
  
 
 
 
 
 
Hu, X. and Zhang, J. and Li, Y. (2008) Flexible protein folding by ant 
colony optimization. In: Computational Intelligence in Biomedicine and 
Bioinformatics: Current Trends and Applications. Springer-Verlag , New 
York, pp. 317-336. ISBN 9783540707769 
 
 
http://eprints.gla.ac.uk/5307/ 
 
Deposited on: 27 April 2009 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



1 of 17 
  

Flexible Protein Folding by Ant Colony Optimization 
  
 
Xiao-min Hu1, Jun Zhang1 (Corresponding Author), and Yun Li2 

 

1 Department of Computer Science, SUN Yat-sen University, Guangzhou, 510275, China.  junzhang@ieee.org 

2 Department of Electronics and Electrical Engineering, University of Glasgow, Glasgow G12 8LT, Scotland, UK, 
Yun.Li@elec.gla.ac.uk 
 
(This work was supported by the Natioinal Science Foundation (NSF) of China (60573066) and the NSF of Guangdong 
(5003346), China and SRF for ROCS, SEM, China) 
 
 

1 Introduction 
 
With rapid development of bioinformatics, more and more about the molecular world becomes known. 
Following the completion of the human genome project in 2000, genetic sequencing is now made 
feasible by current technology [1]. However, there still exist challenges in analyzing relationships 
between protein structures and their related functions. As different structures reflect specifically 
different functions, predicting a protein structure to estimate its functions is one of the major goals of 
bioinformatics [2]. In nature, proteins fold spontaneously to their native structures very fast (on a time 
scale of milliseconds) when placed in an aqueous solution [3]. However, traditional methods for 
predicting the structures of proteins, such as the X-ray crystallography and the nuclear magnetic 
resonance (NMR) [4][5] are expensive and time-consuming. More importantly, reflections that are 
gained by these methods may be blurry and incomplete. Since the remarkable discovery by Anfinsen et 
al [6] that many simple proteins have a unique native structure, which appear to depend on the 
sequence only, experimental results [7][8][9] have subsequently emerged to support this discovery. A 
commonly accepted hypothesis is that the protein sequence folds into the structure with the equilibrium 
minimum free energy (MFE) state (the thermodynamic hypothesis) [10][11]. Given a two-dimensional 
square lattice board, the protein folding problem (PFP) is to place the protein sequence in the lattice to 
form a self-avoiding path. Thus, the aim of solving a PFP is to find the protein folding conformation 
that satisfies the MFE state.  

Based on this hypothesis, the critical mission is to find a way to predict a protein structure fast and 
accurately from the protein sequence. The real structures of proteins are very complex for they are on 
the atomic level and in a relatively large (?) three dimensional search space. Various protein folding 
models have been proposed to simplify the structure for better analysis. These models include the 
protein structure prediction (PSP) model [12], the lattice polymer embedding (LPE) model [10], the 
charged graph embedding (CGE) model [13], and the hydrophobic-hydrophilic (or hydrophobic-polar, 
HP) model [14]-[23], etc. In particular, the HP model can be further classified into three types - the 
square lattice model [14]-[18], the triangle lattice model [19]-[21], and the toy model [22][23]. The 
algorithm proposed in this chapter is based on the HP square lattice model. 

Since a number of simplified models have been proposed, various methods have been developed to 
solve the PFPs, such as the dynamic programming (DP), neural network (NN) [23], Monte Carlo (MC) 
[24]-[28], genetic algorithm (GA) [29]-[36], ant colony optimization (ACO) [37]-[41], particle swarm 
optimization (PSO) [22], and immune algorithm (IA) [42][43] methods. The PFPs are proven to be 
NP-complete [44], which cannot be solved by a deterministic polynomial algorithm. As a paradigm of 
swarm computation, ant colony algorithms [45] have shown great potential in solving NP-hard 
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combinatorial problems. 
This chapter develops a simple but effective ant algorithm to solve PFPs, termed the ‘flexible ant 

colony (FAC) algorithm’. It has four special mechanisms, including the path construction, the path 
retrieval, the pheromone attraction, and the folding heuristics. These novel mechanisms make it behave 
differently from previous ant algorithms for solving PFPs with the HP square lattice model [37]-[41]. 

