : a ++; break ;
case 5 : a ++; break ;
case 6 : a ++; break ;
case 7 : a ++; break ;
case 8 : a ++; break ;
case 9 : a ++; break ;
d e f a u l t : a−−; break ;

} ;
}

re turn a ;
}

9.1.6 Remainder
The source of the Remainder function is given in Figure
15. Most of the optimisations of this (somewhat inefficient)
code simply use the % modulo operator, as we would expect.
One interesting optimisation is the removal of the first if
statement, which checks for a zero value of a, and directly
returns 0 for that value. But removing that check does not
change the semantics (i.e., the return value will still be 0). This
is an interesting optimisation, because it exploits the expected
input distribution. This code is only useful when the input a is
zero, which is not a common occurrence as its input domain is
[-127,128]. Had our input domain been (for example) [-1,2],
then the optimisation would not have been worthwhile. We
can imagine that this simple method of optimisation might be
applied to many other programs.

9.1.7 Switch 10
Switch 10 (see Figure 16) was chosen deliberately to see if
our system could optimise it in the obvious way. Indeed, we
found that the system was able to find the following:

return 10 + V_a;

A minimal solution, containing just this code, was found
multiple times by the system. This is a non-trivial optimisation
that GCC -O2 was unable to achieve, a satisfying result.

9.1.8 Select
Select, given in Figure 17 is the largest and arguably the most
complicated function. Many of the output optimised programs
were large, and this made it time-consuming to analyse them.
Perhaps the introduction of a sophisticated parsimony method
such as that proposed by Poli et al. [64] may improve the
readability of the outputs.

Nevertheless, there are some common trends to the optimi-
sations. The first optimisation is a check for negative values:

if (V_a >= V_k) {
V_flag = 1;

}

Fig. 17. Source code of Select.
i n t S e l e c t (i n t [] a r r , i n t k , i n t n)
{

i n t i =0 , j =0 , mid =0 , a =0 , temp =0;
i n t f l a g = 0 , f l a g 2 = 0 ;
i n t l =1 ;
i n t i r =n ;

whi le (f l a g == 0)
{

i f (i r <= l +1)
{

i f (i r == l +1)
i f (a r r [i r] < a r r [l])
{

temp =(a r r [l]) ;
(a r r [l]) = (a r r [i r]) ;
(a r r [i r]) = temp ;

}

f l a g = 1 ;
}
e l s e i f (f l a g == 0)

{
mid =(l + i r) / 2 ;
temp =(a r r [mid]) ;
(a r r [mid]) = (a r r [l + 1]) ;
(a r r [l +1])= temp ;

i f (a r r [l +1] > a r r [i r])
{

temp =(a r r [l + 1]) ;
(a r r [l + 1]) = (a r r [i r]) ;
(a r r [i r]) = temp ;

}

i f (a r r [l] > a r r [i r])
{

temp =(a r r [l]) ;
(a r r [l]) = (a r r [i r]) ;
(a r r [i r]) = temp ;

}

i f (a r r [l +1]> a r r [l])
{

temp =(a r r [l + 1]) ;
(a r r [l + 1]) = (a r r [l]) ;
(a r r [l]) = temp ;

}

i = l +1 ;
j = i r ;
a= a r r [l] ;

whi le (f l a g 2 == 0)
{

i ++;
whi le (a r r [i] < a)

i ++;
j−−;
whi le (a r r [j] > a)

j−−;

i f (j < i)
f l a g 2 = 1 ;

i f (f l a g 2 == 0)
{

temp =(a r r [i]) ;
(a r r [i]) = (a r r [j]) ;
(a r r [j]) = temp ;

}

a r r [l]= a r r [j] ; a r r [j]= a ;

i f (j >= k)
i r = j−1;

i f (j <= k)
l = i ;

}
}

re turn a r r [k] ;
}

18

By placing this at the start of the program, no iterations are
made and the function quickly returns.

The second optimisation is that the conditional statement in
the else part of the main if statement can be removed:

else if (flag == 0) {

This is replaced with:

else {

This can be done because flag is tested in the while
statement previously.

The original solution is also slightly inefficient in one of
its exchanges, the system found this issue and removed the
inefficiency. Observe:
temp=(arr[mid]);(arr[mid])=(arr[l+1]);(arr[l+1])=temp;

if (arr[l+1] > arr[ir]) {
temp=(arr[l+1]);(arr[l+1])=(arr[ir]);(arr[ir])=temp;
}

The first assignment of the second exchange is unnecessary,
as temp already contains the value in arr[l+1]. This was
exploited by many output programs.

9.2 Overview of Improvements
It is interesting to consider the range of improvements the
framework achieved. Table 4 gives an overview of the results
that were achieved during our factorial experimentation de-
scribed in Section 9.4.

The original programs were compiled using GCC’s -O2
optimisation level (as it was the most sophisticated level we
were able to profile using the simulator), and run through the
1000 validation tests used by the factorial runs to test output
individuals. The number of instructions for each of the original
programs are listed in Table 4. This is the baseline by which
improvements must be measured.

