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Abstract

Datasets that are subjectively labeled by a number of experts are becoming more common in
tasks such as biological text annotation where class definitions are necessarily somewhat subjective.
Standard classification and regression models are not suited to multiple labels and typically a pre-
processing step (normally assigning the majority class) is performed. We propose Bayesian models for
classification and ordinal regression that naturally incorporate multiple expert opinions in defining
predictive distributions. The models make use of Gaussian process priors, resulting in great flexibility
and particular suitability to text based problems where the number of covariates can be far greater
than the number of data instances. We show that using all labels rather than just the majority
improves performance on a recent biological dataset.

1 Introduction

In the traditional predictive modeling setting, one is presented with a set of M -vector of covariates,
xn ∈ <M , n = 1 . . . N , corresponding to measurements of some set of features, and associated scalar
targets, tn. These targets may be real valued in the case of regression, one of K possible heterogeneous
categories in classification or one of K ordered categories in ordinal regression. In classification and
ordinal regression, these target values are generally assumed to be noise free and clearly defined. How-
ever, applications do exist where a single true labeling is not available and we must instead work from
labels provided by several experts, each of which have their own level of variability and interpretation
of the class definitions (classification) or thresholds (ordinal regression). A recent example within the
classification framework is the 2007 Computational Medicine Center (CMC) Medical Natural Language
Processing (NLP) challenge. The task involved automatically assigning codes to medical reports and the
training and test corpora were labeled independently by three separate companies1, with considerable
expert disagreement. A classic ordinal regression example, discussed in [13], consists of student essays,
each of which has been graded on an ordered scale by several examiners. Faced with such data, there

1Described in depth on the CMC website http://www.computationalmedicine.org/challenge/index.php
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are several questions we may wish to answer. For example, in the ordinal regression case, what is the
most likely ordering of the essays given the marks from the various examiners? In classification, we
may wish to make predictions that more accurately encapsulate the uncertainty in the domain - dis-
agreement between experts may not just be due to mistakes but rather due to unavoidably ambiguous
class definitions. This latter example is becoming particularly important in the field of biological text an-
notation where disagreements between annotators are commonplace, see [18] for an interesting discussion.

Whilst a combination strategy such as taking the majority will be successful in a classification appli-
cation where the differences arise through random errors, we argue that in some examples disagreements
arise because of perfectly natural variations in how different experts interpret subjective class definitions.
As such, keeping only a majority labeling results in a loss of information - for example, if we have three
experts, two of whom label a particular instance as belonging to class A while the other assigns it to class
B, by taking a majority we are saying that this instance can teach us nothing of class B, which is unlikely
to be the case. This becomes more important as the number of experts increases - it seems particularly
foolish to retain only majority labels when the number of experts making up the minority increases.
There is also no guarantee that there will be a clear majority. Datasets with these characteristics are
beginning to appear, motivating the development of predictive methods that can sensibly incorporate
diverse expert opinions. A recent study, [18] propose a set of five qualitative dimensions that can be used
to annotate biological text, which, when used by 12 experts, result in a 70-80% inter-annotater agree-
ment. The authors are pleased with this figure and believe that it justifies their choice of dimensions.
However, it still corresponds to a high level of disagreement and serves to show that whilst the choice
and definition of the classes is important, so is the development of methods that incorporate diversity
in opinion. Additionally, [5] emphasises that discussion of inter-annotator agreement may be crucial
for wider usage of a corpus and the success of any prediction systems on which it is based. Although
many corpora now include the annotator disagreement statistics, few release the original annotations.
Oahur results indicate that knowledge encoded in the multiple annotations may be crucial for predictive
systems. Some differences in annotation can stem from valid ambiguities in the data, and the removal
of conflicting annotations excludes potentially important information. This is true of many language
related tasks; for example, [17] shows that in co-reference resolution some disagreement arises because a
reference (he, she, it, etc.) does not always clearly refer to a single named entity.

As described in [15], the problem of classification in the presence of inconsistent labelings has ap-
peared in several forms in the statistics and machine learning literature. Most frequently in medical
statistics where a diagnosis or a decision on the appropriateness of a particular treatment is often based
on the opinions of several experts (for example [16]). A second example is automatic object discovery in
images (for example [15]). [7] proposed an expectation maximisation procedure to calculate a posterior
distribution over some true latent class, conditioned on the subjective labeling, a technique that has been
used more recently by [15]. As a pre-processing step, this seems more sensible than taking the majority
but it relies completely on the label information and does not use covariate information.

As discussed in [15], subjectively labeled data present two main problems. Firstly, how do we train
inference methods in the presence of multiple annotations? Secondly, how do we evaluate the perfor-
mance of these (particularly classification) methods when the ground ’truth’ consists of several, possibly
conflicting opinions? In this work, we propose models that can overcome the first problem for both clas-
sification and ordinal regression. These approaches are built around Gaussian Processes (GPs) whose
semi-parametric2 nature makes them particularly powerful in domains where the feature space is very
large, for example text classification and annotation (other non-parametric classifiers, particularly sup-

2Here we consider semi-parametric models as those where the number of parameters increases linearly with the number
of data instances and not with the number of covariates.
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port vector machines have been used extensively in such domains, for example [3]). The proposed
solutions scale linearly with both the number of classes/categories and the number of experts. Whilst
we have only briefly addressed the second problem, that of evaluation, we believe that the development
of evaluative methods is an interesting area for future development.

The remainder of the paper is structured as follows. In section 2we present the ordinal regression and
classification models. In section 3 we provide illustrative examples on synthetic data for both models and
in sections 4 and 5 we show the performance of the algorithms on synthetic and real data respectively.
Finally, in section 6 we draw some conclusions.

2 The Model

2.1 Ordinal Regression

Figure 1 about here
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Figure 1: Plate diagram for ordinal regression model

Consider the following problem. We are given a set of N data points, xn ∈ <M , and corresponding
scalar targets tn ∈ {1 . . .K} where there exists an ordering amongst the classes - for example, they
may be scores awarded for a school assignment. A traditional way of modeling this is to assume that
the labels were produced by applying a set of unobserved thresholds (bk) to a continuous, latent func-
tion m(xn). For example, if there are K ordered classes there are K − 1 free threshold parameters
given by b0 = −∞, b1, bK−1, bK = ∞. In the simple case of K = 2, this leaves only one free parame-
ter (b1) which is often set to 0. The inference task is thus to compute the posterior distribution over
m = [m(x1), . . . ,m(xN )]T and b = [b0, . . . , bK ]T conditioned on the observed data and labels. Armed
with these distributions we can make predictions regarding the latent variable, m, and category for a
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new data point, xnew.