The ants of the FAC algorithm aim to find a ‘conformation path’ of protein in the lattice. The 
pheromones are deposited on the virtual connections between adjacent squares in the lattice. Such 
pheromone laying approach is similar to those on the arcs connecting cities in a traveling salesman 
problem (TSP). However, it is different from existing ant algorithms proposed for solving PFPs, whose 
pheromones are on three relative folding directions of the protein [37]-[41]. In fact, if the pheromones 
only indicate the relative directions of the protein folding (as the ones in [37]-[41] do), the ants may not 
grasp the folding situations entirely. On the contrary, if the pheromones guide the protein to fold on an 
absolute lattice, as the proposed algorithm does, each ant can sense the solutions which have been 
configured by the other ants. 

A protein sequence in the HP square lattice model is a string of hydrophobic (H) and polar (P) amino 
acids. The amino acids are placed one by one by artificial ants. If the surrounding lattice squares of an 
amino acid are all occupied, the next amino acid cannot be placed. Such situation is termed stagnation. 
Then the path retrieving strategy should be applied. As all ants start to construct the folding path from 
the center of the lattice, diversity for ants to choose alternative squares to place the amino acid on the 
protein sequence is realized by decreasing the pheromone value on the arc that the ant has just passed. 
Such pheromone reduction method during solution construction is similar to the local search method 
used in the ant colony system (ACS) algorithm [45][46]. 

In the proposed FAC algorithm, the heuristics and the pheromones cooperate to construct 
conformations. The heuristic information varies between the hydrophobic amino acids and the polar 
amino acids. An added local search method is optional and it is omitted in this chapter, as the 
performance of the FAC without local search is shown good enough in most of the experimental tests. 
By comparing the performance with a genetic algorithm (GA), an immune algorithm (IA), and an ant 
algorithm in the literature, the proposed algorithm does present improvements. 

The rest of this chapter is constructed as follows: Section 2 presents a brief review on the PFPs with 
the HP model and discusses the features of protein folding conformations. Then the characteristics of 
the ACO are briefly introduced. Section 3 details the ants’ construction behaviors of the proposed FAC 
algorithm. Section 4 folds some benchmark protein sequences using the proposed algorithm and 
compares the performances with other well-known algorithms. For deeper analysis, this chapter also 
tests influences of the parameters of the FAC algorithm and highlights some prospects for 
enhancements. Finally, conclusions are drawn in Section 5. 
 

2 Protein Folding and the Ant Colony Optimization 
 

2.1 Characteristics of the Protein Folding 
Some benchmark instances of protein sequences in the 2-dimensional square lattice HP (2D-HP) 
models are listed in Table 1, where l is the number of amino acids and E* stands for the MFE level. 
The letter ‘H’ stands for the hydrophobic amino acid and ‘P’ stands for the polar amino acid, which is 
hydrophilic. There are 20 amino acids in nature. Using various classifications, they can be divided into 
acid, alkaline or neutral; positively or negatively charged or uncharged; and hydrophobic or 
hydrophilic, etc. In a globular protein in an aqueous solution, the hydrophilic amino acids tend to be on 
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the surface of the globule as they are attracted to water molecules (note that the environment inside 
cells is primarily water). The hydrophobic amino acids are repelled by water so that most of them 
gather inside the globular protein to form a core except for some special hydrophobic regions on the 
surface of the protein. 
 

Table 1. Standard HP benchmarks for 2-D square lattice 
No. l E* Protein Sequence 

1 18 -9 PHPPHPHHHPHHPHHHHH 

2 18 -8 HPHPHHHPPPHHHHPPHH 

3 20 -10 HHHPPHPHPHPPHPHPHPPH 

4 20 -9 HPHPPHHPHPPHPHHPPHPH 

5 24 -9 HHPPHPPHPPHPPHPPHPPHPPHH 

6 25 -8 PPHPPHHPPPPHHPPPPHHPPPPHH 

7 36 -14 
PPPHHPPHHPPPPPHHHHHHHPPH 

HPPPPHHPPHPP 

8 48 -23 
PPHPPHHPPHHPPPPPHHHHHHHH 

HHPPPPPPHHPPHHPPHPPHHHHH 

 
Some conformations of the 2D-HP folding structures of the same protein sequence with 48 amino 

acids are presented in Fig. 1. For the square lattice HP model, the best conformation is judged by the 
number of hydrophobic-hydrophobic (H-H) bonds that hydrophobic amino acids are adjacent on the 
lattice, but not consecutive in the sequence. The number of the H-H bonds in each conformation in Fig. 
1 is 23 (e.g., the number of dashed lines in the first conformation), which forms the MFE state with 