The table shows the number of individuals classified as
“valid” after checking them on a validation set (this does not
guarantee semantic correctness in general), and those passing
the tests that also constituted an improvement on the original
program’s performance.

Note that these figures simply summarise the experimen-
tation, which is over a range of parameter values and we
would not expect good performance at each of the 384 design
points (parameter settings). As an indicator of the diversity of
solutions produced for each problem, we list the number of
unique instruction counts.

Most of the improvements were due to the elimination
of redundant and not useful code. Other common types of
algorithmic optimisation were modifications of the control
flow graph (for example, altering the if statements) to avoid
the computation of non-necessary data and of conditions
that are necessarily true (a clear example is Triangle1, see
Section 9.1.1). Given the used set of primitives, our system is
technically able to make any type of modification to the source
code. Currently, our system does not handle the introduction
of new (local) variables. We use a temporary local variable
(see V_tmp in Table 2), but others could be introduced
as well. Whether it is better to have fix number of extra

TABLE 5
Individuals sampled when Constructing Models

Problem Total Unique Free of Run-
Time Errors

Completed
Successfully

Triangle1 62500 13847 13835 13833
Triangle2 62500 12960 12959 12959
Remainder 62500 14065 14061 14030
Sort1 62500 8220 8220 8220
Sort2 62500 7972 7972 7972
Factorial 62500 9465 9463 9455
Switch 62500 3047 3037 3034
Select 62500 20521 20520 20519

variables, or rather having a GP system that can introduce
any arbitrary number of new local variables, is a matter of
further investigation. Both approaches have advantages and
drawbacks.

9.3 Modelling Instruction Count

In order to construct a model, it was necessary to gather data
from an evolutionary run, and thus we decided to execute
one evolutionary run for each case study, with simulation
enabled. We logged the number of instructions an individual
used within the simulator and also the count of the high level
primitives evaluated when running through the ECJ interpreter.
We set parameters based on ECJ defaults for the run, and
manually selected settings where defaults were not available
or appropriate - the parameter settings themselves being of less
importance in model-building than when actually optimising
software.

Our experiments used a population size and generation limit
both set to 100, which we later increased to 250, effectively
sampling 62500 points in the search space. We carried out
an evolutionary run as opposed to systematically sampling the
space in order to ensure our sample was representative of the
individuals likely to be encountered during a run.

Our sample is restricted in its generality by two factors:
firstly duplicate data where the same program is sampled
more than once and secondly programs where full evaluation
was not possible. The former is to be expected, particularly
with seeding methods that heavily favoured the introduction
of programs identical or similar to the original input function.
The latter was caused by problems such as run-time errors
and iteration limit timeouts. A summary of data at the larger
sample size illustrate the extent of this issue, as given by Table
5.

This greatly reduces the effective sample size, and an
exploratory comparison with the model produced by runs of
250 generations with a population size of 250 led us to use
this increased sample size. Increasing the sample size any
further would have taken individual evolutionary runs beyond
the scope of weeks of compute time, which quickly became
impractical.

Applying standard least squares linear regression to con-
struct the model, it was observed that negative coefficients
emerged. It is intuitive that this may cause problems: the
evolutionary framework might exploit this by adding extra
instructions with negative coefficients and this would improve

19

TABLE 4
Summary of Factorial Experiments

Output Programs Instruction Counts
Problem Successful Valid Improvement Unique Original Minimum % Improvement Median
Triangle1 11507 2203 2112 1444 22402 10996 50.9 17214.5
Triangle2 11433 1981 524 187 8380 4000 52.3 8000
Remainder 11070 4805 3184 526 27025 12318 54.4 23318
Sort1 11502 3131 2708 128 884842 545878 38.3 569517
Sort2 11496 5271 1831 348 815882 492217 39.7 790062
Factorial 11514 3374 142 51 395189 49664 87.4 278700
Switch 10 11520 4763 4763 34 143000 2000 98.6 36000
Select 11506 3653 1206 507 97077 70085 27.8 90201.5

TABLE 6
Accuracy of Modelling

Problem Tournament Size 2 Size 5 Size 7
Triangle1 66.1% 43.4% 41.4%
Triangle2 55.3% 29.0% 23.9%
Remainder 75.6% 64.6% 62.1%
Sort1 75.7% 73.8% 74.5%
Sort2 79.0% 73.4% 74.4%
Factorial 80.8% 69.3% 63.0%
Switch 74.1% 61.8% 57.1%
Select 72.0% 53.4% 49.8%

the fitness of an individual provided that it did not inter-
fere with its functional behaviour. In other words, we were
in danger of actually encouraging the emergence of bloat!
Exploratory runs confirmed that negative coefficients quickly
lead to a great deal of program bloat. We therefore repeated
the regression and constrained coefficients to positive values
only, using the R nnls library [65].

Some of the coefficients were zero, usually because the
instructions concerned had not been sampled sufficiently to
accurately estimate their cost. This is a limitation of the
modelling approach, given a limited availability of compute
power, and we accept these inaccuracies here as part of the
expense of approximation.

