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Abstract

The Warburg effect - a classical hallmark of cancer metabolism - is a counter-intuitive phenomenon in which rapidly
proliferating cancer cells resort to inefficient ATP production via glycolysis leading to lactate secretion, instead of relying
primarily on more efficient energy production through mitochondrial oxidative phosphorylation, as most normal cells do.
The causes for the Warburg effect have remained a subject of considerable controversy since its discovery over 80 years
ago, with several competing hypotheses. Here, utilizing a genome-scale human metabolic network model accounting for
stoichiometric and enzyme solvent capacity considerations, we show that the Warburg effect is a direct consequence of the
metabolic adaptation of cancer cells to increase biomass production rate. The analysis is shown to accurately capture a
three phase metabolic behavior that is observed experimentally during oncogenic progression, as well as a prominent
characteristic of cancer cells involving their preference for glutamine uptake over other amino acids.
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Introduction

The Warburg effect, a phenomenon discovered by Otto

Warburg in 1924, reflects a shift to an inefficient metabolism in

cancer cells, in which an increase in the inefficient production of

adenosine 59-triphosphate (ATP) via glycolysis leads to the

secretion of non-oxidized carbons in the form of lactate, even in

the presence of oxygen (termed aerobic glycolysis) [1,2]. Specifically,

aerobic glycolysis allows the production of only 2 ATP molecules

per one glucose molecule, whereas oxidative phosphorylation

permits the generation of 32 ATP molecules per one molecule of

glucose [3]. Nevertheless, the importance of aerobic glycolysis to

cancer cells has been experimentally demonstrated [4,5].

Over the years, several hypotheses were raised regarding the

potential cause of the Warburg effect: (i) Defective mitochondrion

hypothesis – suggesting that cancer cells have defective mitochondria

and hence rely on glycolysis [6], however subsequent research

revealed that mitochondrial function is not impaired in most cancer

cells [7,8]. (ii) Hypoxia– suggesting that tumor hypoxia selects for cells

dependent on anaerobic metabolism [9], but previous studies have

shown that cancer cells already resort to aerobic glycolysis before

exposure to hypoxic conditions [10,11]. (iii) Avoiding ROS-mediated

DNA damage – it was suggested that reducing oxidative phosphor-

ylation in proliferating cells due to the Warburg shift reduces ROS

and hence protects cells from DNA damage and subsequent apoptosis

[12]. (iv) A game theoretical approach suggesting that the Warburg

effect occurs as glycolysis provides higher ATP production rate than

oxidative phosphorylation [13,14,15]. (v) An approach suggesting

that a trade-off between the enzyme-synthesis costs and the ATP

production yields of the different pathways that catabolize carbon

sources may cause the Warburg effect: the high-yield oxidative

phosphorylation pathway also has high enzyme costs, leading to a

sub-optimal ATP production strategy, as it has lower production rates

than glycolysis [16]. (vi) Metabolic adaptation to fast proliferation - it

was argued that as opposed to metabolism in differentiated cells that

is geared towards efficient ATP production, the aerobic glycolysis

observed in cancer cells is adapted to facilitate biomass accumulation

and high proliferation. Accordingly, in order to satisfy the require-

ments of anabolic metabolism in addition to the production of ATP,

nutrients must be used to generate both the carbon building blocks of

macromolecules and the reducing power needed for biosynthesis

[17].

Previous computational investigations of the Warburg effect

studied the role of either energy or biomass production in causing

the Warburg effect, focusing solely on central carbon metabolism.