Following [4], we can define the likelihood function of the nth target conditioned on the corresponding
value of the latent function, mn = f(mn)

p(tn|mn) =
{

1 if btn−1 < mn ≤ btn
0 otherwise , (1)

i.e., if tn = 2, mn must be between b1 and b2. However, this assumes that there is no noise present in
either the data or labels. Adding Gaussian noise, with mean zero and precision α, results in the following
likelihood

p(tn|mn, α,b) =
∫

1(btn−1 < yn ≤ btn)N (yn|mn, α
−1)dyn (2)

where 1(expr) is 1 if expr is true and 0 otherwise. This can be expressed as

p(tn|mn, α,b) = Φ(α
1
2 (btn −mn))− Φ(α

1
2 (btn−1 −mn)), (3)

the difference between two standardised normal cdf functions, Φ(z) =
∫ z
−∞ e−z

2/2dz. There are two
problems with this likelihood. Firstly, it is un-identifiable - multiplying all values of btn and mn by
some constant a−1 and multiplying α by a2 will leave the likelihood unchanged. Similarly, adding a
constant value to all values of btn and mn does not change the likelihood. We will discuss this problem
in the context of the multi-rater model later in this section. Secondly, this form of likelihood makes
computation of the posterior distributions intractable and it is necessary to resort to Metropolis-Hasting
sampling or approximate strategies, for example Expectation Propagation (EP) [4]. Alternatively, it is
possible to remove the marginalisation from equation 2 and treat y as an additional parameter in the
model. This ’auxiliary variable’ method has been proposed in a linear regression setting by [2] and in
a Gaussian process framework by [9]. Whilst increasing the number of variables in the model, it makes
posterior inference straightforward as, assuming conjugate priors, one can easily obtain the conditional
distributions necessary to implement a Gibbs sampling scheme.

Particularly, if we define a Gamma prior3 on α (with hyper-paramters v and λ) and the priors
on bk and m as p(bk) and p(m) (neglecting any hyper-parameters at this point), the Gibbs sampling
distributions are

p(yn|mn, tn, α,b) ∝ 1(btn−1 < yn ≤ btn)N (yn|mn, α
−1) (4)

p(bk|y1, . . . , yN ) ∝ 1
(

max
n,tn=k

yn ≤ bk < min
n,tn=k+1

yn

)
p(bk) (5)

p(m|y, α) ∝ N (y|m, α−1IN )p(m) (6)

p(α|y,m, v, λ) = G
(
v +

N

2
, λ+

1
2

(m− y)T (m− y)
)

(7)

where y = [y1, . . . , yN ]T and IN is an N ×N identity matrix. The conditionals for yn and bk are equiv-
alent to those described in [2].

We now extend this model to the case of L expert raters. A graphical representation of the model can
be seen in figure 1. We assume that each expert, l = 1 . . . L, has their own set of thresholds bl0 < · · · < blK
and their own noisy view of the underlying function m, through their own auxiliary parameter, yl, the

3G(α|v, λ) = λv

Γv
(α)v−1e−λα
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nth component of which is a-priori distributed as a Gaussian with mean mn and precision αl. These
assumptions produce the model proposed in [13]. The sampling distributions become

p(ynl|mn, tnl, αl) ∝ 1(bl,tnl−1 < ynl ≤ bl,tnl
)N (ynl|mn, α

−1
l ) (8)

p(blk|Y·l) ∝ 1
(

max
n,tnl=k

ynl ≤ blk < min
n,tnl=k+1

ynl

)
p(blk) (9)

p(m|Y,α) ∝
L∏
l=1

N (Y·l|m, α−1
l IN )p(m) (10)

p(αl|Y·l,m, v, λ) = G
(
v +

N

2
, λ+

1
2

(m−Y·l)T (m−Y·l)
)
, (11)

where we have denoted the lth column of the N × L matrix Y as Y·l and the nth row as Yn· and
α = [α1, . . . , αL]T . Again, the conditionals for ynl and blk are equivalent to those in [2].

2.1.1 Identifiability

We now turn to the problem of identifiability, discussed at some length for this form of likelihood in
[13] and [12]. As already mentioned, simple multiplicative and additive transformations of the param-
eters leads to the same likelihood value. There are two schemes that could be adopted to overcome
this problem - fixing the values of selected parameters to force the likelihood to be identifiable (often
described as strong identifiability) or placing proper priors on the parameters that are sufficiently
strong to overcome parameter coupling (weak identifiability). For the former case, identifiability in
single rater ordinal models can be ensured by fixing one of the threshold values (see, for example [6]).
In the multi-rater model with rater-specific precisions, we have two degrees of freedom and thus require
two constraints. The most obvious way to do this is to fix one threshold (say b11) and one precision (α1).
This effectively fixes the latent scale of m that cannot then be changed by other raters. Alternatively,
one can follow [11] by leaving the precisions free and fixing two thresholds. Whilst fixing parameters in
this manner does ensure identifiability, it comes at the cost of losing some model flexibility. In particular
we lose any concept of posterior variability in these parameters.

To overcome this limitation, weak identifiability is adopted in, for example [11, 12]. This involves the
use of appropriate prior distributions on all parameters that are strong enough to make the posterior
identifiable even though the likelihood is not. This approach must be used with caution as ensuring
that the prior distributions are strong enough is clearly not trivial. Particularly, as the quantity of data
is increased, the prior effect will lessen suggesting that there is no single prior that is suitable for all
datasets. For this reason, if one is wary about fixing the values of particular parameters and opts for
weak identifiability, it is recommended that comparisons are made with the strong case to ensure that
the sampling scheme is converging in a satisfactory manner. In the datasets examined in this work,
comparisons between the two approaches have shown that weak identifiability is satisfactory with rea-
sonably standard priors on α and b although in some cases convergence is improved by opting for strong
identifiability (i.e., less thinning of the output samples is required). However, it should be noted that
these datasets are reasonably small and stronger priors would most likely be needed in the presence
of more data. The priors that we have found suitable are Gamma for the rater-specific precisions and
normals (with appropriate order constraints) for the thresholds.

2.1.2 Priors on latent functions

Whether opting for strong or weak identifiability, the prior specification for the latent function is impor-
tant. In the original multirater model of [13], no covariate information was included and the prior on
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mn was N (mn|0, 1) providing weak identifiability. The model was then extended to include covariate
information in a linear regression framework

mn = βTxn. (12)

Unfortunately, this does not guarantee weak identifiability unless a suitable prior is placed on β which
may not be possible [12]. The authors overcame this by redefining the regression model such that rather
than defining p(m|β), as would be typical for a regression model, the model defines p(β|m). In this
manner, a proper prior could still be defined for m regardless of whether or not it was possible for β.

As an alternative, we propose placing a GP prior directly onto the latent function m. This has several
major benefits. Firstly, we are able to incorporate covariate information through a suitable covariance
function. Secondly, we are not restricted to a particular functional form (e.g. linear) chosen a-priori -
[13, 12] discuss the limitations of the linear model. Thirdly, semi-parametric methods such as these are
known to perform well when the number of covariates is greater than the number of data examples (e.g.
[3]), a regime in which a linear model would require a high level of regularization. Finally, the covariance
functions exist for all manner of data types (reals, integers, strings etc.) making the GP suitable in many
domains in which other methods are not applicable. This is particularly interesting for text analysis -
with the GP prior we are able to investigating more sophisticated representations.