*E  = −23. It can be seen that the hydrophobic amino acids do form a core inside the protein 
conformation, while the polar amino acids are surrounding the core and their placements are quite 
flexible.  

0 0

0

0

0

0

0

denotes hydrophobic amino acids denotes polar amino acids

0

 

Fig. 1. Some conformations of sequence 8 (Length = 48) 

 
Although the square lattice model is highly abstracted from the real protein folding model, some 

special conformations can reflect a possible secondary structure of a protein. Fig. 2 shows a special 
2D-HP conformations and the corresponding three-dimensional protein structures of an α -helix and 
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β -sheets. However, such a model is unsatisfactory to many biologists. The 3-dimensional structure of 

a specific protein sequence is unique, but as we can see in Fig. 1, there may be several equivalent 
conformations by the same protein sequence. Therefore, the HP model is too simple to reflect the real 
protein structure completely. However, it is already a very challenging computational model. 
 

α -helix

β -sheet

β -sheet

 
Fig. 2. Special HP conformations and the secondary structures of protein sequences 

 

2.2 Characteristics of the Ant Colony Optimization 
To solve the traveling salesman problem, the first ant algorithm - the ant system (AS) - was proposed 
by Dorigo [45][47] through stimulating the foraging behavior of real ants. Following this, several 
variants of ant algorithms have been developed, such as the elitist ant system (EAS), the max-min ant 
system (MMAS), and the ant colony system (ACS) [45], etc. They have been successfully applied to a 
wide range of application problems, such as the vehicle routing problem (VRP) [48], the job shop 
scheduling problem (JSP) [49], and the water distribution system (WDS) [50], etc. The AS and its 
successors at last form a kind of optimization paradigm termed the ‘ant colony optimization (ACO) 
algorithms’. The basic framework for ACO includes: 
Step 1: Construct ants’ solutions (utilizing pheromone and heuristic information) 
Step 2: Apply local search (optional) 
Step 3: Update pheromones 

A group of m ants perform the above three steps to search for a better solution iteration by iteration. 
Firstly, based on the current density of pheromone in the environment and other heuristic information, 
each ant in the colony constructs a solution. Secondly, local search method can be applied to enhance 
the solutions found by the ants. Thirdly, the pheromone in the surrounding environment should be 
updated to guide more ants to the potentially best solution in the next iteration. 

The FAC algorithm proposed in this chapter is based on the basic framework of the ant colony 
system (ACS) [45][46], which includes such mechanisms as local pheromone update and global 
pheromone update. The implementation of these mechanisms is redefined in this chapter. 

 
 
3 Ant Colony Search in Lattices 
Given a two-dimensional square lattice board, the PFP is to place the protein sequence in the lattice to 
form a self-avoiding path. The mission of an ant colony is to discover a path, which maximizes the 
number of H-H bonds by two adjacent hydrophobic amino acids that are not consecutive in the protein 
sequence. 
 

3.1 Path Construction 
In order not to violate the region of the lattice, each ant starts building the path from the middle of the 
protein sequence in the center of the lattice. For a protein sequence with n amino acids, which are 

denoted as {s0, s1, …, sn-1} ( { , }, 0,..., 1js P H j n∈ = − ), each ant starts from two horizontal squares in 
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the middle of an (n+2)×(n+2) lattice board, as depicted in Fig. 3. The squares in the lattice board are 
indexed from 0 to (n+2)2-1, starting from the top left corner. The two squares with indexes 

( ) ( )2 1 2 2n n n+ ⋅ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  and ( ) ( )2 1 2 2 1n n n+ ⋅ + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦  are termed the ‘left start square’ and 

the ‘right start square’, respectively. The two squares are colored in the middle of the lattice shown in 