For example, the study of Vander Heiden et al. manually

computed the metabolic requirements for producing one essential

biomass precursor, palmitate (a major constituent of cellular

membranes) considering the stoichiometry of a few central

metabolic pathways. They found that aerobic glycolysis enables

maximal palmitate production yield due to specific reducing

power requirements. In another recent study, Vazquez et al.

employed a schematic model of ATP production in human cells

(considering two lumped reactions representing aerobic glycolysis

and oxidative phosphorylation), elegantly showing that a switch to

aerobic glycolysis should result from cellular maximization of ATP

production [18]. Their schematic model accounts not only for the

stoichiometry of glycolysis and oxidative phosphyrylation but also
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for the enzyme-volumetric costs of activating these pathways (the

latter bounded by the total cellular solvent capacity, also known as

a macromolecular crowding constraint [19]). A similar approach was

previously employed in the study of over-flow metabolism in E. coli

[20,21]. Another interesting theory explaining overflow metabo-

lism was suggested by Molenaar et al., where the production costs

of the metabolic enzymes involved were accounted for in a self-

replicating model [16].

In this paper, we study the causes of the Warburg effect by

accounting for both energy production and anabolism of essential

biomass constituents, in a genome-scale stoichiometric network

model [22] employing enzyme solvent capacity constraints. The

usage of a large-scale metabolic network is essential if one aims to

correctly account for the inter-connectivity of pathways that

produce the various energy and biomass precursors required for

proliferation, rather than examining just single factors in isolation,

as has been previously performed in [17,18]. Towards this goal,

we rely on a constraint-based modeling (CBM) framework that

serves to analyze the function of metabolic networks by solely

relying on simple physical-chemical constraints [23]. CBM has

already been successfully used in the past to predict the metabolic

state of various microorganisms [24,25], and recently for studying

human cellular metabolism [22]. The potential clinical utility of

the human CBM model was previously demonstrated by its ability

to identify functionally related sets of reactions that are causally

related to hemolytic anemia, and potential drug targets for treating

hypercholesterolemia [22], to predict metabolic biomarkers in

inborn errors of metabolism [26] and to predict a variety of

metabolic behaviors of different human tissues, including the

brain, liver, kidney and more [27,28]. Our analysis shows that

while strictly stoichiometric considerations are insufficient for

explaining the Warburg effect, the incorporation of enzyme

solvent capacity constraints successfully predicts the emergence of

the Warburg effect. The analysis is shown to accurately predict an

experimentally observed metabolic trajectory occurring during

oncogenic progression, as well as the preference of cancer cells for

a high rate of glutamine uptake.

Results

Metabolic requirements of cellular proliferation subject
to enzyme solvent capacity constraints lead to the
Warburg effect

We utilized a genome-scale human metabolic network that includes

3,742 reactions [22], adding a pseudo biomass reaction that represents the

production of a pre-defined set of essential biomass precursors required

for cellular proliferation, as conventionally done in Flux Balance

Analysis (FBA, [29], see Methods). The biomass precursors include

amino-acids, nucleotides, deoxy-nucleotides, ATP, lipids, etc (based on

prior knowledge of their relative concentrations; Methods). In our

simulations, we assume a minimal growth medium with glucose as a

carbon source, as glucose is known to serve as a major fuel in cancer

cells (below and in Text S1 we show that qualitatively similar results

were obtained when considering also the presence of an additional

major nutrient taken by cancer cells, glutamine).

To predict plausible metabolic fluxes in cancer, we first employed a

standard FBA method to identify a feasible flux distribution that

satisfies stoichiometric mass-balance, while maximizing biomass

production yield (see Methods). We found that the predicted flux

distribution does not display the prime characteristic of the Warburg

effect, i.e. lactate secretion (see also Text S1). Interestingly, this finding is

in accordance with a previous study showing a conceptually similar

failure of FBA to predict the Crabtree effect in yeast, in which glucose is

fermented into ethanol under aerobic conditions [30]. Thus,

stoichiometric considerations alone are insufficient for explaining the

Warburg effect and its relation to the metabolic requirements of highly

proliferating cells. Notably, these results stand in difference from those

presented by Vander Heiden et al. [17], claiming that strictly

stoichiometric considerations directly lead to the Warburg effect due

to metabolic demands for cellular proliferation.