We can now evaluate the accuracy of modelling. By sam-
pling a selection of individuals of tournament size n, then
carrying out tournament selection on that group using firstly
the instruction count from the simulator, and secondly the
estimate from the model, we can measure the accuracy of a
model by comparing how many times the two choose the same
individual, and how many times they differ. The results are in
Table 6, based on a sampling of 10,000 simulated tournament
selections in each case. These generally compare well to the
figure of 65% given in our previous work though it depends
on the tournament size. We have in effect added noise to our
fitness function.

Our model proved to be sufficient to achieve the optimisa-
tions previously described, and a full comparison to simulation
is given in Section 9.5.

9.4 Important Components and Parameters

We used the results of the factorial experimentation to analyse
the behaviour of the framework.

The priority of a practitioner must be to produce error-
free software first, and solutions that are time-efficient as a
secondary objective. Therefore, for each problem we selected
the ten treatments with the greatest probability of producing
error-free solutions as measured by the proportion of zero
error outputs in our repetitions. A new set of 30 runs for each
of these ten treatments for each problem were then recorded
by repeatedly running the framework with each treatment and
recording the outcome of successful runs (nearly all runs were
successful). The performance of these settings in our repeated
results had similarly low error rates and produced completely
valid programs in all but six cases.

A boxplot of the 30 repetitions for the ten best treatments
chosen for Triangle1 is given in Figure 18. There is little
variety in the ability of the treatments to find good optimi-
sations. These boxplots are representative of other problems:
the top ten treatments generally give similar results (with a few
treatments having much higher variance). In these case studies,
it is observed that the framework is therefore very robust
to parameter values. This is important because the highly
parametrised nature of search algorithms can be a barrier to
adoption if such robustness is not present.

We then chose the best parameter settings based on their
medians, for use in Section 9.5. These settings cannot be
regarded as optimal settings, only that they performed well
in the full factorial on our problems. These settings are listed
in Table 7, as levels denoted in Table 3.

Taking these top ten treatments, we may examine them to
assess the impact of specific parameter settings. Table 8 lists
the number of times the components were set to the high
value in the best treatments for each problem. Note that the
seeding method had three levels, hence the frequency of the
low/medium/high values are given. The main patterns we can
observe from this table are:

• Most parameters are heavily problem-dependent, that is
sometimes the features of our framework are helpful and
sometimes they are not. The problem-specific nature of
the parameters is underlined by the similarity between the
settings for the two problems optimising sort functions.

• Apart from Select (the largest of the problems), the best
settings did not use SPEA2. We conjecture that this is
because SPEA2 encourages exploration that is unneces-
sary to achieve good improvements in execution time for
functions of this size. We investigate this behaviour in
more detail in Section 9.6.

20

TABLE 7
Best Parameter Settings for each Problem

Parameters Triangle1 Triangle2 Remainder Sort1 Sort2 Factorial Switch 10 Select
Probability of crossover 1 0 1 0 0 0 0 1
Population Size 1 1 0 0 0 0 0 1
Tournament Size 0 0 1 1 1 1 1 1
Seeding proportion 1 1 0 0 0 0 0 1
Coevolution Enabled? 1 1 1 0 0 0 0 1
SPEA2 Enabled? 0 0 0 0 0 0 0 0
SPEA2 Archive Size 0 1 0 0 0 0 0 0
Seeding Method 1 0 0 0 0 0 0 0

Fig. 18. Instruction Counts for the Ten Best Treatments of
Triangle1

• The third type of seeding method, subtree seeding, is
rarely used. Thus it does not appear that “building block
reassembly” is one of the mechanisms our framework
uses to find optimisations.

• Generally, a high value of seeding proportion is preferred.
This confirms our expectations that seeding would be
important: that GP is not creating solutions from scratch.

• Coevolution is favoured, particularly in those problems
that have boundary conditions. It is likely that coevolu-
tion is able to find key discriminating test cases more
efficiently than random testing.

It may be possible to separate our problems into those
most suitable for optimisation using mutation, and those more
susceptible to crossover. The former involve smaller, localised
optimisations that may be applied stepwise, i.e. their beneficial
effect is additive. The latter require more radical restructuring.
This may explain the modal pattern of best settings that we
see between Triangle, Remainder, Select as one group and the
Sort, Factorial and Switch problems as another.

Fig. 19. Comparing Instruction Counts using Modelling
versus Simulation

1
2
0
0
0

1
6
0
0
0

2
0
0
0
0

2
4
0
0
0

4
0
0
0

8
0
0
0

1
2
0
0
0

1
6
0
0
0

2
4
0
0
0

2
8
0
0
0

3
2
0
0
0

5
5
0
0
0
0

5
6
0
0
0
0

5
7
0
0
0
0

5
5
0
0
0
0

7
0
0
0
0
0

8
5
0
0
0
0

2
5
0
0
0
0

3
5
0
0
0
0

4
5
0
0
0
0

1
0
0
0
0

3
0
0
0
0

7
5
0
0
0

8
5
0
0
0

9
5
0
0
0

M S M S M S M S

M S M S M S M S

9.5 Comparing Modelling to Simulation

To analyse the impact of using full simulation rather than
modelling of a program’s instruction usage, we used the
parameter settings given in Table 7 and ran 20 repetitions of
each, firstly retaining the model as the method of evaluation,
and secondly using the full simulator. The latter runs took days
as full simulation is computationally expensive. Note that this
does not necessarily prohibit the application of this method, as
simulation may be used alongside modelling, any application
would not require so many runs, and the outputs found by
automated optimisation may be generalised into optimisation
strategies in a static manner.

