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Abstract. We present the E] compiler and runtime library for the ‘F’ subset of
the Fortran 95 programming language. ‘F’ provides first-class support for arrays,
allowing E] to implicitly evaluate array expressions in parallel using the SPU co-
processors of the Cell Broadband Engine. We present performance results from
four benchmarks that all demonstrate absolute speedups over equivalent ‘C’ or
Fortran versions running on the PPU host processor. A significant benefit of this
straightforward approach is that a serial implementation of any code is always
available, providing code longevity, and a familiar development paradigm.

1 Introduction

Collection-oriented programming languages [1] are characterised by the provision of a
built-in selection of operations to manipulate aggregate data structures in a holistic man-
ner. Idiomatic code in these languages will commonly eshew the use of loop constructs.
The potential to extract parallelism from this style of programming is consequently,
and firstly, due to the divisibility of these aggregate data types; and secondly to the lack
of side-effects in the expressions or constructs which stand in place of the imperative
loops. Collection-oriented programming has often been applied to distributed parallel
architectures, however it is just as relevant in the setting of heterogeneous multicore.

A perennial concern of performance-critical code structured around imperative loops
appears within the context of implicit, or automatic, parallelism. An auto-parallelising
compiler faced with a side-effecting loop which exhibits a sequential execution seman-
tics, may overcome the challenge by a code transformation which introduces paral-
lelism, along with locks or semaphores. The user of such a compiler is soon compelled
to understand a new layer of diagnostic messages, which gradually cajole them to-
wards an alternative, highly structured, coding style. The resulting code will often be
data-parallel, and specify behaviour equivalent to that common to collection languages,
though considerably more verbose.

In this paper we present a mainstream solution for scientific computing in the auto-
parallelising array compiler, E], which targets the heterogeneous architecture of the Cell
Broadband Engine. We also discuss the design decisions behind our implementation of
four classic benchmarks1 , before presenting an analysis of performance experiments.

1.1 Related Work

The seminal array language, originating in the 1960s, is Kenneth Iverson’s APL. Sub-
sequent decades brought a number of parallel array languages, for distributed architec-

1Available at http://www.dcs.gla.ac.uk/people/personal/pkeir/hppc11code.7z



tures: HPF, NESL, and ZPL being notable examples. Recent trends towards multicore
systems have brought about a renaissance in the design of parallel array languages.

Single Assignment C (SAC) is a pioneering functional array research language
based on the syntax and semantics of ‘C’. SAC is distinguished by its first-class ar-
rays, absent pointers and side-effects, and an advanced typing system capable of shape-
polymorphic array function definitions. SAC has also recently targeted the heteroge-
neous GPU architecture via a CUDA backend [2]. The absence of a stack in CUDA
however necessitates that no function calls are present within the SAC WITH-loops
which provide the sites for parallelisation.

Cray’s Chapel language, and IBM’s X10, were the two finalists from the ten year
DARPA High Productivity Computing Systems (HPCS) [3] programme. Both use a par-
titioned global address space (PGAS) model, and allow high-level, holistic, and paral-
lelisable manipulation of arrays. The two standard implementations of these languages
target distributed parallel architectures.

Microsoft’s Accelerator project [4] targets homogeneous x86, and heterogeneous
GPU architectures, using a data-parallel .NET array library which, by delaying the eval-
uation of array expressions, can minimise the creation of intermediate structures.

By virtue of the highly expressive Haskell typing system, the Repa [5] parallel array
library, is refreshingly akin to an embedded array language. Absolute parallel perfor-
mance comparable to serial ‘C’ derives from optimisations such as array fusion; and
mandatory unboxed, strictly evaluated array elements. For the end user, performance
can still depend on careful application of the force function; which replaces a delayed
with a manifest array. Repa builds on the long-running Data-Parallel Haskell research
strand, and for now targets only homogeneous multicore systems.

2 Implicit Parallelism using the ‘F’ Programming Language

Fortran was originally developed by John Backus and others at IBM in the 1950s. Like
‘C’, Fortran is a statically typed, imperative language. Fortran has historically differen-
tiated itself from ‘C’ by its absent pointer arithmetic; longstanding support for complex
numbers; argument passing by reference; and with Fortran 90, first class array types.
The Fortran language is ISO standardised, and Fortran 2008 has been approved. Of the
mainstream programming languages, Fortran has distinguished itself within the field
of computational science, due to its relatively high level, and excellent performance
profile.