A strictly stoichiometric analysis, such as the one presented above,

implicitly assumes that metabolic flux rates can be tuned to achieve

high biomass production yields, without considering constraints

imposed by enzyme concentrations and catalytic rates, which are

prime determinants of metabolic flux. Specifically, while cells might be

free to regulate enzyme concentrations according to metabolic

demands [17], the total enzymes’ concentration in the proliferating

cells is bounded by the cell’s solvent capacity, quantifying the

maximum amount of macromolecules that can occupy the intracellular

space [18]. To account for the functional effects of this additional

fundamental constraint, we follow [18,21] and extend our stoichio-

metric genome-scale CBM analysis to compute for each enzyme the

concentration required to facilitate the predicted flux, utilizing data on

known human enzyme catalytic rates (taken from the literature; see

Methods). This modeling approach enables the prediction of metabolic

flux distributions that maximize the biomass production rate and

concomitantly obey the solvent capacity constraints – rather than

predicting flux distributions that only maximize the biomass

production yield as done in standard FBA.

We applied the approach described above (FBA with solvent

capacity constraint) to predict human cellular flux distributions that

maximize the biomass production rate. To simulate varying growth

rates we performed the optimization across a wide range of different

glucose uptake rates. Indeed, under these combined sets of constraints

we find that biomass yield does decline at high growth rates – in

accordance with the Warburg effect [17]; Figure 1a). Specifically, the

predicted metabolic behavior manifests three distinct growth phases

(Figure 1b): (i) optimal yield metabolism at a growth rate that is below 43%

of the maximal possible rate, characterized by low glycolytic vs. high

oxidative phosphorylation (OXPHOS) flux (Figure 2a, phase I), with

low oxygen uptake rates (Figure 1b, phase I). (ii) Intermediate yield

metabolism at growth rate between 43-92%, characterized by increased

glycolytic and oxidative phosphorylation flux (Figure 1a, phase II), the

latter involving a significantly increased oxygen consumption

(Figure 1b, phase II). Notably, our prediction for an intermediate

phase, involving increased oxygen consumption, presents a remarkable

resemblance to two recent experimental studies examining the

metabolic activity at different oncogenic progression stages ([31],

Figure 1c and [32], Figure 2b). Neither the stoichiometric model [17]

nor an analysis using the schematic model of [18] give rise to similar

Author Summary

Cancer cells, as opposed to normal cells, produce a
substantial amount of energy inefficiently via aerobic
glycolysis, even in the presence of sufficient oxygen to
support mitochondrial respiration. Despite the fact that
this phenomenon, called the Warburg effect, has already
been discovered back in 1924, its causes remain poorly
understood. Here we utilize a genome-scale human
metabolic network model and show that by accounting
for cellular capacity for metabolic enzymes, the Warburg
effect is a direct consequence of cancer cells’ adaptation to
fast proliferation. We demonstrate that our model
accurately captures several metabolic phenotypes ob-
served experimentally during cancer development, as well
as the preference of cancer cells to glutamine uptake over
other amino acids.

Metabolic Modeling Explains the Warburn Effect
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predictions. (iii) Low yield metabolism at a growth rate above 92% of the

maximal possible growth rate, characterized by a sharp increase in

glycolytic flux and a decrease in oxidative phosphorylation (and hence

of O2 uptake). The increase in aerobic glycolysis flux (Figure 2a, phase

III) leads to a rise in lactate secretion rates - a prime characteristic of the

Warburg effect (Figure 1b, phase III).

To further validate the plausibility of the model, we examined the

correlation between its enzyme concentration predictions (based on

predicted flux distributions; see Methods) and mRNA expression

values measured for 1,269 metabolic genes across 60 cancer cell

lines of the NCI-collection [33]. The enzyme concentrations

predicted with FBA accounting for the solvent capacity constraint

show significant rank correlations with the gene expression data

across the different cancer cell-lines (mean Spearman correlation of

0.28, mean p-value = 6.5e221). Notably, the strictly stoichiometric

analysis provides significantly lower correlations with the expression

measurements (with a mean correlation of 0.1; Wilcoxon p-value =

3.5e221), further demonstrating the advantage of the genome-scale

approach that accounts for enzyme solvent capacity.