Fig. 3. The amino acid 2ns⎢ ⎥⎣ ⎦
 is placed in the left start square while the amino acid 2 1ns +⎢ ⎥⎣ ⎦

 is placed in 

the right start square. The sub-protein sequence { 0 2,..., ns s⎢ ⎥⎣ ⎦
} that is built from the left start square is 

denoted as the ‘left path’, while the { 12 1,..., nns s −+⎢ ⎥⎣ ⎦
} is the ‘right path’. Then an ant randomly chooses 

to go a step on the left part or on the right part of the protein sequence. After several construction steps, 
a protein sequence is built, similar to the dashed lines in Fig. 3. The squares that have been passed by 
the ant cannot be passed again by the same ant. 

0 n+1

n+2

1 2 43 ... ...

n+3

( ) ( )2 1 2 2 1n n n+ ⋅ + + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

( ) ( )2 1 2 2n n n+ ⋅ + +⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

( )22 1n + −

2n+4

Start square

Middle square

 
Fig. 3. Lattice board for a protein with n amino acids 

 
There are two advantages of indexing the squares in the lattice. One is that the coordinates of the 

squares are now one-dimensional. The other is that the four adjacent squares are convenient to obtain. 
For example, when an ant is now in square i as shown in Fig. 4, which is not on the border of the lattice, 
its four adjacent squares are i-(n+2) (going up (U)), i+(n+2) (down (D)), i-1 (left (L)), and i+1 (right 
(R)). As the ant has passed the right square, it can only choose one of the other three directions to go. 

i i+1i-1

i-(n+2)

i+(n+2)

Sj+1

Sj+2 Sj+3

SjSj-1

Sj-1

Sj-1

 
Fig. 4. An ant chooses a step to go 
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3.2 Path Retrieval 

If the ant has passed all the adjacent squares when placing a non-ending amino acid ( 0 or 1)js j n≠ − , 

the protein cannot fold any more. Such situation is termed ‘stagnation’. In this case, the folding needs 
to be retrieved. Consider an ant has constructed a sub-sequence {sleft,…, sstartL, sstartR,…, sright}, where 
left is the index of the left most amino acid, right is the index of the right most amino acid, startL = 

/ 2n⎢ ⎥⎣ ⎦ , startR = / 2 1n +⎢ ⎥⎣ ⎦ . To a ‘right’ retrieval, a random index j is selected as 

j = rand % (right – start – 1) + start +1                (1) 
where rand is a random non-negative integer number. The amino acids from sj+1 to sright are released as 
not been constructed by the ant and the corresponding squares in the lattice are set vacant. On the other 
hand, a ‘left retrieval’ point j is selected as 

j = rand % (start – left) + left +1                     (2) 
The amino acids from sleft to sj-1 are released and the corresponding squares are thus set vacant. 

Although stagnation occurs on the right side of the protein, it doesn’t mean that the right side of the 
protein is to be retrieved, because certain stagnation cannot be cleared by simply retrieving the side 
where the stagnation happens. Fig. 5 illustrates two stagnation situations of the right path. The hollow 
beads stand for the left start amino acid and the right start amino acid, while the triangles are amino 
acids on the right path. In the example presented in Fig. 5(a), the stagnation can be released by the right 
retrieval when its point is j= 21 and the next direction to fold is upward. 

However, in Fig. 5(b), the stagnation cannot be released by performing right retrieval but only left 
retrieval. So the Boolean values RightRetrieveBool and LeftRetrieveBool are used to judge such 
situations to make sure that a retrieval in the same direction cannot be performed twice consecutively 
for avoiding potential stagnation. 