The ‘F’ programming language is a subset of Fortran 95 designed with the inten-
tion of providing a lightweight version of Fortran, free of the requirement to support
40 years of language artifacts. The primary motivation of the language design was
to create a Fortran-based language for education, however ‘F’ is a perfectly adequate
general-purpose language. Furthermore, any Fortran compiler will compile a program
conforming to the ‘F’ language standard, the g95 compiler also has a command line
switch to enable error messages.

Having the requisite support for arrays, the ‘F’ programming language is therefore
a suitable language to explore the use of array expressions as a mechanism to drive
implicit parallelism for scientific computing on a heterogeneous architecture such as
the Cell Broadband Engine.



2.1 A Language Primer

The following code excerpt demonstrates an entire ‘F’ program, equivalent to a ‘C’
main function. The assignment on line 3 will pointwise multiply the elements of the
two arrays bound by b and c, before adding the result to a third array induced by the
literal 3. Once all operations on the right hand side of the assignment are completed,
the result is copied to the array bound to a.

1 program p
2 real, dimension(2,3) :: a, b = 1, c = 2
3 a = b * c + 3
4 a = muladd(b,c,3)
5 end program p

Fig. 1: Assignments involving intrinsic and user defined elemental functions.

The dimension attribute specification on line 2 of Figure 1 declares three arrays,
each with an explicit shape vector of 2;3. The length of an array’s shape vector provides
another useful metric: its rank, and is therefore 2 in this case. The terms in an array
expression must all have equal shape, and in doing so, the shapes are said to conform.
Scalar values, such as the numeric literals 1, 2 and 3, are promoted, or lifted, to an
array type of conforming shape, when their context within an expression requires it.
The induced array is then populated by elements of the same value as the inducing
scalar. In Figure 1, the expression b * c + 3 is therefore an array expression with a
rank of 2, and shape of 2;3. This is in fact true of all the expressions in Figure 1.

For the E] compiler, an array expression involving one or more functions, or opera-
tors, will be evaluated in parallel. The array expression b * c + 3 from Figure 1 will
therefore qualify, and so trigger the appropriate compiler transformations to ensure a
parallel execution.

Scalar functions free of side-effects may also be applied to array arguments with
conforming shapes. Such functions in Fortran are classified as elemental. The call to
muladd on line 4 of Figure 1 represents a user defined elemental function producing
the same result as the elemental arithmetic expression on line 3.

Unlike many auto-parallelising compilers, the E] user has the certainty that all array
expressions will execute in parallel. Consequently, other iterative constructs of the ‘F’
language, such as do or while loops remain useful. Such constructs should be used
where there is insufficient work to justify the small cost of thread adminstration and
direct memory access (DMA) operations.

3 The E] compiler

E] is a source to source compiler, translating from the ‘F’ subset of Fortran 95 to Offload
C++ [6]: a C++ language extension utilising pointer locality. The compiler targets het-
erogeneous multicore architectures, and in particular the CBE. The ‘F’ language has a



1 offloadThread_t tid = offload {
2 int outer *po = &g;
3 int i = *po;
4 int inner *pi = &i;
5 *pi = *pi+1;
6 *po = i;
7 };
8

9 offloadThreadJoin(tid);

Fig. 2: A simple asynchronous offload block expression

large standard library, and this is made available to both the PPU and the SPU using the
GNU Fortran runtime libraries. A C++ template class has also been developed which
both abstracts over the multifarious internal array representations of essentially all For-
tran compilers; and is also compatible with the dual memory address hierarchy exposed
by Offload C++. The E] compiler is written in the pure functional programming lan-
guage Haskell. Haskell’s Parsec parsing library allowed the structure of the published
‘F’ grammar to be followed exactly, while the Scrap Your Boilerplate package was used
to perform the crucial transformations of the abstract syntax trees.