Explaining the shift to aerobic glycolysis under high
proliferation rates

The shift towards low yield metabolism at high growth rates can be

intuitively explained considering, on one hand, a flux distribution

A with high growth yield (YA) and high ‘cost’ in terms of the

required enzyme concentrations per unit of glucose uptake (CA),

and, on the other hand, a flux distribution B with a lower growth

yield (YB) and lower cost (CB). Considering a bound on the total

enzyme concentration cost, one can observe that when the glucose

uptake is unlimited flux distribution B will provide a higher growth

rate if its growth yield normalized by its cost is higher than that of

flux distribution A (i.e.
YA

CA

v

YB

CB

; Figure 3). When the glucose

uptake rate is limited, maximal growth rate is achieved solely via

flux distribution A or by a combination of A and B.

Concretely, analyzing the results of our model, flux distribution

A stands for a typical metabolic state in phase I, which is

characterized by high mitochondrial oxidative phosphorylation,

with a high growth yield of 0.094 and a high cost of 0.302 (with a

yield to cost ratio of 0.31). Flux distribution B stands for a typical

metabolic state at phase III, which involves a high rate of aerobic

glycolysis, with a low growth yield of 0.035 and a low cost of 0.050

(yield to cost ratio = 0.7). These values indeed transcribe to a

higher growth yield per unit of concentration cost of the enzymes

participating in B, as alluded above. Figure 3 shows that, indeed,

at low growth rates the glucose uptake rate is the sole limiting

factor and hence the high yield oxidative phosphorylation route is

taken; in contrast, at higher growth rates, the enzyme concentra-

tion constraint takes effect, and mixed solutions involving lactate

secretion are necessarily formed. Notably, the predicted flux

distributions across the range of growth rates described in this

paper cannot be obtained from linear combinations of just two

states (as in the above simplified example), but are rather

composed of multiple flux distributions with different growth

yields per concentration cost (as evident for example by the non-

linear curve showing the predicted oxygen uptake rates across

growth rates; Figure 1b). Thus, the flux distributions actually

obtained in genome-scale models markedly differ from those that

can be captured by a simplified analysis that describes the

transition between just two metabolic states with different growth

yields as above, or as in a previous study of Vazquez et al. [18].

Metabolic adaptation to fast proliferation leads to a
preference to high glutamine uptake rates

The role of glutamine in cancer has been a topic of major

interest as cancer cells are known to have a significant high

glutamine uptake rate [34]. Repeating the previous analyses in the

Figure 1. Metabolic behavior across increasing growth rates.
(A) Predicted maximalgrowth yield of human cells (per unit of glucose
uptake; y-axis) for a range of growth rates (x-axis), based strictly on
reactions’ stoichiometry (dotted) and by considering also enzyme mass
and enzyme solvent capacity (solid). Vertical dashed lines indicate the
borders between: phase I (high yield, no lactate secretion), phase II
(medium yield, increased oxidative phosphorylation) and phase III (low
yield, lactate secretion). (B) Predicted lactate secretion flux (red lines)
and oxygen consumption flux (blue lines) for a range of growth rates.
Growth rates were manipulated by varying the glucose uptake rate limit
from 0 until the uptake value needed to reach the maximal growth rate.
Fluxes were normalized by the glucose uptake rate. (C) Experimentally
determined lactate secretion rates (red; squares) and oxygen uptake
rates (blue; circles) during tumor development of H-RasV12/E1A
transformed fibroblasts. NRFU: Normalized relative fluorescence units;
see [31] for more details.
doi:10.1371/journal.pcbi.1002018.g001