4

5
6 7 8 9

10

11

12

13
141516

17

18
19

20 21

22

23
24

20 21 22 23

19
18

17

16 15 14 13 12 11

10

9
8

7

6

5

(a) (b)  
Fig. 5. Examples of the stagnation 

Whether to perform a right retrieval or a left retrieval is not only based on the location of the 
stagnation, but also the two Boolean values RightRetrieveBool and LeftRetrieveBool. If the stagnation 
happens on the right side of the protein, we term the retrieval procedure as ‘RightSideRetrieve’, while 
the procedure for the left stagnation is termed ‘LeftSideRetrieve’. Fig. 6 illustrates the pseudo-code of 
the above process. The functions ‘RightRetrieveSequence( )’ and ‘LeftRetrieveSequence( )’ perform 
the respective right/left retrieval. Take Fig. 5(b) as an example. The stagnation happens on the right 
path, so that the ‘RightSideRetrieve’ procedure is invoked. As startR = 21, right = 24, and 
RightSideRetrieve =false, a random integer j is generated by (1). Suppose j= 22. Then the 
‘RightRetrieveSequence’ function is invoked, so that the amino acids from 23 to 24 are released. The 
‘LeftRetrieveBool’ and the ‘RightRetrieveBool’ are set as False and True, respectively. It is known that 
this could not help to clear the stagnation. The construction of the path continues, until the stagnation 
happens again. Suppose the sequence is changed to be 2 to 24. At that time, the ‘RightSideRetrieve’ 
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procedure is invoked again. As ‘RightRetrieveBool’ is true now, it can only perform 
‘LeftRetrieveSequence( )’ to release some of the left path. The stagnation can be cleared if j= 5 to 20. 

 
/* startL = / 2n⎢ ⎥⎣ ⎦ , startR = / 2n⎢ ⎥⎣ ⎦ +1  

left : the constructed left end, right: the constructed right end */ 
Procedure RightSideRetrieve({sleft,L , sstartL, sstartR,L , sright}) 
  If startR < right && RightRetrieveBool == false 

j = rand % (right – startL – 1) + startL +1; 
RightRetrieveSequence({sleft,L , sstartL, sstartR,L , sright}, j); 
LeftRetrieveBool = false; 
RightRetrieveBool = true; 

  Else If startL != left 
j = rand % (startL – left) + left +1; 
LeftRetrieveSequence({sleft,L , sstartL, sstartR,L , sright}, j); 
RightRetrieveBool = false; 

  End 
 
Procedure LeftSideRetrieve({sleft,L , sstartL, sstartR,L , sright}) 
  If startL > left && LeftRetrieveBool == false 

j = rand % (startL – left) + left +1; 
LeftRetrieveSequence({sleft,L , sstartL, sstartR,L , sright}, j); 
LeftRetrieveBool = true; 
RightRetrieveBool = false; 

  Else If (startL+1) < right 
j = rand % (right – startL – 1) + startL +1; 
RightRetrieveSequence({sleft,L , sstartL, sstartR,L , sright}, j);  
LeftRetrieveBool = false;  

  End 

Fig. 6. Outline of retrieval process 

 

3.3 Pheromone Attraction 
Pheromones are released on the directed arcs connecting the adjacent squares, which are denoted as 

idτ , where 20,1,2,..., ( 2) 1i n= + −  and { , , , }d L R U D= . Note that the protein sequence cannot 

exceed the lattice board, as the width of the board must be greater than the length of the protein. 
1) Local Pheromone Update 
The squares in the lattice board can be compared to cities in the TSP, in which the pheromones are 
deposited on the arcs connecting the cities. As all ants start from the same left-start and right-start 
squares in the lattice, an effective method for avoiding early convergence is to remove some 
pheromones on the arcs that an ant just chose, i.e., 

id idτ δ τ= ⋅     (suggest to replace = with <- or replace the left tau with tau’, for this is suppo

sed to be a math formula, and not computer code)                                  (3) 

where 20,1,2,..., ( 2) 1i n= + − , { , , , }d L R U D= , ( 1) /m mδ = − <1 is a ‘local evaporation rate’, and 

m is the number of ants. If the pheromone on that arc is smaller than minτ , the pheromone is reset to 

minτ , which is the lower bound of the pheromone value. 

2) Global Pheromone Update 
Once all ants have constructed a protein folding path, the pheromones on all arcs ‘evaporate’ as defined 
by 

id idτ ρ τ= ⋅         (see note on eq.3)                            (4) 
where ρ is a ‘global evaporation rate’. Then the best path found in the current iteration is reinforced 

by increasing the amount of pheromone  
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*
min( )i d i d Eτ τ ε′ ′= + −    (see note on eq.3)  (5) 

where i′∈ {the squares that the iteration’s best ant has just passed}, { , , , }d L R U D= , ε  is the 

maximum number of H-H bonds in the current iteration, *
min 0E <  is the approximation of the MFE of 

the protein in the square lattice HP model. 
 