2.2 A Gaussian process prior

Defining a GP prior on m with zero mean function and N×N covariance matrix C (created by evaluating
a suitable covariance function C(xi,xk) for each pair of data points) and assuming a Gaussian prior on
the thresholds, subject to the necessary order constraints (i.e., a particular threshold for one rater blk
conditioned on the other thresholds for that rater bl0, . . . , bl,k−1, bl,k+1, . . . , blK is a Gaussian truncated
between bl,k−1 and bl,k+1), the full prior model specification is given as

m|x1, . . . ,xN , γ ∼ N (0,C)
αl|v, λ ∼ G(v, λ)

ynl|mn, αl ∼ N (mn, α
−1
l )

blk|bl,k−1, bl,k+1, σ
2
b ∼ 1(bl,k−1 < blk < bl,k+1)N (0, σ2

b )
tnl = k|ynl, bl,k−1, blk ∼ 1(bl,k−1 < ynl ≤ blk)

The conditional distributions for m and blk required in the Gibbs sampler are given by

p(m|Y,α,C) = N

(
m|Σ

L∑
l=1

αlY·l,Σ

)
, Σ =

(
C−1 + IN

L∑
l=1

αl

)−1

p(blk|Y·l, σ2
b ) ∝ 1

(
max
n,tnl=k

ynl ≤ blk < min
n,tnl=k+1

ynl

)
N (blk|0, σ2

b ).

It is worth noting that in the extreme case that C = IN , we have no covariate information and a
model equivalent to the initial model of [13] and [12]. We will use this model for comparison in our
experimental section.

More detailed derivations of the conditional distributions and a description of the sampling scheme
can be found in appendix A.
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2.3 Multi-class Classification
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Figure 2: Plate diagram for multi-class classification model

We now turn our attention to the classification model. In [9] an efficient, multi-class GP classifier was
introduced. For an introduction to classification with GPs, see for example [19]. As in the ordinal
regression scheme discussed above, posterior inference within this model is made more tractable through
the addition of a set of auxiliary variables. It is perhaps easiest to think of the classifier in a generative
sense. With one expert, a dataset of N examples spanning K classes is generated as follows: For each
class k = 1 . . .K, realisations of the GP, at the location of the N datapoints, mnk, are drawn from the
GP prior, with zero mean and user defined covariance function. As for the ordinal regression model, we
will combine these N ×K values into a single matrix M, and use M·k and Mn· to denote N × 1 column
and 1×K row vectors respectively. Each of the L experts then creates their own noisy realisation of this
matrix, Yl by sampling each row, Yl

n·, from N (Yl
n·|Mn·, α−1

l IK). As for M, Yl
n· represents a 1 × K

vector and Yl
·k an N × 1 vector. Each expert finally assigns the class tnl to the value k that satisfies

ylnk > ylni ∀i 6= k. Denoting the full N × L matrix of labels as T, this generative procedure corresponds
to the following likelihood for the nth datapoint over all L experts

p(Tn·,Y1
n·, . . . ,Y

L
n·|Mn·,α) =

K∏
k=1

L∏
l=1

[1(ylnk > ylni ∀i 6= k)N (Yl
n·|Mn·, α−1

l IK)]1(tnl=k) (13)

From this likelihood and assuming independent GP priors on each of the K columns of M and a G(v, λ)
prior on each αl, we can obtain conditional distributions from which we can build a Gibbs sampler with
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the following conditional distributions

p(Yl
n·|Mn·, tnl = k) ∝ N (Yl

n·|Mn·, α−1
l IK)1(ylnk > ylni∀i 6= k) (14)

p(M·k|Y1
·k, . . . ,Y

L
·k,α,C) = N

(
M·k|Σ

L∑
l=1

αlYl
·k,Σ

)
, Σ =

(
C−1 + IN

L∑
l=1

αl

)−1

(15)

p(αl|M,Yl, v, λ) = G

(
v +

KN

2
, λ+

1
2

K∑
k=1

(Yl
·k −M·k)T (Yl

·k −M·k)

)
(16)

As in the ordinal regression case, we can use these distributions to generate samples from the posterior
distribution over M, from which it would be possible to make predictions of the label of a new datapoint.
If we are not interested in the individual expert precisions, αl, we can make the assumption αl = 1 ∀l
which leads to a simplified representation significantly reducing the number of separate Y matrices re-
quired from L to min(L,K). Details are provided in appendix B.

More detailed derivations of the conditional distributions and a description of the sampling scheme
can be found in appendix A.

2.3.1 Making Predictions

Our principal aim in building a classifier is to be able to make predictions regarding previously unseen
data, i.e. we would like to compute

p(tnew = k|xnew,X,T, γ, v, λ) (17)

by marginalising over all latent variables in the model. This leads to the following predictive distribution
(details given in appendix C)

p(tnew = k|xnew,X,T, γ, v, λ) =
1

Nsamps

Nsamps∑
s=1

Ep(u)

∏
j 6=k

Φ

u+

(∑
l

αsl

)1/2

(ms
new,k −ms

new,j)


(18)

where the s superscript above a parameter denotes the sth sample of that parameter from the Gibbs
sampler. The expectation is over the random variable u ∼ N (0, 1) and as such can be easily computed
by sampling. This expression is derived in the same manner as the predictive distributions in [14, 10] to
which the reader is directed for more information.

2.3.2 Identifiability

As with the ordinal regression model, we must be careful to ensure identifiability of the parameters.
Strong identifiability can be ensured by fixing the variance for one of the raters (say α1). This defines
the scale for all classes for rater 1 and hence the scale of Yl. In turn, this fixes the scale of M for
all raters. Alternatively we can assign proper priors to these parameters that are sufficiently strong
to ensure weak identifiability. Whilst in our synthetic experiments we found that weak identifiability
was sufficient, we did notice a small but significant increase in convergence time when using real data.
Performance of the two approaches will be dependent on the dataset being investigated so it is advisable
to try and compare both methods to ensure that the sampler is converging in a satisfactory manner.

2.4 Model scaling

As already mentioned, the model scales linearly with the number experts. Additionally, scaling with
the number of classes is linear. For many other multiclass GP approaches (e.g. [19]) it is cubic due to
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the inversion of a KN ×KN covariance matrix. Here, we need only invert at worst K separate N ×N
covariance matrix is required, and typically only one if class conditional matrices are not required.

Worst case memory and time scalings are N2 and N3 respectively. Much effort has recently gone
into developing sparse GP approximations (an example for the multinomial probit GP is given in [9])
and there is no reason why such approximations could not be used here if necessary.

2.5 Empty ratings

In many applications generating ratings is expensive. Hence, not all raters will rate every data instance.
There may also be too many for any one expert to rate. This simply requires some additional book-
keeping. For example, defining tnl = 0 if expert l has provided no rating for instance n, in the ordinal
regression case the Gibbs sampling distributions in equation 10 must be modified as follows. Firstly,
values for ynl will only exist for objects (n) that have been rated by the lth expert. The distribution for
m will be further decomposed thus

p(m|Y,α) ∝ p(m)
L∏
l=1

N∏
n=1

[N (ynl|mn, α
−1
l )]1(tnl>0). (19)

Similarly, in the update for αl, the second term will be decomposed to a summation over the instances
rated by expert l. The problem is solved in exactly the same way for classification.