Metabolic Modeling Explains the Warburn Effect
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presence of both glucose and glutamine in the growth media shows

qualitatively similar results to those described above. However, as

expected, the addition of glutamine yields a higher maximal

biomass production rate than the one obtained when only glucose

was available in the medium (Text S1). To investigate the

preference of cancer cells specifically to glutamine over other

Figure 2. Pathway activity differences. (A) as predicted across phases I-III in the model and (B) based on experimental measurements taken from
BJ fibroblast cell lines representing the path towards tumorigenic conversion (CL1-CL4; [32]). The model’s predictions are compatible with the
experimental evidences for increased glycolytic activity (expressed by increased lactate production) during full cancerous development (phase III,
CL4) preceded by an increase in the oxidative phosphorylation (OXPHOS) activity (expressed by the mitochondrial gene expression). Experimental
results for CL2-CL4 are given as the fold change relative to the same measurement in the CL1 cell line. In (B), the bars represent the mean fold change
for each set of metabolites/genes and the error bars represent the standard deviation.
doi:10.1371/journal.pcbi.1002018.g002

Figure 3. A plane describing the feasible region in our model. The axes (A, B) describe the growth rate obtained from flux distributions A and
B, respectively. The blue lines represent two different constraints on the glucose uptake rate, and the red line represents the maximal concentration constraint.
Green dashed lines are the contours of the growth rate maximization objective function – the further the line is from the origin, the higher the growth rate.
When the glucose uptake U is limiting (dark grey feasible region), the maximal growth rate is obtained via A only (Solution 1; left green diamond). When both
the uptake and the enzyme concentration constraints are limiting (light grey feasible region), maximal growth rate (G) is obtained via a combination of A and B
(Solution 2; right green diamond), resulting in a shift to a less efficient metabolism and lactate secretion. This can be explained by the fact that the slope of the

growth-rate (middle green) line (-1) is larger than the slope of the enzyme concentration limit (red) line ({
YA=CA

YB=CB

), that is the yield-to-cost ratio of flux
distribution B is greater than that of flux distribution A (YA=CAvYB=CB).
doi:10.1371/journal.pcbi.1002018.g003

Metabolic Modeling Explains the Warburn Effect
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amino-acids, we applied FBA analysis to predict the contribution

of each amino-acid separately to biomass production in the human

model that accounts for enzyme solvent capacity constraints

(Methods). We find that, indeed, the contribution of glutamine to

the proliferation rate is markedly higher than that of all other

amino-acids (Figure 4B). We further show that this result is robust

to changing the bound on maximal amino-acid uptake rate, and

that it remains valid across a large number of random samplings of

enzyme turnover rates (Text S1). Repeating this analysis without

accounting for enzyme solvent capacity constraints (i.e. by

considering only the network stoichiometry in the vanilla FBA

model) fails to predict the preference for glutamine (Figure 4A).

We carefully examined the flux distribution obtained with

glutamine in the growth medium (achieving a growth rate of 0.062

1/h) vs. the one obtained with glutamate (growth rate = 0.056 1/h).

Interestingly, when glutamate is present in the medium, a large

quantity of it is transformed into glutamine in an ATP consuming

reaction catalyzed by the enzyme glutamine synthetase (EC 6.3.1.2).

This satisfies the glutamine biomass requirement as well as the

production of nucleotide precursors, among others. When removing

the ATP requirement from this reaction, the growth rate achieved

with glutamate in the medium increases to 0.059 1/h, which explains

50% of the growth rate difference. Notably, while this provides some

intuitive explanation for the predicted preference for glutamine, we

cannot identify a simple explanation for the entire effect due to the

high complexity of the network model employed.

Discussion

Metabolic adaptation to elevated growth requirements during

cancer development has been recently suggested as the possible

cause of the Warburg effect, a long-standing enigma of cancer

metabolism. In this work we rigorously study this hypothesis using

a genome-scale human metabolic model and demonstrate that

stoichiometric considerations solely are insufficient to explain the

shift to inefficient metabolism, in difference from recent claims

[17]. However, integrating these constraints in a genome-scale

model of human metabolism together with a constraint on enzyme

solvent capacity does lead to the emergence of the Warburg effect

at high proliferation rates. Furthermore, it accurately predicts a

three phase metabolic behavior experimentally observed during

oncogenic progression, as well as a marked preference to a high

uptake rate of glutamine.