Boxplots comparing the resulting distributions of instruction
count are shown in Figure 19. We then performed a nonparam-
eteric Mann-Whitney rank-sum test for significance between
the distributions for each problem. In cases where a significant
difference was found at the 0.05% level, we carried out a
further test of effect size to determine the scientific significance
or importance of the difference, and all figures for these tests
are given in Table 9.

Surprisingly, there are only four problems where there exists
a statistically significant difference at the 0.05% level. Taking

21

TABLE 8
Number of Top Ten Treatments Containing High Values

Parameters Triangle1 Triangle2 Remainder Sort1 Sort2 Factorial Switch 10 Select
Probability of crossover 10 7 10 0 0 0 0 4
Population Size 4 10 4 0 0 0 0 4
Tournament Size 7 4 5 10 10 10 10 4
Seeding proportion 6 8 7 6 6 6 6 8
Coevolution Enabled? 10 10 8 4 3 4 4 4
SPEA2 Enabled? 0 0 2 0 0 0 0 6
SPEA2 Archive Size 4 5 5 5 5 5 5 5
Seeding Method 4/6/0 5/5/0 5/5/0 7/3/0 6/2/1 7/3/0 7/3/0 5/2/3

significant effect size for the Vargha-Delaney A statistic [66]
at less than 0.36 or greater than 0.64, we can state that these
four differences are also scientifically significant, i.e. of a
magnitude that we should be interested in. As expected, those
significant differences all represented cases where the use of
a simulator improved performance.

Whether or not to employ simulation therefore depends on
the goal of the practitioner. For further research along the
lines of this paper, modelling is an efficient alternative to
simulation that still provides the opportunity to achieve large
optimisations. Similarly, incorporating large-scale search into
software design in the medium term would appear to favour the
option of modelling over simulation due to the computational
requirements of the simulator. Certainly, manually designed
or more sophisticated automated modelling methods may
improve on the simple linear model used in this work.

When optimising more complex programs, or taking into
account detailed machine-level behaviour such as cache access
and misses, it is recommended that a simulator is employed.
Whilst a simple approach to modelling can achieve impressive
results, it is unlikely to be able to do so as the relationship be-
tween high-level source code and run-time behaviour becomes
more complex.

9.6 Exploration using MOO

We previously conjectured that taking a pareto-based approach
using the SPEA2 algorithm would increase the exploration
of the search space, such that small highly fit subtrees may
be recombined efficiently to create improved solutions. To
assess the impact of using SPEA2, we took the best parameter
settings from the factorial experiments (all of which did not
use MOO) and compared them to the same settings with
MOO enabled, over 30 repetitions. During the runs, we logged
the pair of values (error, instructions) for each individual
evaluated.

Figure 20 compares the exploration of the objective space
between the two pairs of settings, for a single repetition of
Triangle1 (other repetitions produced very similar results).
Surprisingly, the difference is not great. The SPEA2 method
explores more points closer to the y axis, but the difference
is limited and the error values on those extra points explored
are quite large. Thus it appears that SPEA2 is not exploring
small, highly-fit programs in this case. Most other problems
have similar plots.

The exception to the rule is Select. The same type of plot
is given for this problem in Figure 21. This is the largest
program and arguably the most complex. We can see in Table
8 that six out of ten of the best treatments used SPEA2 in this
case, which is exceptional compared to the other problems.
The same plot for this problem tells a very different story:
SPEA2 has extensively explored the objective space, whereas
the weighted sum method has not.

To summarise the data, Table 10 lists the number of
unique points in the objective space sampled across the thirty
repetitions for each problem, both for the weighted approach
(SPEA2 disabled) and with SPEA2 enabled. SPEA2 samples
far more unique points in general, although Triangle2 is an
exception.

We conjecture at this stage that SPEA2 or other pareto-
based methods are most likely to be useful in optimising
larger programs, or at least that diversity-maintaining functions
should be used when trying to achieve a scalable optimisation
method. For smaller programs, of the size we have examined
here, it is unlikely to be of use.

10 LIMITATIONS

Our novel framework has the following limitations:

• Software testing cannot prove that a program is free of
errors [50]. Because the modifications we apply to the
programs are not semantics-preserving, we cannot guar-
antee that the output of our framework is semantically
equivalent to the input program. Therefore, output must
be manually verified.