3 Illustrative examples

3.1 Ordinal regression

We first use synthetic data to investigate the convergence properties of strongly and weakly identifiable
Gaussian process models. Following [6] we generated N = 200 datapoints xn from N (xn|0, 1). True
latent trait values for each of L = 4 raters were then generated according to mnl = 1 − 2xn + εnl
where εnl ∼ N (0, α−1

l ) and the precision values for the four raters were αl = [1, 0.5, 2, 4]. A radial basis
covariance function was used, defined as

C(xi, xj) = exp(−γ(xi − xj)2) (20)

with γ = 1. With K = 5, the true thresholds were sampled from N (0, 1) subject to the necessary order
constraints. To assess the performance of weak and strong identifiability we ran the sampler in four
configurations. Firstly, an unidentifiable model with no fixed parameters and diffuse priors (a uniform
prior over the entire real line for b (subject to the necessary order constraints b10 < b11 < · · · < b1K) and
a Gamma prior with parameters a = b = 0 for the precisions (G(αl|0, 0))). Secondly, a strongly identi-
fiable model with α1 = 1 and b11 = 0 fixed. Thirdly, a weakly identifiable model with no parameters
fixed and proper priors on these parameters (b ∼ N (0, 1), again subject to the required ordering and
α ∼ G(1, 1)). Finally, we combined the two methods by fixing some values and placing informative priors
on the non-fixed values. Figure 3(a) gives the R̂ statistic that compares inter- and intra chain variances
across multiple chains ([8]) for the four configurations. We notice that convergence is fastest in the two
cases where parameters are fixed (strong identifiability, labeled ’fixed’ and ’both’), slower in the weak
case (’priors’) and very slow in the un-identifiable case as the parameters are just wandering in a coupled
manner through the space (see figure 4(b)). In figure 3(b) we show the autocorrelation for α2. Strong
or weak identifiability alone (’fixed’ and ’priors’) offer similar performance and large improvements are
seen when they are combined. The autocorrelation is still rather high, suggesting thinning of the output
samples is required - a characteristic of models of this type - [6] investigates methods for speeding up
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sampling for a linear model and investigating similar techniques for the GP prior is an interesting avenue
for future investigation.

Given that fixing one threshold and one precision causes only a small loss in interpretability, it would
seem that in this case combining strong and weak identifiability is a sensible choice. However, given
the small time required to generate a large number of samples (less than 10 minutes for 50000 on a
standard desktop machine in this example), if one is concerned with the reduction in interpretability,
the weakly identifiable model is still feasible. Finally, in figure 4, we see trace plots for the precisions in
the un-identifiable (a) and combined strongly and weakly identifiable (b) cases.

Figure 3 about here
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Figure 3: Convergence statistics for the toy example. (a) the R̂ statistic of [8] that compares inter- and
intra- chain variances. (b) the autocorrelation.
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Figure 4 about here
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Figure 4: Trace plots for the synthetic example in the unidentifiable (a) and when using informative
priors and fixing values (b).

We now provide a comparison with the linear regression model of [13] and a model using no covariate
information. The dataset is generated as follows. N = 50 data points are sampled with dimension M
from N (xn|0, IM ) and a true linear weight vector β is sampled from N (0, IM ). For each of L = 5 experts,
we generate Y·l from a Gaussian with mean Xβ and covariance α−1

l IN (where X = [x1, . . . ,xN ]T ). For
each rater, we sample thresholds from N (blk|0, σ2

b = 2) (subject to the necessary order constraints) and
hence generate labels. We repeat this experiment for M = 20 and M = 50, and three different priors from
which the αl are drawn, corresponding to decreasing expected noise level. We will compare five algorithms
(listed in the order they appear in the figure) - GP multi-rater algorithm with no covariate information
(C = IN ) (red), the algorithm of [13] (with the reversed conditional distributions to ensure identifiability)
(black), linear regression model with informative prior on β (blue) (this effectively corresponds to the
distribution from which the data were drawn), GP multi-rater algorithm with all precisions fixed to 1
(green) and the full GP multi-rater algorithm (magenta). In all cases (except the algorithm of [13] where
the code was used exactly as provided) we used the combination of strong and weak identifiability that
performed well in the previous example. The models used are summarised in table 1.

Name Description Color
GP (C = I) GP multirater algorithm with no covariate information Red
Johnson The algorithm of [13] with reverse conditionals to ensure identifiability Black
Linear Linear regression with informative prior on β Blue
GP (fixed) GP multirater algorithm with precisions fixed to 1 Green
GP Full GP multirater algorithm Magenta

Table 1: Models compared in linear ordinal regression example (shown in order of figure 5).

The results can be seen in figure 5 where the y-axis corresponds to the Spearman’s rank coefficient
between the posterior mean latent function value and the true rankings, computed from Xβ. The higher
the coefficient, the better the model performance with a ranking of ρ = 1 corresponding to an exact
match. 20 datasets were created with each combination of covariate set size and noise prior. For each
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dataset, each algorithm was run 10 times to help assess chain convergence.

Figure 5 about here
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Figure 5: Results from linear ordinal regression example. The boxes denote (from left to right), GP mul-
tirater with no covariate information (red), algorithm of Johnson et al. with reverse conditionals (black),
linear regression model with informative prior on β (blue), GP multirater algorithm with precisions fixed
to 1 (green), full GP multirater algorithm (magenta).

The first thing that is obvious from figure 5 is that the performance improves as noise is decreased
(left to right on the x-axis). Also, when the size of the feature set equals the number of training examples
(M = N = 50), the full GP (magenta) outperforms all other methods including the linear model. This
shows the benefit of the GP method when faced with problems with large numbers of covariates. For
the small covariate set, the linear model with the proper prior outperforms all other algorithms. This is
to be expected as it is exactly the model that created the data. There are other interesting comparisons
that can be made. Firstly, the full GP model always outperforms the GP model with precisions fixed at
1 (green). Secondly, both the full GP model and the linear model with a proper prior always outperform
the baseline model that does not include covariate information (red). However, the algorithm of [13]
does not, and is occasionally worse than the baseline. This highlights the importance of the prior on the
latent function - in this example, placing a proper prior on the regression coefficients and fixing two of
the parameters appears to be far more effective than the alternative. Whether or not prior information
regarding the regression coefficients is available, the GP prior looks like a promising alternative. It is
worth noting that this experiment is biased rather heavily towards the linear model with proper prior
as the true prior distribution from which the regression coefficients were sampled is known. Hence, in
reality, the performance of the linear model may not be as good.