3.1 Targeting Offload C++

E] translates from ‘F’ to Offload C++, a C++ language extension and runtime library [6]
targeting heterogeneous architectures. The most prominent language feature of Offload
C++ is the offload block which provides a traditional ‘C’ compound statement, prefixed
with the keyword offload, to be executed asynchronously to the main thread. Running
on the CBE, each new thread will be executed by the next available SPU. An offload
block returns an integer thread identifier and, like Pthreads, performance parallelism
is achieved through the launch of multiple threads; subsequently joined with a call to
offloadThreadJoin. A related benefit of this approach, is automatic call-graph du-
plication: with little or no annotation, a function, or variable reference, defined once,
may be used both outside and inside an offload block.

Equally significant is the extension of the C++ type system to allow statically as-
signed pointer locality. In Offload C++ a pointer is, either implicitly or explicitly, iden-
tified either with an inner or outer locality. Pointer arithmetic and assignment between
those of differing localities is statically prohibited by the compiler. More proactively,
the dereferencing of an outer pointer from within an offload block corresponds to a
DMA transfer from main memory to SPU scratch memory; while assignment to an
outer pointer results in a DMA transfer in the opposite direction. Figure 2 demonstrates
the concept: assuming the variable g is defined at global scope, the resulting effect of
the offload block is for g to be incremented by one. Note that the inner and outer

pointer qualifiers on lines 2 and 4 in Figure 2 are optional and would be automatically
inferred.



1 template <typename T, int Od>
2 struct PtrWrapper {
3 T inout(Od) *m_p;
4 };

Fig. 3: Offload C++ template struct with pointer member

Flexibility in the locality of class or struct pointer members may be obtained using
the static inout qualifier and an integer template parameter, as shown in Figure 3.

3.2 A C++ Template Interface to Fortran Runtime Libraries

Neither the ‘F’ nor Fortran language standards specify an application binary interface
(ABI) for arrays. With over a dozen Fortran compilers it would be unfortunate to restrict
the E] compiler to only one of the associated runtime libraries. The Chasm project [7]
helps addresses this issue by providing a low-level ‘C’ API targeting the internal “dope
vectors” used by each Fortran compiler. For E], two new C++ array template classes
have been designed and implemented: ArrayT; and the statically sized ArrayTN. Each
provides high-level support for Fortran array features such as sectioning; serialisation;
de-serialisation; and fast indexing with optional non-1 lower bound.

3.3 Parallel Operational Semantics

The E] compiler attempts a human-readable, one-to-one correspondence between ‘F’
input and C++ output language constructs. An exception occurs at a parallelised array
expression. In this instance, the array expression is transformed into a nested for loop1,
with depth equal to an expression’s rank. A team of threads is then launched, each
assigned a statically allocated and contiguous chunk of the outermost iteration space.
The precise number of threads is set on program startup using an environment variable,
ESHARP_NUM_THREADS, and may range from 1 to 128. Each individual thread is given
the full resources of an SPU, and sits in a notional FIFO queue until one is available.
While it can be assumed that launching one thread for each SPU will incur the lowest
thread administration costs, while maximising resource usage, a program with a large
working set may need to be split into more than six pieces. For example, an array
expression with a 6000KiB working set, will exceed the 256KiB local store of an SPU
if partitioned across six threads. With 32 or more threads, the program should run.

4 The Benchmark Programs

The first two benchmark programs we will examine, BlackScholes and Swaptions, are
financial simulations from Princeton Univerity’s PARSEC benchmark suite, converted
by hand to ‘F’ from original C and C++. Our Mandelbrot program allows us to look at
DMA transfer bottlenecks. while exploring differing approaches to parallel decomposi-
tion. Finally, a simulation of the n-body problem is examined.

1The operation is also recursively applied to array subexpressions.



4.1 Blackscholes

Blackscholes is a financial simulation which prices a portfolio of options using a partial
differential equation now known as the Black-Scholes equation. Scalability in perfor-
mance is obtained using a chunked, fine-grained decomposition, and calculating mul-
tiple options in parallel. The original implementation of Blackscholes uses Threading
Building Blocks (TBB) and Pthreads to facilitate parallelism, with both using an array
of structs configuration. Beneath the requisite file IO and threading boilerplate, there are
two functions within the call graph of the parallel region: BlkSchlsEqEuroNoDiv, and
a “callee” function CNDF. The kernel is given 100 runs, each of which is launched by
an application of the TBB parallel_for template. This invokes multiple calls to a
user-defined worker class’s overloaded function operator. The ‘F’ version requires only
that we mark the function as elemental, and the kernel launch is then
prices = BlkSchlsEqEuroNoDiv(dat)

4.2 Swaptions

The Swaptions program prices a portfolio of interest-rate swap options by the Heath-
Jarrow-Morton framework using Monte-Carlo simulation. The original program con-
sists of around fifteen C++ source files, then converted to ‘F’.