• In our current prototype, the space of all test cases used
to validate the program’s semantics is constructed before
the search. They are chosen based on structural criteria
(e.g., branch coverage) of the input program. Evolving
programs can have different control flow and different
boundary conditions. A test set designed for the input
program may not be appropriate for the evolving pro-
grams. An alternative would be to generate new test cases
at each generation. Several different heuristics could be
designed to choose for example how many new test cases
to create, when to create them, which program to use for
the testing (e.g., the best in the current population), how
to choose the old test cases to discard, etc.

22

TABLE 9
Comparing Instruction Count Distributions using Modelling versus Simulation

Problem Rank-Sum P-Value Vargha-Delaney A Statistic
Triangle1 0.8924 0.5137
Triangle2 0.0060 0.2450
Remainder 0.2988 0.4488
Sort1 0.0203 0.2950
Sort2 0.4233 0.4425
Factorial 6.89e-08 0.0375
Switch 10 0.3496 0.4537
Select 0.0206 0.2850

Fig. 20. Exploration of the Objective Space for Triangle1

1000 2000 3000 4000 5000 6000 7000 8000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Instructions

E
rr

o
r

(a) Weighted Fitness

1000 2000 3000 4000 5000 6000 7000 8000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Instructions

E
rr

o
r

(b) Pareto-based Fitness

Fig. 21. Exploration of the Objective Space for Select

2000 4000 6000 8000 10000 12000 14000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Instructions

E
rr

o
r

(a) Weighted Fitness

2000 4000 6000 8000 10000 12000 14000

0
5
0

1
0
0

1
5
0

2
0
0

2
5
0

Instructions

E
rr

o
r

(b) Pareto-based Fitness

TABLE 10
Unique Objective Values Sampled by Weighted and SPEA2 Methods

Triangle1 Triangle2 Remainder Sort1 Sort2 Factorial Switch 10 Select
Sampled 1500000 1500000 1500000 1500000 1500000 1500000 1500000 1500000
Unique Weighted 692170 755688 166782 241206 194215 155401 37150 435618
Unique SPEA2 720198 580429 912945 521717 626644 637414 256402 682031

23

11 FUTURE WORK
The framework we present in this paper is quite complex and
the approach we employ is novel. There are many directions
future research could take:

11.1 Semantic Correctness
The problem of preserving semantic correctness is an outstand-
ing issue in applying optimisation in this manner. We hope
that by publishing these results, we may generate debate as to
ways of addressing this issue. The way we have approached
this problem here is to verify results manually, which did not
prove too difficult albeit with small example program sizes.

A more philosophical approach is to accept the fallibility of
evolutionary search in the same way that we accept the fallibil-
ity of human programmers, and rely on the testing performed
to increase our confidence in its correctness. Another approach
is to tackle problems without a Boolean value of acceptability,
where a quality of service can be given as a quantifiable,
continuous, measure. For example, a sort algorithm is correct
or it is not, but an image filter may not have such a strict
definition of correctness.

However, we originally selected programs with Boolean lev-
els of functionality because we were interested in addressing
this issue using coevolution. Coevolution has proved effective
for these case studies, but a more formal approach to validation
would be preferable. Therefore, two approaches may be of
interest: firstly using semantics-preserving transformations to
either carry out the original optimisation, or subsequently
verify the coevolved optimisation. The second approach is to
employ a technique such as model checking to formally verify
optimised programs. We are currently working on combining
GP and model-checking to achieve this goal, but it is limited
by the scalability of contemporary model-checkers.

11.2 Scalability
Scalability is an important factor that needs to be studied in
more detail. Will this approach be effective only on relatively
small functions, or can it scale up to larger systems? Even if
its scalability is limited, it may still be useful because it can
obtain types of optimisations that current techniques are not
able to obtain.

In this paper, we were limited to optimising small exam-
ple programs because we wanted to run large numbers of
experiments to analyse the usefulness of individual framework
components. This is reflected in the amount of computational
effort applied for each GP run: 50,000 fitness evaluations
is small by the standards and much modern GP work (e.g.
[29]). Thus there is much scope for an increased number
of fitness evaluations. The wall clock time of a single run
depends on multiple factors: whether simulation is employed,
the size of the code, the types of primitives used (chiefly,
the loop structures involved) and the average tree size of the
GP solutions. Thus it is difficult to give precise estimates of
execution time corresponding to code size alone. It would
intuitively make more sense to set a wall clock time-limit, and
optimise the framework for that time-limit, when considered
the scalability of a deployable optimisation tool.

The scalability of the method is related to how the trade-
off between exploration and exploitation is set. On one hand,
we do not believe at the moment that entire software systems
can be re-arranged in new algorithmic ways (e.g., given as
input a bubble sort we do not expect as output a merge sort).
On the other hand, we conjecture that local modifications that
improve the performance could be obtained even for larger
software (see for example the very easy type of improvement
that can be obtained for the case study Triangle1).