The importance of enzyme solvent capacity in metabolic

modeling has already been recognized in the earlier work of Beg

et al. [20], where applying such a constraint to the E. coli model

improved phenotypic predictions. In their work, however, Beg

et al. assumed an upper bound on the total cell-volume occupied by

metabolic enzymes, as opposed to the method introduced here

where we assume a bound on the enzyme mass per cell mass (i.e. a

bound on enzyme fractional concentration). In order to account

for enzyme volumes, Beg et al. estimated enzyme volumes by

assuming a uniform specific volume parameter (representing the ratio

between enzyme mass and volume) for all enzymes. Here, we

employed a simpler approach that does not depend on specific

volume estimations, and explicitly constrains the total sum of

enzyme mass. Notably, we further tested the effect of accounting

for volumes instead of masses, and obtained results which are very

similar to those obtained with masses only (Text S1).

In a recent study by Molenaar et al. [16], a metabolic shift at

high growth rates was predicted based on a general self-replicating

model. Another recent work (by Vazquez et al.) already pointed to

Figure 4. Amino-acid growth rate contribution. The increase in proliferation rate achievable by the increased uptake of each of the 20 amino-
acids in addition to glucose (relative to the baseline growth rate achieved when only glucose is available), as predicted by the stoichiometric model
(A) and by the model accounting for the solvent capacity constraint (B). Glutamine uptake (highlighted in yellow) enables to achieve the highest
increase in growth rate according to the solvent capacity model, in agreement with experimental data showing preference for high glutamine uptake
rates in cancer.
doi:10.1371/journal.pcbi.1002018.g004

Metabolic Modeling Explains the Warburn Effect
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the significance of the solvent-capacity constraint in explaining the

Warburg effect [18]. Notably though, the work presented here

provides a marked contribution over both studies: First, both employ

abstract small-scale models. Specifically, the Vazquez et al. work

introduces a schematic model of ATP production in central

metabolism including just a handful of variables. Furthermore,

similarly to the work of Pfeiffer et al., their work does not explicitly

account for the entire biomass composition and the associated energy

requirements. In contrast, here we study a genome-scale biomass

producing human model that, despite the scores of alternative

biomass and energy production pathways existing in the human

network, successfully shows that highly proliferating cells such as

cancer cells are forced to display Warburg related phenotypes at high

growth rates (phase III). Additionally, and in contrast to the small-

scale models, our genome-scale model correctly predicts an

experimentally observed transitional phase (II). Furthermore, on a

mechanistic level, the genome-scale metabolic description provided

by our analysis is significantly correlated with the gene expression

patterns across the wide array of NCI-60 cancer cell-lines (much

stronger than the association displayed by the stoichiometric model

alone), a result which could not have been predicted by the Vazquez

et al. model. Lastly, the model was able to predict the marked

contribution of glutamine to rapid cellular growth. As a further

demonstration of the robustness of our results, we repeated the

analyses using a model accounting for maintenance ATP production,

obtaining qualitatively similar results (Text S1).

While the data on reactions’ stoichiometry is considered

accurate and comprehensive, enzyme kinetic constant data are

noisy and are currently available for only about 15% of the

reactions in the model. In the analysis presented here, we

addressed this problem by assigning enzymes with missing

turnover rates with the median rate computed over the set of

known turnover rates. Notably, the model’s main findings are

robust to random sampling of turnover rates from a distribution of

known rates, as shown in Text S1. However, repeating the analysis

when assigning all reactions in the model with the median turn-

over rate shows no Warburg characteristics - testifying to the

importance of utilizing known turnover rates even if this data is

sparse. Future measurements of additional enzyme turnover rates

and improved methods for accurately predicting these parameters

(e.g. [35]) are expected to further refine the predictions of cancer

metabolic phenotypes using stoichiometric metabolic models with

an enzyme solvent capacity constraint.