Parallel decomposition on both TBB and Pthread implementations was, like Blacksc-
holes, static and course-grained, though distinguished by a significantly larger working
set. An array of structs configuration was again present in the C++ code, and the kernel
was again dominated by a single 16-parameter function, HJM_Swaption_Blocking,
applied in parallel to chunks from an one-dimensional iteration space.

The HJM_Swaption_Blocking function was ultimately a suitable target for elemental
status, however the element type of two of its arguments are pointers to 1D and 2D ar-
rays. An ‘F’ elemental function cannot accept arrays as a “scalar” element type, so
necessitating the definition of two array wrapper types. With the 1D pdYield array, this
amounts to the type shown in Figure 4.

1 type, public :: yieldT
2 real(kind=ki), dimension(m_iN) :: y
3 end type yieldT

Fig. 4: A scalar ‘F’ datatype wrapping an array

The C++0x code generated by E] from Figure 4 is shown in Figure 5. Notice that
the struct has a template parameter, used to specify the locality of the data accessed
via the ArrayTN member at line 18. That this is an ArrayTN, rather than an ArrayT, is
an automatic optimisation due to the m_iN from line 2 of Figure 4 being a compile-time
constant; the integer template argument 11 specifies the statically-allocated data size.



1 template <int Od>
2 struct yieldT {
3 inline yieldT () {};
4 inline yieldT (const ArrayTN<__compiler,float,1,11,Od> &&y)
5 : y(y) {};
6 inline friend ostream & operator << (ostream &o,
7 const yieldT<Od> &t) {
8 o << t.y; return o;
9 };

10 inline friend istream & operator >> (istream &i,
11 yieldT<Od> &t) {
12 i >> t.y; return i;
13 };
14 template <int Od2>
15 inline yieldT &operator= (const yieldT<Od2> &rhs) {
16 y = rhs.y; return *this;
17 };
18 ArrayTN<__compiler,float,1,11,Od> y;
19 };

Fig. 5: The C++ struct generated from Figure 4 by E]

4.3 Mandelbrot

Estimation of the Mandelbrot set requires iteration of the complex function zn+1 =
z2n+c. Of the two Mandelbrot benchmarks we have developed, the first is more straight-
forward. An array of the same size as the 8-bit output image is initialised with positive
integer coordinate pairs within the appropriate range, leaving the elemental function
to create the complex value upon which it iterates. A second, blocked, version of the
program partitions the coordinate array into squares. A user defined type is used for the
squares, and is the scalar type upon which the requisite elemental function is defined.

4.4 The n-Body problem

From earlier work [8] we were aware that an O(n2) “all-pairs” n-body simulation on
CBE can exhibit good scaling at the expense of wall clock time, and so a tiled decom-
position of the problem, inspired by research at Nvidia [9], was developed.

The kernel of our n-body algorithm performs the O(n2) force calculation in paral-
lel while the remaining leapfrog-Verlet integration updates the positions and velocities,
and is run in serial by the host processor. This choice seems reasonable as having only
linear complexity, the percentage of runtime expended on the remaining integration
stage becomes insignificant with larger body counts. A square shaped tile of the pair-
wise body interactions, maximises the number of calculations that can be performed
per body. That is to say, a DMA transfer of 2p body positions and masses, will provide
p2 components of force for the integrator.

The E] compiler parallelises only the outermost of the generated loops. To fully ex-
ploit the two-dimensional decomposition already outlined, a “flattened”, one-dimensional,



array is used to feed the requisite driving elemental function. User-defined scalar
types, are once again required for the input and output elements. For input and output
respectively the two types pchunk2d and accel_chunk are shown in Figure 6.