11.3 Seeding
Seeding strategies are important to help the search process to
focus on promising regions of the search space by exploiting
useful building blocks from the input program. However,
seeding strategies can have a drastic impact on the diversity
of the program population. Search operators that have been
designed for randomly initialised populations (e.g., Koza’s
single point crossover) are likely not the best option for greedy
seeding strategies. We hence conjecture that for each type
of strategy we want to use we also need to define tailored
search operators to improve the final results. Different further
types of strategies and relative operators can be defined. Large
empirical studies need to be carried out to validate their
performance.

11.4 Non-Functional Properties
Execution time is only one possible non-functional criterion
that can be optimised. Other criteria need to be investigated
as well, for example power consumption. It will be important
to study how many criteria can be optimised at the same time,
and assess the impact on the search process when more than
one criterion is addressed.

11.5 Analysing Optimisations
When analysing the results we were faced with a daunting
task: there were literally thousands of different optimised
programs produced, and these optimisations contain poten-
tially useful information. Perhaps by applying data-mining
methods, common optimisations could be isolated and ex-
amples presented to an engineer. Furthermore, mining results
from a variety of problems could lead to generic templates
of optimisation methods that could be incorporated into a
conventional compiler.

12 CONCLUSION

In this paper we have presented a novel framework to improve
non-functional properties of software. In particular, we con-
centrated on execution time, although other properties could
be considered as well.

We use transformations of the programs that do not guar-
antee the preservation of the original semantics. This enables
us to produce new versions of the programs that could not be
obtained with semantic preserving operators.

To address the problem of preserving the original semantics,
we intensively test the evolving programs. Because the original
input program we want to optimise can be used as an oracle,

24

we can generate as many test cases as we wish (dependent
upon the computational resources and time constraints).

At each generation, we evolve the programs to pass all the
given test cases, but at the same time we also evolve the test
cases to find new unknown faults in the programs.

We have demonstrated our novel approach on a set of case
studies. For each, we obtained new improved versions. To our
best knowledge, the types of algorithmic improvements we
obtained cannot be obtained with current compilers.

ACKNOWLEDGEMENTS

The authors are grateful to Paul Cairns and Simon Poulding
for insightful discussions, and to Sevil Sen and Iain Bate
for helpful feedback. This work is supported by SEBASE
(EP/D050618/1) and by the Norwegian Research Council.

REFERENCES

[1] J. Collard, Reasoning About Program Transformations, 1st ed. Springer,
2002.

[2] K. Deb, Multi-Objective Optimization Using Evolutionary Algorithms.
John Wiley and Sons, 2001.

[3] B. Beizer, Software Testing Techniques. New York: Van Nostrand
Rheinhold, 1990.

[4] A. Arcuri, D. R. White, J. Clark, and X. Yao, “Multi-objective improve-
ment of software using co-evolution and smart seeding,” in International
Conference on Simulated Evolution And Learning (SEAL), 2008, pp. 61–
70.

[5] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Tech-
niques, and Tools, 2nd ed. Addison Wesley, 1986.

[6] M. Stephenson, S. Amarasinghe, M. Martin, and U. M. O’Reilly, “Meta
optimization: improving compiler heuristics with machine learning,”
SIGPLAN Notices, vol. 38, no. 5, pp. 77–90, 2003.

[7] S. Leventhal, L. Yuan, N. K. Bambha, S. S. Bhattacharyya, and G. Qu,
“Dsp address optimization using evolutionary algorithms,” in Proceed-
ings of the workshop on Software and compilers for embedded systems,
2005, pp. 91–98.

[8] F. Kri and M. Feeley, “Genetic instruction scheduling and register
allocation,” in Proceedings of the The Quantitative Evaluation of Systems
Conference, 2004, pp. 76–83.

[9] K. D. Cooper, P. J. Schielke, and D. Subramanian, “Optimizing for
reduced code space using genetic algorithms,” in Proceedings of the
workshop on Languages, compilers, and tools for embedded systems,
1999, pp. 1–9.

[10] P. Kulkarni, S. Hines, J. Hiser, D. Whalley, J. Davidson, and D. Jones,
“Fast searches for effective optimization phase sequences,” in Pro-
ceedings of the conference on Programming language design and
implementation, 2004, pp. 171–182.

[11] G. Fursin, C. Miranda, O. Temam, M. Namolaru, E. Yom-Tov, A. Zaks,
B. Mendelson, P. Barnard, E. Ashton, E. Courtois, F. Bodin, E. Bonilla,
J. Thomson, H. Leather, C. Williams, and M. O’Boyle, “Milepost gcc:
machine learning based research compiler,” in Proceedings of the GCC
Developers’ Summit, 2008, pp. 1–13.

[12] K. Hoste and L. Eeckhout, “Cole: compiler optimization level ex-
ploration,” in Proceedings of the international symposium on Code
generation and optimization, 2008, pp. 165–174.

[13] X. Li, M. J. Garzaran, and D. Padua, “Optimizing sorting with genetic
algorithms,” in Proceedings of the international symposium on Code
generation and optimization, 2005, pp. 99–110.

[14] C. P. Gomes and B. Selman, “Practical aspects of algorithm portfolio
design,” in Proceedings of the Third ILOG International Users Meeting,
1997.