3.2 Classification

As with ordinal regression, we will first demonstrate the performance on a toy problem. We generate
a toy dataset by sampling 30 datapoints from each of three classes defined as Gaussians with means
[0, 0], [2, 2], [−2,−2] and unit diagonal covariance matrices. We provide the first expert with the true
labels and then add two additional experts with noisy labels, where each label is either equal to the true
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label with probability 0.5 or otherwise drawn randomly. The performance of a standard classifier with
only the labels from the first expert provides the best performance possible. Our aim in this example
is to see how much performance drops when the labels from the other experts are added. Ideally, if
the model performs well, the decrease in performance will be insignificant. We will try two variations
of our multi-expert model. In the first, we will fix the expert-specific precision values to αl = 1, whilst
in the second model we will allow the precisions to vary, with the prior distribution set as a Gamma
distribution with parameters v = 1, λ = 1. It is unreasonable to hope that the performance of either
of these models will equal that of the classifier trained on the true labels. However, we would expect
the model with fixed precisions to perform worse than the model where the precisions can vary as the
latter model is able to assign less certainty to the noisy models. A Gaussian covariance function is used
(C(xi, xj) = exp(−γ(xi − xj)2)) with γ = 1.

Figure 6 (a) and (b) about here
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Figure 6: (a) Toy classification data labeled by three experts. (b) Comparison of predictive log likelihoods
for the toy classification examples. ’1 Fixed’ is a classifier trained on the true labels from expert 1 with
α fixed at 1. ’All Fixed’ also includes labels from experts 2 and 3 and again α is fixed. ’1 Variable’ is
trained with just labels from expert 1 but now α is inferred and ’All Variable’ is trained on all of the
labels with α inferred.

We can see the data and the performance of the three models in figure 6 where the boxplots show the
predictive likelihoods over 50 randomly sampled datasets. ’1 Fixed’ corresponds to a standard classifier
trained on just the labels from expert 1 (the truth) with α = 1 fixed. ’All Fixed’ is a classifier trained
on all of the labels with αl = 1 ∀l = 1 . . . L. ’1 Variable’ is trained on just the labels from expert 1
but with α inferred whilst ’All Variable’ is trained on all labels with αl inferred. We see that in both
cases (with α fixed or inferred), the inclusion of the noisy labels leads to a drop in the median predictive
likelihood (-70 to -73 when α is fixed, -64 to -65 when inferred), however, neither drop is very large. This
suggests that the model handles the noisy labels reasonably well. The drop is particularly small when
α is inferred as the model is able to assign less certainty to the unreliable labelers. We can assess the
significance or otherwise of the changes using a paired t-test. Comparing the fixed and variable models
we obtain p = 1.4×10−4 in the single expert case and p = 6.1×10−5 when all labels are used suggesting
that there is indeed an improvement when we allow the model to infer precisions. Comparing using the
first set of labels versus all of the labels in the two cases gives p = 0.0612 in the fixed case and p = 0.5462
in the inferred case. Whilst one cannot reject the null hypothesis at 5% in either case, the decrease
in performance when noisy labels is added seems to be much smaller when the model is free to infer
precisions, as one would expect. In one arbitrary run from this example, the posterior mean values for
the three precisions were α = [3.85, 0.14, 0.26]. It is clear that much more certainty has been assigned
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to labeler 1.

Finally we found that the priors used were strong enough to ensure posterior identifiability - fixing
one of the precision parameters in the ’All variable’ model resulting in strong identifiability made no
observable difference to chain convergence.

4 Classification example - labeling clinical reports

We now turn to a real dataset from the 2007 Computational Medicine Center (CMC) Medical NLP Chal-
lenge4. The original data consisted of anonomised medical records from a children’s hospital consisting
of two parts, the medical impression and medical history. The medical history briefly describes patients’
prior complaints, while the impression describes the results of the current examination. Each record also
includes ICD9 codes5 assigned by three different companies. We have removed all classes for which there
is only one instance, leaving a total of 28 classes. In some instances, individual companies suggest more
than one label. Extending the current method to be able to handle multi-label data such as this is an
interesting avenue for future work. However, at the moment, we discard these instances, leaving a total
of 497 reports.

Despite the existence of guidelines as to how the data should be labeled, we see a very high level of
disagreement between the three experts. Figure 8(a) shows the number of examples assigned to twenty
of the largest classes. Notable classes are 13, where expert 1 makes 30 assignments whilst expert 3 makes
none and class 3 where experts 2 and 3 make many more assignments than expert 1. This demonstrates
the difficulty of the labeling task due to the subjective nature of the data and motivates the development
of methods capable of dealing with such diversity.

The clinical impression and history were each represented as a document-feature co-occurrence ma-
trix. The features were all of the words which occur in the records excluding a standard list of English
stop words6. The words were also normalised by converting to lower case. In addition, the patient age
descriptions were standardised by converting all numbers to digits and concatenating the description
words into a single token (e.g. Four month old would become 4 month old). This left about 1500
unique tokens, a far greater number than the number of data instances. In our experiments we used the
history portion of the data as this was the most informative. Incorporating the impression information
too is an interesting avenue for future work, possibly through a convex combination of GP covariance
functions as described in [10].

In this experiment, a linear covariance function (C(xi,xk) = xTi xj) was used after the input vectors
were normalised to have unit norm. The Gamma prior had parameters v = 1, λ = 1. To monitor
convergence we compared the weakly identifiable GP model with a strongly identifiable model and with
a weakly identifiable model without any covariate information (the covariance matrix, C is equal to
an identity matrix). Figure 7 shows the evolution of the R̂ statistic for the precision parameters (the
maximum value is taken across the 3 (2 in the strongly identifiable case) parameters at each sample).
We see that there is a small but significant difference in convergence between the strongly and weakly
identifiable cases. Also in figure 7 we can see a trace plot of the parameters in the strongly identifiable
models. We can see that there is a rather high level of autocorrelation and hence thinning is required.
Bearing this in mind, in our experiments we use 2000 burn in samples and then a further 20000 samples

4Data and detailed description on the CMC website http://www.computationalmedicine.org/challenge/index.php
5http://icd9cm.chrisendres.com/index.php
6ftp://ftp.cs.cornell.edu/pub/smart/english.stop

14



from the posterior, thinned by a factor of 200 to give 100 final samples from which to compute predictive
distributions.
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Figure 7: (a) Monitoring convergence of the Gibbs sampler for the precision parameters for the weakly
identifiable full GP model, a weakly identifiable GP model without covariate information and the strongly
identifiable model obtained by fixing α1. (b) Trace plot of the precision parameters for the strongly
identifiable GP model.

Evaluation of the methods is difficult as we do not have a ground truth with which to compare. In
[15], a modified receiver operating characteristic (ROC) curve is used. This is possible due to the ordinal
nature of their four categories. This is not possible in our case as the classes have no ordering and true
multi-class ROC analysis is somewhat unwieldy. Therefore, we will consider two more simple measures
here. The first assumes that we would like the outcome of our algorithm to be single predictions of the
class of a new instance and so we will compare the class predicted with highest probability with the
majority given by the labelers (in only one instance is there not a majority). This is a somewhat crude
measure - if we are going to test on the majority, why not simply train on the majority? However, our
results below show that we do see an improvement in the prediction on the majority when training with
all labels. Secondly, we assume that rather than a single prediction, we would like our algorithm to
provide a predictive probability distribution over all classes that reflects the true certainty/uncertainty
of the problem. Such a distribution might be a useful low-dimensional representation of the report
in a database against which to conduct searches. Specifically, we would like all examples on which the
labelers agree to be predicted correctly with very high probability. Test points for which there is disagree-
ment should be predicted with less certainty and additional predictive weight given to any minority class.