3.4 Heuristics for Folding 
While pheromones are the means for keeping the historical memories, heuristics are the strategies for 
current selection. Different from the heuristic information in [37]-[41] where only hydrophobic amino 
acids are considered, this chapter takes into account both the heuristic information for hydrophobic 
amino acids and polar amino acids. 
1) Heuristic for hydrophobic (H) amino acids 
The goal for PFPs is to find the minimum energy conformation, which is reflected by the number of 
H-H bonds. Hence, if a conformation can yield more H-H bonds, it should have a higher probability to 

be constructed. Once the next amino acid js  for ant k to place is known as a hydrophobic (H) amino 

acid, the heuristic for it is determined by 

1, 1, 1j l j lhη − −= +                                (6) 

where jlh  is the number of H-H bonds for a possible location of the next amino acid to obtain 

(excluding consecutive hydrophobic amino acid), {1, ..., ( )}jl fea s∈ and fea( js ) is the number of 

feasible locations for js  (1 ( ) 3jfea s≤ ≤ ) (if l is not used in eq.6, this yellow stripped part should be 

deleted). Fig. 4 illustrates an ant that is currently locating in square I with an amino acid js . The next 

step it chooses is to place an amino acid 1js − . The dashed squares are the possible locations. For each 

of the slashed squares, the potential H-H bonds are the ones that connect the neighboring squares 
(shown as hollow spots in Fig. 4) where a hydrophobic amino acid has been placed. 
2) Heuristic for polar (P) amino acids 

If the next amino acid js to be placed is a polar amino acid, the heuristic value is the sum of the vacant 

squares (i.e., the squares that have not been passed by the ant) and polar amino acids (excluding 
consecutive polar amino acid) in the neighborhood of the possible location of the next amino acid plus 
one as given by 

{1,..., ( )}
( )

j

jl jl

jq jqq fea s

p
β

β

τ η
τ η

∈

⋅
=

⋅∑
                           (7) 

where jlv  and jlh′  are the numbers of vacant squares and polar amino acids in the neighborhood of 

the possible locations of the next amino acid, respectively.  
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For a polar amino acid, more inclinations should be given to water molecules. As the protein folds in 
an aqueous solution, the vacant squares can be regarded as water molecules. The nearby polar amino 
acids imply that the edge of the protein is near. 

 
3.5 Implementation of the Flexible Ant Colony Algorithm for PFPs 
The roulette wheel selection method is used for each ant in the colony to choose the next step of path. 

If the current amino acid is js  and the next amino acid to be placed is 1js −  and the number of 

feasible directions to fold is 1( )jfea s − , then the probability of selecting the lth direction is given by 

{1,..., ( )}
( )

j

jl jl
l

jq jqq fea s

p
β

β

τ η
τ η

∈

⋅
=

⋅∑
                           (8) 

where {1,..., ( )}jl fea s∈  and β is the reinforcement to heuristic values. 

Generate a random value r ( (0,1]r ∈ ). If an integer k satisfies (9), the kth feasible direction is 

selected. 

  
1

1 1

k k

i i
i i

p r p
−

= =

< ≤∑ ∑                                   (9) 

Note that 
1

1
0

k

i
i

p
−

=

=∑  when k = 1. 

The implementation of the FAC algorithm can be realized as follows: 
Step 1: Read in the protein sequence and initialize the parameters. 
Step 2: Place all ants in the left start square and the right start square in the lattice. 
Step 3: All ants construct feasible folding conformations to the input protein sequence. 
Step 4: Evaluate the constructed folding paths and select the best ant in an iteration. 
Step 5: Perform a global pheromone update. 
Step 6: If the terminate condition is not met, go to Step 2; else terminate the algorithm. 