In our work we accounted for a solvent capacity constraint

assuming a limited protein mass per cell, without considering the

effect of enzymes’ sub-cellular compartmentalization. To investi-

gate how the latter would affect our predictions, we repeated the

analysis while considering separate solvent capacity constraints for

cytoplasm and mitochondria (Text S1), yielding quantitatively

similar results to those described above. The incorporation of

solvent capacity constraints for different cellular compartments

may lead to further improved prediction accuracy in the future,

when additional data on enzyme turnover rates becomes available.

Specifically, the addition of membrane-specific constraints may be

a promising direction, as many metabolically important proteins

are confined to membranes (e.g. those of respiratory chain and

membrane biosynthesis).

The presented modeling approach is likely to contribute to

more accurate metabolic modeling of highly proliferating human

cells in general (as was already shown regarding genome-scale

models of microorganisms [21]) and of cancer cells. The latter may

be in turn utilized for anti-cancer drug target prediction and

specifically, for predicting drugs that work to reverse the Warburg

effect. While the current analysis has relied on the available

human generic model, future studies may utilize a similar

methodology in modeling the metabolism of specific cancers.

These may be generated by integrating cancer-signature expres-

sion data with the generic human model to carve out different

cancer types models (using methods such as those outlined in [27]

or [28]), and thus further advance the development of anti-cancer

drugs specific to different cancers.

Materials and Methods

Modeling biomass production using a stoichiometric
model

The Duarte et al. [22] human genome-scale metabolic model,

accounting for 1,496 ORFs, 3,742 reactions and 2,766 metabo-

lites, was used. The metabolic network is represented in a m|n

stoichiometric matrix S, where m is the number of metabolites, n is

the number of reactions, and Sij represents the stoichiometric

coefficient of metabolite i in reaction j. Biomass production was

modeled by adding a new growth reaction to the human model:

this reaction was compiled using the steady state concentrations of

30 biomass compounds including amino acids (0.78 g/gDW;

[36,37]), nucleotides (0.06 g/gDW; [38]), lipids (0.16 g/gDW;

[39]) as well as the growth-associated energy requirement

(24 mmol/gDW of ATP; [40]). Essential amino acids were not

accounted for since they were assumed not to take active part in

the metabolic model besides flowing directly into the biomass

reaction. The full list of biomass metabolites and their relative

concentrations is available in Dataset S1. The biomass reaction

was defined as the objective function of the CBM method Flux

Balance Analysis (FBA; [29]). FBA looks for a flux distribution v

that maximizes the objective function (Equation 1) subject to

steady-state, thermodynamic and growth medium constraints:

maxvbiomass

subject to
ð1Þ

S:v~0 ð2Þ

vminƒvƒvmax ð3Þ

Equation 2 imposes the steady state constraints on the system,

assuming that the metabolite concentrations remain constant in

time. Thermodynamic constraints determining the reaction

directionalities are accounted for via the flux limits vmin and

vmax in Equation 3. The uptake and secretion of a pre-defined set

of metabolites from and to the environment is facilitated via the

definition of exchange reactions in the stoichiometric matrix. The

growth medium is defined via an upper bound on the glucose

uptake exchange reaction (as the carbon source) and by allowing

an unlimited uptake flux of oxygen, sodium, potassium, calcium,

iron, chlorine, phosphate, sulfate and ammonia (based on the

RPMI- 1640 medium definition; as none of these substances can

be used as a carbon source). Growth yield (growth rate divided by

the glucose uptake rate), oxygen uptake and lactate secretion rates

were computed under a wide range of glucose uptake rates

(varying from 0 to 1.55 umol/mgDW/h, the uptake achieving

maximal growth rate) using Flux Variability Analysis (FVA) [41],

allowing us to determine minimal and maximal flux bounds on the

reactions of interest.
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Accounting for enzyme solvent capacity
A constraint on the total enzyme concentration was added to

the biomass production FBA model:

XN

i~1

MWivi

kcati

ƒC

The enzyme mass (per mg dry weight (DW) of cells) required to

maintain the flux in the i-th reaction (vi [mmol/(mgDW*h)]) is given

by the product of vi and the enzyme’s molecular weight (MWi [mg/

mmol]) divided by its turnover number (kcati
[1/h]) [21]. The limit on

the total metabolic enzyme mass (C = 0.078 [mg/mgDW]) was

estimated based on dry cell weight protein biomass measurements

(0.779 [mg/mgDW]; [42]) multiplied by the fraction of metabolic

genes out of the total cellular protein mass, which was evaluated as the

sum of metabolic gene expression readouts divided by the total sum of

gene expression readouts ([33]; equal to 0.1). Notably, the reliability of

this value was validated based on a recently published protein

abundance dataset ([43], Text S1). In order to account for positive

fluxes only, each bidirectional reaction was split into two unidirec-

tional reactions, resulting in a total of 4,894 reactions. Enzyme

molecular weights were obtained from the BRENDA database ([44];

Dataset S2) while turnover number data was taken from BRENDA

and from the SABIO-RK databases ([45]; Dataset S3), and assigned

as following: each reaction with a known Enzyme Commission (EC)

number was queried against BRENDA for the maximal human wild-

type kcat value. In case a human kcat value was not available, the

maximal non-human wild-type turnover number was assigned. In

case BRENDA data was not available, the SABIO-RK database was

used in a similar manner. As a result, 729 reactions were assigned with

kcat values while the other 4,165 reactions were assigned with the

median kcat value across the set of known kcat values (25 1/s).

Pathway activity analysis
Flux distributions were computed under maximal growth rates

in the three growth phases (phase I – 0.0243 1/h; phase II –

0.0515 1/h; phase III – 0.0557 1/h). For each phase, the median

flux distribution across 1000 different uniform samples was

calculated using ACHR sampling [46]. Mean pathway flux was

calculated as the mean flux across the reactions belonging to the

pathway of interest. Data on relative metabolomic measurements

for lactate, and on relative transcriptomic measurements for genes

which are important for mitochondrial biogenesis (PGC-1-a,

NRF-1, TFAM and ATP5E) was taken from [32].

Correlation with gene expression data
Gene expression readouts for 1,269 metabolic genes across 60

cell lines from the NCI-60 collection [33] were correlated with

enzyme concentrations predicted by (i) a stoichiometric only

model and by (ii) a model accounting also for enzyme solvent

capacity. Given a flux distribution vector v, for each reaction i, the

enzyme concentration ½e�i needed to maintain its flux vi (the i-th

entry in v) was calculated as the product ofviand the molecular

weight of the enzyme catalyzing this reaction (denoted MWi),

divided by its turnover number (denoted kcati), that is,

½e�i~ MWi

kcat i
vi. Total enzyme concentrations (per gene) were given

by summing the enzyme concentrations across all of the reactions

associated with the gene of interest (i.e. reactions catalyzed by

enzymes encoded by this gene), based on a gene-to-reaction

mapping given in the human metabolic model. The Spearman

correlation between the gene expression vector and inferred

enzyme concentration vector was calculated for the two models in

each of the 60 cell lines. The robustness of the results was validated

against 1,000 uniformly sampled flux distributions from the

solution spaces of the two models using ACHR sampling [46].

Modeling amino-acid uptakes
Each of the 20 amino acids was added, in turn, to the growth media,

resulting in 20 different maximal biomass production rates calculated

based on (i) the stoichiometric model, and on (ii) a model additionally

accounting for the solvent capacity constraint. The maximal amino-

acid uptake rate was set to the same uptake rate as glucose; the results

are shown to be robust to the choice of this value (Text S1).

Supporting Information

Dataset S1 Human biomass composition.

(XLSX)

Dataset S2 Enzyme molecular weight data for the reactions in
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Dataset S3 Enzyme turnover number data for the reactions in

the model.

(XLSX)

Text S1 Validating the robustness of the results to various model

parameters and exploring additional changes in the model.

(DOC)
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