Considering the first of these measures, results from 10-fold cross validation, repeated with 10 differ-
ent partitionings of the data can be seen in figure 8(b). From left to right, the different models correspond
to: The weakly identifiable GP, the strongly identifiable GP, a post-hoc posterior averaging procedure
over classifiers built from the individual experts’ labels, the GP model with all precisions fixed to unity,
a classifier trained on the majority label and classifiers trained on the labels from the three individual
experts. We see that the best performance is shared between the multiple-expert algorithm (with fixed
or inferred precisions) and predictions based on the posterior average of the three individual experts.
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The performance difference between these two methods is not statistically significant (paired t-test, 5%
significance value) although each of them is significantly better than the remainder. When training is
performed with the majority labels, performance is indistinguishable from that of classifiers trained with
just the labels from expert 2. Expert 3 on the other hand is performing rather badly. Interestingly,
expert 2 agrees with expert 3 more often than it does with expert 1 so it cannot be the case that this
performance difference is just due to experts 1 and 2 always making the majority. The regular agreement
between experts 2 and 3 can also be observed in the posteriors for the precision parameters, α, figure
8(c). Here we see that the precision for expert 2 is much higher than those for experts 1 and 3. This is
not surprising as we have already observed that a classifier trained with the labels from expert 2 alone
performs well with respect to the majority labeling. However, comparing the performance of classifiers
trained on labels from experts 1 or 3, we might predict that the precision for expert 1 in the combined
classifier would be higher than that for expert 3. In fact, the opposite is the case. The fact that all three
methods that use all labels (unidentifiable and identifiable multi-expert GPs and posterior averaging)
perform significantly better at predicting the majority label than the classifier trained on the majority
label appears somewhat counterintuitive. However, we suspect that this is due to the increased infor-
mation available to these classifiers - it seems reasonable to assume that data instances for which the
experts disagree should provide some information about each of the classes mentioned - if we use only
the majority label, we are reducing the set of training instances associated with each class.

Given the results in our synthetic example, the fact that the GP algorithm with inferred precisions
does not outperform that with fixed precisions seems surprising. This may well be an artifact of this
dataset and comparisons on other datasets, possibly with more experts is an avenue for future work.
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Figure 8 (a,b,c,d) about here

Figure 8: (a)Distribution of assignments by the three experts over 20 of the largest classes in the
clinical competition data, (b) accuracy (0-1 loss) with respect to majority labels, (c) example posterior
distribution over the precision for the three experts in the strongly identifiable case and (d) comparison
of predictive likelihoods in the strongly identifiable case (black lines) with a model built from averaging
the predictions over the three experts (grey lines), solid curves correspond to majority labels, dashed to
minority (where they existed).

Our second method of evaluation (quality of predictive distributions) is more difficult but we can gain
some insight by looking at predictive probabilities for the cases when all labelers agree, and cases when
they don’t. Figure 8(d) shows a comparison of the distributions of predictive likelihoods between the
multi-expert and the posterior average of the individual classifiers for test points in which the labelers
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agree (solid curves) and disagree (dashed curves). We can see that the multi-expert model is able to
predict both majority and minority labels with more certainty than the posterior average of the indi-
vidual classifiers as it has more probability mass towards the higher end of the x-axis. There appears
to be a smoothing effect inherent in the posterior averaging - the combination treats predictions from
expert 3 with the same weight as those from experts 1 and 2 and it seems likely that this flattening
effect will get worse as the number of experts increases. This evidence suggests that the multi-expert
algorithm provides a more natural and reliable framework for encapsulating the uncertainty inherent in
this data. It should be noted that the posterior averaging performance could probably be improved with
more sophisticated combination schemes. However, the multi-expert algorithm seems a more sensible op-
tion as it is able to implicitly optimise this combination through the expert-specific precision parameters.

5 Ordinal regression application - essay grading

0 2000 4000 6000 8000 10000
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

Number of samples

M
ax

im
u
m

R̂
va

lu
e

 

 

GP model with priors
Identifiable GP model with priors
Linear model of Johnson

(a)

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Lag

A
u
to

co
rr

el
at

io
n

 

 

GP model with priors
Identifiable GP model with priors
Linear model of Johnson

(b)

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

5

10

15

Samples

α
l

(c)

Figure 9 (a),(b) and (c) about here

Figure 9: Monitoring convergence of the precision parameters in the ordinal regression example using
(a) the R̂ statistic and (b) the autocorrlation. (c) trace plot of the precision parameters for the full GP
model.

Our final example uses the dataset discussed in [13]. The data consists of features derived from 198
essays (number of spelling mistakes, average word length etc) and ratings for each essay (between 1
and 10) from each of five experts. When analysing this data there are three obvious aims. Firstly, we
may wish to generate a relative ranking of all of the papers, incorporating the opinions from all of the
experts. Secondly, we may wish to quantify the variance of each of the raters - it is clearly useful to
know how consistent any particular rater is. Finally, we may wish to produce an automated grader. We
will consider the first two problems here. For discussion relating to the third, the reader is directed to
[13] and [12].
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Figure 10: Left to right: Variances obtained for the five examiners in the essay dataset for the weakly
identifiable GP model (1/αl), the strongly identifiable GP model, a strongly identifiable GP model with
no covariate information (C = I) and the regression model of [13]. The same effective prior on variance
was used in all cases. The ordering of experts from the most (expert 2) to the least (expert 3) consistent is
conserved except in the final case where fixing the values of parameters changes the posterior distribution
from which we’re sampling.

In the following experiment, we use a linear covariance function (C(xi, xj) = xTi xj) where each input
vector is normalised to have unit norm. As in the classification example, we assess convergence and check
for possible problems with identifiability using the R̂ statistic (see e.g. [8]) for the precision parameters
(αl). Figure 9 shows the evolution of the maximum value (over the five parameters) of this statistic
over ten independent chains, the autocorrelation of α2 and a trace plot of the precision parameters from
the full, weakly identifiable GP model. As well as convergence statistics for the weakly identifiable GP
model, we also show the evolution for a strongly identifiable GP model with with priors and the linear
regression model of Johnson ([12, 13]). We see that the two GP models are roughly consistent and
appear to have converged to a lower R̂ value after 10000 samples than the linear model. Similarly, in
figure 9(b) the two GP models exhibit similar autocorrelation behaviour, in both cases better than that
for the linear model. In the following experiments, we generate 10000 samples from our Gibbs sampler,
discarding the first 5000 as a burn-in. For comparison, we used the code provided by the authors of [12]
exactly as provided, initialised with the results of their covariate free model. The parameters of the prior
on the expert precisions is Gamma with parameters v = 1, λ = 1 and σ2

b = 1.