A more detailed flowchart of the proposed algorithm is illustrated in Fig. 7. 
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Initialize parameters

k=0

Place           and           in the center of the lattice2ns⎢ ⎥⎣ ⎦ 2 1ns +⎢ ⎥⎣ ⎦

Set all squares in the lattice to be vacant

Randomly choose to build the left path or the right path

Use (7) and (8)  to select an adjacent square to place the amino acid

A feasible step exists ?

yes

no
Perform path retrieve

Perform local pheromone update

k=k+1

k<m

Folding  complete ?

Evaluate the number of H-H bonds

Perform global pheromone update

End

Finished ?

yes

no

yes

no

Start

yes

no

 

Fig. 7. Flowchart of the FAC algorithm 

 

 

4 Experiments and Discussions 
The benchmark instances of HP protein folding are tabulated in Table 1. The parameters’ settings for 
the proposed FAC algorithm are 0 1/ 3τ = , min 0.05τ =  and 0.9ρ = . For sequences 1–7, m = 10 and 

2β = . For sequence 8, m = 100 and 3β = . Each group of parameters has been tested 30 times 

independently for statistical significance. The CPU time of the FAC algorithm was recorded on a 2.8 
GHz Pentium IV PC. 
4.1 Comparison with Existing Algorithms  
The performance of the proposed FAC algorithm is compared with that of existing algorithms 
presented in [36], [38] and [43], which are the conventional Monte Carlo (EMC) algorithm, the genetic 
algorithm (GA) [36], the ant colony optimization (ACO) algorithm [38], and the immune algorithm (IA) 
[43]. The reason for choosing these algorithms is that their models and tests are the same as the ones 
used in this chapter. Table 2 compares the average performance of the IA, the ACO and the proposed 
FAC algorithm, in terms of the average time required (AvgT), the average energy evaluations (A.E.E), 
and the success rate (%ok. Table 3 compares the best time (BestT), the best energy evaluations (B.E.E), 
and the best number of iterations (B.N.I) among the FAC, the EMC, the GA, and the IA. 
 

Table 2. Comparison of the average performance in solving the 2D-HP problems 

No. l E* FAC IA ACO 
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   AvgT(sec.) A.E.E %ok A.E.E %ok AvgT %ok 

1 18 -9 3.17703 115384 100 18085.8 100 -- -- 

2 18 -8 0.0967667 3149 100 69210 100 -- -- 

3 20 -10 0.264167 8107 100 41724.2 100 -- -- 

4 20 -9 0.103667 2981 100 23710 100 < 1 sec. 100 

5 24 -9 1.2833 32159 100 69816.7 100 < 1 sec. 100 

6 25 -8 3.90027 93883 100 269513.9 100 < 1 sec. 100 

7 36 -14 1.25527 18683 100 2032504 100 4 sec. 100 

8 48 -23 28.922 331103 100 6403985 56.67 1 min. 100 

–The corresponding values are unavailable in the references [36], [38] or [43]. 

 

In Table 2, the mean values in the bold denote the best results of the three algorithms. Except for 
sequence 1, the average function evaluations of the FAC are much smaller than those of the IA. 
Moreover, the FAC has successfully found the best protein conformation in all the tests, while the IA 
has only managed to solve sequence 8 with a 56.67% success rate. Compared with the ACO, the 
average execution time of the FAC in obtaining the best protein for short protein sequences is not 
significantly longer, but it takes a shorter time for longer sequences such as Nos. 7 and 8. 

In Table 3, among the best values of all algorithms, the FAC is seen much faster than the EMC and 
the GA in solving the sequences listed. Only are the best energy evaluations to sequence 6 slightly 
larger than that of the IA. It can be seen that the FAC algorithm developed in this chapter can solve the 
given protein folding problems in a very shortest period of time. 