[15] W. B. Langdon and P. Nordin, “Seeding genetic programming pop-
ulations,” in Proceedings of the European Conference on Genetic
Programming (EuroGP), 2000, pp. 304–315.

[16] N. E. Fenton and S. L. Pfleeger, Software Metrics: A Rigorous and
Practical Approach. PWS Publishing Co., 1998.

[17] M. Harman and L. Tratt, “Pareto optimal search based refactoring at
the design level,” in Genetic and Evolutionary Computation Conference
(GECCO), 2007, pp. 1106–1113.

[18] C. Ryan, A. H. M. van Roermund, and C. J. M. Verhoeven, Automatic
Re-engineering of Software Using Genetic Programming. Kluwer
Academic Publishers, 1999.

[19] W. B. Langdon, “Scheduling maintenance of electrical power transmis-
sion networks using genetic programming,” in Late Breaking Papers at
the GP-96 Conference, J. Koza, Ed. Stanford Bookstore, 1996, pp.
107–116.

[20] C. H. Westerberg and J. Levine, “Investigation of different seeding
strategies in a genetic planner,” in Proceedings of EvoWorkshops, 2001,
pp. 505–514.

[21] A. J. Marek, W. D. Smart, and M. C. Martin, “Learning visual feature
detectors for obstacle avoidance using genetic programming,” in Late
Breaking Papers at the Genetic and Evolutionary Computation Confer-
ence (GECCO-2002). AAAI, 2002, pp. 330–336.

[22] A. Arcuri and X. Yao, “A novel co-evolutionary approach to automatic
software bug fixing,” in IEEE Congress on Evolutionary Computation
(CEC), 2008, pp. 162–168.

[23] S. Forrest, T. Nguyen, W. Weimer, and C. Le Goues, “A genetic
programming approach to automated software repair,” in GECCO ’09:
Proceedings of the 11th Annual conference on Genetic and evolutionary
computation. ACM, 2009, pp. 947–954.

[24] M. D. Schmidt and H. Lipson, “Incorporating expert knowledge in
evolutionary search: a study of seeding methods,” in Genetic and
Evolutionary Computation Conference (GECCO), 2009, pp. 1091–1098.

[25] R. Poli, W. B. Langdon, and N. F. McPhee, A field guide to genetic
programming. Published via http://lulu.com and freely available
at http://www.gp-field-guide.org.uk, 2008.

[26] T. Mitchell, Machine Learning. McGraw Hill, 1997.
[27] N. L. Cramer, “A representation for the adaptive generation of simple

sequential programs,” in Proceedings of an International Conference on
Genetic Algorithms and the Applications, 1985, pp. 183–187.

[28] J. R. Koza, Genetic Programming: On the Programming of Computers
by Means of Natural Selection. The MIT Press, 1992.

[29] J. R. Koza, S. H. Al-Sakran, L. W. Jones, and G. Manassero, “Automated
synthesis of a fixed-length loaded symmetric dipole antenna whose gain
exceeds that of a commercial antenna and matches the theoretical maxi-
mum,” in Genetic and Evolutionary Computation Conference (GECCO),
2007, pp. 2074–2081.

[30] D. J. Montana, “Strongly typed GP,” Evolutionary Computation, vol. 3,
no. 2, pp. 199–230, 1995.

[31] S. Luke and L. Panait, “A comparison of bloat control methods for
genetic programming,” Evolutionary Computation, vol. 14, no. 3, pp.
309–344, 2006.

[32] J. Paredis, “Coevolving cellular automata: Be aware of the red queen,”
in Proceedings of the International Conference on Genetic Algorithms
(ICGA), 1997, pp. 393–400.

[33] D. Cliff and G. F. Miller, “Tracking the red queen: Measurements of
adaptive progress in co-evolutionary simulations,” in European Confer-
ence on Artificial Life, 1995, pp. 200–218.

[34] T. Miconi, “The road to everywhere. evolution,coevolution and progress
in nature and in computers,” Ph.D. dissertation, University of Birming-
ham, 2007.

[35] ——, “Why coevolution doesn’t work: superiority and progress in
coevolution,” in Proceedings of the 12th European Conference on
Genetic Programming, ser. LNCS, vol. 5481. Springer, 2009, pp. 49–
60.

[36] S. G. Ficici and J. B. Pollack, “Challenges in coevolutionary learning:
Arms-race dynamics, open-endedness, and mediocre stable states,” in
Artificial Life VI, 1998, pp. 238–247.

[37] C. D. Rosin and R. K. Belew, “New methods for competitive coevolu-
tion,” Evolutionary Computation, vol. 5, no. 1, pp. 1–29, 1997.

[38] E. D. Jong, “The incremental pareto-coevolution archive,” in Genetic
and Evolutionary Computation Conference (GECCO), 2004.

[39] ——, “The maxsolve algorithm for coevolution,” in Genetic and Evo-
lutionary Computation Conference (GECCO), 2005, pp. 483–489.