In figure 10, we show the marginal posterior densities for the variances (we have plotted variances
rather than precisions for ease of comparison with the regression model) of each rater for the three
models described in the previous paragraph and a GP model with no covariate information (strongly
identifiable with informative priors). The effective prior on variance was the same for all models and so
it is interesting to note that, whilst the ordering from least to most consistent raters is roughly similar,
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the expert variances for the GP models are consistently smaller than those for the regression model -
most likely due to the different priors over the latent trait function. The posterior densities for the three
GP models are very similar, suggesting that the posterior is indeed identifiable despite the fact that the
likelihood is not. In the strongly identifiable case, we see that fixing the precision for rater 1 causes the
ordering to change slightly (it now has similar precision to rater 3 whereas before it was higher (variance
lower)). This is not surprising - placing a restriction on the thresholds will generally mean that the first
term in the likelihood

p(tnl, ynl|mn, αl) = 1(bl,tnl−1 < ynl ≤ bl,tnl
)N (ynl|mn, α

−1
l ) (21)

is constant and hence the second term will need to be more flexible. If the values of b11 and α1 are fixed
to the posterior mean from the weakly identifiable model, the original ordering is recovered (result not
shown).

Whilst both methods seem to perform similarly here, it is important to remember that with the
GP prior, we have not had to fit specific regression parameters for each feature. This is beneficial in
problems with large numbers of covariates relative to the number of examples. In such a regime, a linear
model would require regularization to avoid overfitting. There is no such issue with the GP prior. For
example, we could use the essays themselves in this example rather than features derived from them.
We do however lose any information regarding how important each covariate is although relevances for
each could be obtained using an automatic relevance detection (ARD) covariance function as described
in [9].

Figure 11 about here
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Figure 11: Gain in predictive likelihood for predictions by the 5 experts when the multi-rater model is
used rather than individual ordinal regression models.

Finally, we can use the predictive capability of the model to determine to what extent analysing
the data in a joint manner is better than simply fitting individual ordinal models. Using a 10-fold cross
validation procedure, we can compute predictive likelihoods for each expert over the held-out data within
the multi-rater model and in individual ordinal regression models. All settings were the same as in the
previous experiments with this data above. In figure 11 we have plotted the improvement in predictive
likelihood for the multi-rater model over individual models for the 5 experts. We can see that the multi-
rater model is able to predict the behavior of individual raters better than models just based on their
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individual responses. For the other 2, the decrease in performance is rather low. This is an interesting
and promising conclusion - it appears that the general consensus between the raters enables the model to
make correct predictions with greater confidence. It is not surprising to notice that the two experts for
which predictive performance is worst are those with the lowest associated precision (highest variance)
values (c.f. figure 10).

6 Conclusions

In this paper we have introduced semi-parametric models able to handle both classification and ordinal
regression data that has been subjectively labeled by a number of different experts. The classifier is built
upon the multinomial probit classifier of [9] and as such remains practical when the number of classes and
(with the use of sparse approximations) the number of training examples are high. Additionally, it can
be extended to semi-supervised problems ([14]) and the combination of different data sources through
composite covariance functions ([10]). To the best of our knowledge, this is the first non-parametric
classifier that can accommodate data instances labeled subjectively by several experts.

Unfortunately, as the latent trait functions for both ordinal regression and classification have no
implicit scale, the likelihood functions for both models are unidentifiable. We have investigated two
options for overcoming this problem. Firstly, ensuring strong identifiability by fixing particular param-
eter values (a subset of thresholds for ordinal regression and one precision parameter for classification)
and secondly, following [11], ensuring weak identifiability by placing suitable priors on all parameters.
In our experiments, we did not find one strategy which consistently outperformed the others. Strong
identifiability seems to be the safest route, however there is some loss in interpretability and given the
relatively low computational cost of generating samples, the potential cost of generating more samples
to overcome the higher autocorrelation in the weakly identifiable case (particularly for classification)
may not be too much of a burden. In practice, a combination of the two strategies may be the best
approach. The inclusion of covariate information can lead to difficulties in ensuring that a proper prior
is placed on the latent functions ([13]), particularly if little prior knowledge is available regarding the
problem domain. This is elegantly overcome through the use of a Gaussian process prior on the latent
function. The prior is proper and does not require any parametric assumptions. In our investigations
we have assumed Gaussian noise. In many applications, this may not be suitable and following [2] in
extending the model to to the t-link rather than the probit link may be an interesting avenue for future
investigation. Similarly, it may be possible to improve the efficiency of the sampler (particularly for the
cut-points) in the manner described in [1].

Presently, inference is restricted to using Gibbs sampling to sample from the posterior over model
parameters. This is computationally rather intensive and approximations may be useful in large problem
domains. Under certain restrictions (αl = 1 ∀ l) it is possible to create a variational (mean field) approx-
imation to the classification model along the lines of that shown in [9], although in the more general case
and for ordinal regression, development of suitable approximations is an interesting area for future work.
Expectation propagation (as used in [4]), may be a practical alternative to a variational approximation
in the ordinal regression case.

We anticipate the model being of particular use in the text domain where the GP prior is not restricted
by the very large number of features and the labeling of training instances is often rather subjective. Ex-
plicitly modeling this uncertainty in the classification algorithm is likely to be more efficient and possibly
more effective than forcing the labelers to come to an agreement in contentious cases. We have shown
that our model outperforms a similar GP trained on the majority labeling for a subset of the data from
a recent classification competition. Raw classification performance is comparable with taking a posterior
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average over classifiers trained on the individual labels but predictive likelihoods are considerably higher.
We anticipate a similar improvement in performance in other problems where the task of labeling is
difficult and open to interpretation. Such datasets are becoming increasingly common, particularly in
the biological domain.

In the ordinal regression case, we see results on a benchmark dataset that are in agreement with
results produced by a similar, parametric model [12]. This data is of reasonably low dimension and
investigation with more complicated data is an avenue for future work. For example, it would in theory
be possible to use the actual essays as our data rather than features derived from them.

Matlab code to reproduce the results presented in this paper is available from the authors on request.
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A Gibbs sampler details

A.1 Ordinal regression

The full posterior is given by

p(m,Y,α,b|T,C, σ2
b , v, λ) ∝ p(m|C)

L∏
l=1

[
p(Y·l|m, αl)p(αl|v, λ)p(bl|σ2

b )
N∏
n=1

p(tnl|ynl,bl)

]
. (22)

Taking each component in the posterior in turn, starting with the individual components of Y, ynl we
have

p(ynl| . . . ) ∝ p(ynl|mn, αl)p(tnl|ynl,bl) (23)
∝ N (ynl|mn, α

−1
l )1(bl(tn−1) < ynl ≤ bltn). (24)

For the trait variable, m we have

p(m| . . . ) ∝ p(m|C)
L∏
l=1

p(Y·l|m, αl) (25)

∝ N (m|0,C)
L∏
l=1

N (Y·l|m, α−1
l IN ) (26)

= N (m|Σ
L∑
l=1

αlY·l), Σ =

(
C−1 + IN

L∑
l=1

αl

)−1

. (27)

For the precisions,

p(αl| . . . ) ∝ p(Y·l|m, αl)p(αl|v, λ) (28)
∝ N (Y·l|m, α−1

l IN )G(αl|v, λ) (29)

= G
(
v +

N

2
, λ+

1
2

(m−Y·l)T (m−Y·l)
)
. (30)