 
Table 3. Comparisons of the best performance in solving the 2D-HP problems 

FAC EMC GA IA 
No. l E* 

BestT(sec.) B.E.E B.N.I B.E.E B.E.E B.E.E 

4 20 -9 0.015 169 17 9374 30492 1925 

5 24 -9 0.078 1703 171 6929 30491 2479 

6 25 -8 0.234 5463 547 7202 20400 4212 

7 36 -14 0.031 234 24 12447 301339 43416 

8 48 -23 0.797 9102 92 165791 126547 37269 

 

4.2 Analysis on Different Parameter Values 
The influence of parameters in the FAC algorithm is also tested in order to assess the best group of 
values of the parameters, including the number of ants m, the heuristic reinforcement value β , and the 
global pheromone evaporation rate ρ . Fig. 8 shows the trends of different  parameter values for 

sequences 1 to 7. 
1) The heuristic reinforcement value β 
Fix the values of m and ρ . When β increases, the time needed to obtain solutions becomes shorter to 

sequences 1 to 5. Note that sequence 6 is distinctive in the sequences and it achieves the best result 
when 1β = . 

2) The pheromone evaporation rate ρ 
If the pheromone evaporation rate ρ is about 0.9, the performance of the FAC is high in most test 
cases. Overall, the influence of ρ is not so significant as β . 

3) The number of ants m 
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A large number of ants provide a higher insurance of finding the best conformation, but it slows down 
the algorithm. However, a small number of ants may induce early convergence to sub-optima. A proper 
number of ants is generally dependent upon the length of the protein sequence. For short protein 
sequences, m = 10 is enough. However, for long sequences such as the one with 48 amino acids, more 
ants (e.g., m= 100) are needed. Fig. 9 illustrates the convergent states (?) in the 30 independent tests of 
sequence 8. Conformations with 12 or 13 H-H bonds are always found in the first iteration. As the 
optimization continues, it takes more time to improve. The fastest search for the optimum folding of 
sequence 8 in the 30 tests was 92 iterations, while the worst one needed more than 10,000 iterations. 
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(a) Sequence 1 with m = 10 and m = 50 
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(b) Sequence 2 with m = 10 and m = 50 
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(c) Sequence 3 with m = 10 and m = 50 
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(d) Sequence 4 with m = 10 and m = 50 
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(e) Sequence 5 with m = 10 and m = 50 
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(f) Sequence 6 with m = 10 and m = 50 
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(g) Sequence 7 with m = 10 and m = 50 
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Fig. 8. Analysis of the FAC algorithm with various parameter values 
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Fig. 9. Convergence in 30 independent tests to Sequence 8. 

 

4.3 Analysis of Heuristic Information to Polar Amino Acids 
In the proposed FAC algorithm, there is heuristic information for folding polar amino acids, which is 
different from that used in the ACO algorithm [38]. The performance of the FAC algorithm is 
compared with or without heuristic information to polar amino acids. The results are tabulated in Table 
4. With the same parameter settings, the algorithm without heuristic information to polar amino acids is 
slower than the one with the heuristic information in all test cases. The results demonstrate that the 
heuristic information proposed in this chapter is effective. 
 

Table 4. Comparisons on whether using heuristic information to polar amino acids 

FAC (use) FAC (not use) 
No. l E* 

AvgT(sec.) A.E.E %ok AvgT(sec.) A.E.E %ok 

1 18 -9 3.17703 115384 100 7.69107 272580 100 

2 18 -8 0.0967667 3149 100 0.181733 5903 100 

3 20 -10 0.264167 8107 100 0.3943 11820 100 

4 20 -9 0.103667 2981 100 0.116833 3271 100 

5 24 -9 1.2833 32159 100 1.5146 36870 100 

6 25 -8 3.90027 93883 100 4.14727 95673 100 

7 36 -14 1.25527 18683 100 2.3422 33789 100 

8 48 -23 28.922 331103 100 334.755 3756947 100 

 

5 Conclusions 
This chapter has presented a flexible ant colony algorithm for the protein folding problem. This FAC 
algorithm is based on the 2-dimensional square lattice hydrophobic-polar model, which is a highly 
abstract model for protein folding structures. Ants in the FAC algorithm start from the middle of the 
lattice and construct protein folding from the middle of the protein sequence. Pheromones are released 
to the directed arcs connecting adjacent squares in the lattice. Local pheromone update as well as 
global pheromone update mechanisms are also implemented. By using effective heuristic and 
pheromone method for selection, the proposed FAC algorithm can solve the PFP fast as shown by the 
test cases. Comparison with some well-known PFPalgorithms has highlighted superior performance of 
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the proposed FAC algorithm. 
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