1 type, public :: pchunk2d
2 type(vec4), pointer, dimension(:) :: ivec4, jvec4
3 end type pchunk2d
4

5 type, public :: accel_chunk
6 type(vec3), dimension(CHUNK_SIZE) :: avec3
7 end type accel_chunk

Fig. 6: The n-body kernel input (pchunk2d) and output (accel_chunk) wrapper types

5 Experimental Evaluation

The following benchmark results were measured and averaged across five runs on a
PlayStation 3 running Fedora Core 7. Single-precision was used throughout, due to the
CBE’s slow double-precision execution. In addition to the 4.1.1 versions of the GNU
C, C++, and Fortran compilers provided with the installed IBM Cell SDK v3.0, version
4.6 of GCC is also installed. Where a speedup metric is presented, the fastest available
PPU serial version is used, with selection based on source language; compiler; and the
often powerful GCC switch: -mcpu=cell. The Offload C++ compiler version is 2.0.2,
patched to use SPU GCC 4.6. All compilers use the -O3 switch throughout.

BlackScholes This benchmark exceeds the memory limitations of the SPU at low thread
counts. However, with 18 threads the E] version outperforms GCC after 4K options.
With 64 threads, 256K options become possible, and provide a final speedup of over
11; shown in Figure 7. The surprisingly horizontal E] curves indicate that the problem
is dominated by thread administration. The serial results also demonstrate that the ‘F’
version performs competitively with the independently constructed ‘C’ version.

Swaptions Though speedup values also increased, slightly, with input data size, Fig-
ure 8 shows only a maximum speedup of around 2.3x over GCC 4.6 with the “Large”
data set. Lower thread counts for Swaptions are possible, and the graph demonstrates
good scaling to 6 threads. While greater thread counts, up to 128, are shown as redun-
dant in this configuration, it is encouraging to see that increasing thread administration
overheads have no noticeable effect, as no fall in speedup is observed.

Mandelbrot As anticipated, the blocked version of Mandelbrot, using 64x64 squares,
outperformed the naı̈ve version, presumably due to reduced DMA traffic. The blocked
version was also able to create a 2048x2048 image, and so achieve a speedup of al-
most 12x. Mandelbrot reaches a similar maximum speedup as Blackscholes; though a
distinctive fall-off is also observed. See Figure 9.
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The n-Body Problem Using 16x16 square tiles speedups increase gradually with data
sizes, reaching a 3.4x speedup against the fastest ‘C’ configuration on PPU; which uses
the older GCC 4.1.1 and the -mcpu=cell switch. In comparison to times obtained from
the PPU only, using GFortran 4.1.1 -mcpu=cell, and the same ‘F’ code, a speedup of
4.9x is obtained with 16384 bodies; shown in Figure 10.
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6 Conclusion

We have demonstrated the auto-parallelising array compiler, E], targeting the hetero-
geneous architecture of the Cell Broadband Engine. Encouraging performance results
from four benchmarks are presented, and show speedups ranging from 2-11x over serial
versions running on PPU only. The language employed, ‘F’, is a simple, useable, and



standard dialect of modern Fortran, and is therefore well positioned for expected users
from the scientific programming community. In addition, ‘F’ codes developed for use
by E] are also valid Fortran; and shown to perform competitively in serial.

E] would benefit from the inclusion of streaming, rather than the current static par-
titioning of the iteration-space. This should allow access to a larger range of problem
sizes, and hopefully more routine access to high performance. Also, as array expres-
sions are free of side-effects, we can expose a finer level of granularity than currently
offered by E], which presently partitions only the outermost rank. This should help load
balancing on problems with small outer rank extents.

The techniques described here for the CBE could also be applied to new multicore
processors such as Intel’s Single-Chip Cloud Computer (SCC), or Knight’s Corner. In
the case of the SCC it would be possible to produce an E] compiler provided that a ver-
sion of the Offload system were ported to the SCC. This is likely to result in somewhat
lower performance than the Cell because of 3 factors: a) processors on the SCC can not
initiate reads from host memory, b) inter-process communication on the SCC relies on
a software library, RCCE, rather than the CBE’s DMA hardware; c) the performance
of the inidividual SCC processors is slower than the host Xeon, whereas the Cell SPUs
are capable of higher throughput than the host PPC. For shared memory machines like
Knight’s Corner, we anticipate implementing E] by compiling to C++ with OpenMP
pragmas. Some prototype work has already been done using this approach.
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