Finally, the thresholds

p(blk| . . . ) ∝
N∏
n=1

p(tnl|ynl,bl)p(blk|σ2
b ) (31)

∝
N∏
n=1

1(bl,tn−1 < ynl ≤ bl,tn)N (blk|0, σ2
b ) (32)

∝ N (blk|0, σ2
b )1

(
max
tnl=k

ynl ≤ blk < min
tnl=k+1

ynl

)
. (33)

The Gibbs sampler proceeds as follows

1. Initialise m ∼ N (m|0,C), αl ∼ G(αl|v, λ) and blk ∼ N (blk|0, σ2
b ) (subject to the necessary order

constraints);

2. Sample a new value for each Y·l from equation 24;

3. Sample a new value for m from equation 27;
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4. Sample a new value for each αl from equation 30;

5. Sample a new value for each blk from equation 33;

6. If the sample number is greater than the burn in period, store these new samples;

7. If we have not reached the maximum number of samples, return to 2, otherwise stop.

The length of burn-in period to take will depend on dataset. The easiest way to ensure that the chain(s)
have converged is to start several and compute the R̂ statistic (see, for example [8]) for each parameter
of interest.

A.2 Classification

The full posterior is given by

p(Y,M,α|T,C, v, λ) =
K∏
k=1

p(M·k|C)
L∏
l=1

p(αl|v, λ)
N∏
n=1

p(tnl|Yl
n·)p(Y

l
n·|Mn·, αl). (34)

Taking the components one at a time, starting with the components of Y, assuming that tnl = k,

p(Yl
n·| . . . ) ∝ p(tnl|Yl

n·)p(Y
l
n·|Mn·, αl) (35)

∝ 1(ylnk > ylni ∀i 6= k)N (Yl
n·|Mn·, α−1

l IK), (36)

i.e., a Gaussian truncated such that the kth component is the largest. For M·k

p(M·k| . . . ) ∝ p(M·k|C)
L∏
l=1

p(Yl
·k|M·k, αl) (37)

∝ N (M·k|0,C)
L∏
l=1

N (Yl
·k|M·k, α−1

l IN ) (38)

= N (M·k|Σ
L∑
l=1

αlYl
·k,Σ), Σ =

(
C−1 + IN

L∑
l=1

αl

)−1

. (39)

Finally, for the precisions,

p(αl| . . . ) ∝ p(αl|v, λ)
K∏
k=1

p(Yl
·k|M·k, αl) (40)

∝ G(αl|v, λ)
K∏
k=1

N (Yl
·k|M·k, αlIN ) (41)

= G

(
v +

NK

2
, λ+

1
2

K∑
k=1

(Yl
·k −M·k)T (Yl

·k −M·k)

)
(42)

The Gibbs sampler proceeds as follows

1. Initialise m ∼ N (m|0,C) and αl ∼ G(αl|v, λ);

2. Sample a new value for each Y·l from equation 36;

3. Sample a new value for m from equation 39;
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4. Sample a new value for each αl from equation 42;

5. If the sample number is greater than the burn in period, store these new samples;

6. If we have not reached the maximum number of samples, return to 2, otherwise stop.

B A more efficient classification representation

The classification algorithm proposed requires a separate Y matrix to be maintained for each of the L
experts. However, if we have reason to believe that each expert has the same noise precision αl = 1, we
can greatly simplify this representation. Our likelihood, before performing the auxiliary variable trick,
is as follows

p(Tn·|Mn·) =
K∏
k=1

L∏
l=1

[Φkl(Mn·)]δ(tnl=k) (43)

where Φkl(Mn·) = p(tnl = k|Mn·). We notice that the product over the L experts can be replaced by
raising the Gaussian to the power of a sum, i.e. we represent it as a multinomial distribution in terms
of the sufficient statistic,

p(Tn·,Y1
n·, . . . ,Y

K
n·|Mn·) =

K∏
k=1

[N (Yk
n·|Mn·, IK)]

P
l δ(tnl=k). (44)

So, rather than L matrices, we only need K, and the terms in the likelihood are raised to the power of
the number of experts that assigned class k. Defining ηnk =

∑
l δ(tnl = k), we can re-write this as

p(Tn·,Y1
n·, . . . ,Y

K
n·|Mn·) =

∏
k

N(Yk
n·|Mn·, η−1

nk IK). (45)

For convenience, we have been slightly abusive with notation - Yk
n· only exists for k such that ηnk > 0.

This will obviously be a different set for each n. We will hereafter refer to the complete set of Yj
n·’s,

over all n training points as Y.

In the worst case, we will have to maintain a maximum of min(K,L) vectors for each data point,
rather than L in the previous example. In all practical scenarios, the number will be far fewer than this
as it is unlikely that the experts will all disagree on each training point. The corresponding conditional
distributions are straightforward to extract and follow as

p(Yk
n·|Mn·, tnl = k) ∝ N (Yk

n·|Mn·, η−1
nk IK)1(yknk > ykni∀i 6= k), (46)

i.e., a Gaussian truncated such that the kth value is largest and

p(M·k|Y,C,L) ∝ N (M·k|0,C)
∏
j

∏
n

N (yjnk|mnk, η
−1
nk )1(ηnj>0) (47)

= N (M·k|LΣkzk , Σk) (48)
where Σk = (C−1 + LIN )−1 (49)

and znk = L−1
∑
j

ηnjy
j
nk. (50)

We can now see that in the worst case we must store and update min(K,L) of the Y matrices. Generally,
we will have to store and update fewer as it is unlikely that, in any practical application, all of the experts
will disagree. It is worth noting that in these derivations, we have assumed that each expert has labeled
each training point. It is straightforward to extend the algorithm to the more general case where each
expert labels some subset of the total N examples.
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C Predictive distributions for classification

In order to make predictions, we perform the following marginalisation

p(tnew = k|xnew,X,T, γ, v, λ) =
∫ ∫ L∏

l=1

∫
1(ylnew,k > ylnew,i ∀i 6= k)p(Yl

new·|Mnew·, αl) (51)

× p(Mnew·αl|X,T, γ, v, λ)dY1
new·, . . . , dY

L
new·dαdMnew· (52)

=
∫ ∫ ∫

1(ynew,k > ynew,i ∀i 6= k)N
(

Ynew·|Mnew·,
1∑
l αl

IK

)
(53)

× p(Mnew·αl|X,T, γ, v, λ)dYnew·dαdMnew· (54)

=
∫ ∫

Ep(u)

∏
j 6=k

Φ

u+

(∑
l

αl

)1/2

(fnew,k − fnew,j)

 (55)

× p(Mnew·αl|X,T, γ, v, λ)dαdMnew· (56)

≈ 1
Nsamps

Nsamps∑
s=1

Ep(u)

∏
j 6=k

Φ

u+

(∑
l

αsl

)1/2

(ms
new,k −ms

new,j)

(57)

where the supersctipt s corresponds to the sth sample from our Gibbs sampler and fsnew,k is drawn from
a Gaussian with mean Ms

·kC
−1Cnew and variance cnew−CT

newC−1Cnew, cnew = C(xnew,xnew) and the
ith element of the column vector Cnew is C(xi,xnew).
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