[40] H. Juillé and J. B. Pollack, “Coevolving the ideal trainer: Application
to the discovery of cellular automata rules,” in Proceedings of the
Conference on Genetic Programming, 1998, pp. 519–527.

[41] W. D. Hillis, “Co-evolving parasites improve simulated evolution as an
optimization procedure,” Physica D, vol. 42, no. 1-3, pp. 228–234, 1990.

[42] A. Ronge and M. G. Nordahl, “Genetic programs and co-evolution.
developing robust general purpose controllers using local mating in two
dimensional populations,” in Parallel Problem Solving from Nature IV,
Proceedings of the International Conference on Evolutionary Computa-
tion, 1996, pp. 81–90.

25

[43] D. Ashlockand, S. Willson, and N. Leahy, “Coevolution and tartarus,” in
IEEE Congress on Evolutionary Computation (CEC), 2004, pp. 1618–
624.

[44] A. Arcuri and X. Yao, “Co-evolutionary automatic programming for
software development,” Information Sciences, 2010, (to appear).

[45] K. Deb, Multi-Objective Optimization using Evolutionary Algorithms.
Wiley, 2001.

[46] C. A. C. Coello, G. B. Lamont, and D. A. V. Veldhuizen, Evolutionary
Algorithms for Solving Multi-Objective Problems. Springer, 2007.

[47] M. Reformat, C. Xinwei, and J. Miller, “On the possibilities of
(pseudo-) software cloning from external interactions,” Soft Computing,
vol. 12, no. 1, pp. 29–49, 2007.

[48] J. H. Andrews, L. C. Briand, Y. Labiche, and A. S. Namin, “Using
mutation analysis for assessing and comparing testing coverage criteria,”
IEEE Transactions on Software Engineering, vol. 32, no. 8, pp. 608–624,
2006.

[49] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms., 2nd ed. MIT Press and McGraw-Hill, 2001.

[50] G. Myers, The Art of Software Testing. New York: Wiley, 1979.
[51] P. McMinn, “Search-based software test data generation: A survey,”

Software Testing, Verification and Reliability, vol. 14, no. 2, pp. 105–
156, June 2004.

[52] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, pp. 385–394, 1976.

[53] B. Mesman, L. Spaanenburg, H. Brinksma, E. F. Deprettere, E. Verhulst,
F. Timmer, H. van Gageldonk, L. D. J. Eggermont, R. van Leuken,
T. Krol, and W. Hendriksen, Embedded Systems Roadmap – Vision on
technology for the future of PROGRESS. STW Technology Foundation,
2002.

[54] N. Binkert, R. Dreslinski, L. Hsu, K. Lim, A. Saidi, and S. Reinhardt,
“The M5 simulator: Modeling networked systems,” IEEE Micro, vol. 26,
no. 4, pp. 52–60, 2006.

[55] W. B. Langdon and R. Poli, Foundations of Genetic Programming.
Springer-Verlag, 2002.

[56] E. Zitzler, M. Laumanns, and L. Thiele, “SPEA2: Improving the Strength
Pareto Evolutionary Algorithm,” Swiss Federal Institute of Technology,
Tech. Rep. 103, 2001.

[57] A. Arcuri, “It does matter how you normalise the branch distance in
search based software testing,” in IEEE International Conference on
Software Testing, Verification and Validation (ICST), 2010, pp. 205–214.

[58] J. Miller, M. Reformat, and H. Zhang, “Automatic test data generation
using genetic algorithm and program dependence graphs,” Information
and Software Technology, vol. 48, no. 7, pp. 586–605, 2006.

[59] R. Sagarna and J. Lozano, “Scatter search in software testing, com-
parison and collaboration with estimation of distribution algorithms,”
European Journal of Operational Research, vol. 169, no. 2, pp. 392–
412, 2006.

[60] Mälardalen WCET Research Group, “Wcet project benchmarks,”
http://www.mrtc.mdh.se/projects/wcet/benchmarks.html.

[61] ECJ, “Evolutionary computation in Java,,”
http://www.cs.gmu.edu/veclab/projects/ecj/.

[62] “Javacc,” https://javacc.dev.java.net/.
[63] D. R. White and S. Poulding, “A rigorous evaluation of crossover and

mutation in genetic programming,” in Proceedings of the 12th European
Conference on Genetic Programming, EuroGP 2009. Springer, 2009,
pp. 220–231.

[64] R. Poli and N. McPhee, “Parsimony pressure made easy,” in GECCO
’08: Proceedings of the 10th annual conference on Genetic and evolu-
tionary computation, 2008, pp. 1267–1274.

[65] R Development Core Team, R: A Language and Environment
for Statistical Computing, R Foundation for Statistical Computing,
Vienna, Austria, 2008, ISBN 3-900051-07-0. [Online]. Available:
http://www.R-project.org

[66] A. Vargha and H. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” J.
Educational and Behavioral Statistics, vol. 25, no. 2, pp. 101–132, 2000.

	eprintscitation_temp.pdf
	0B0Bhttp://eprints.gla.ac.uk/55372/

