The effects of wall inertia on flow in a two-dimensional collapsible channel

Luo, X. and Pedley, T.J. (1998) The effects of wall inertia on flow in a two-dimensional collapsible channel. Journal of Fluid Mechanics, 363(May), pp. 253-280. (doi: 10.1017/S0022112098001062)

Full text not currently available from Enlighten.


The effect of wall inertia on the self-excited oscillations in a collapsible channel flow is investigated by solving the full coupled two-dimensional membrane–flow equations. This is the continuation of a previous study in which self-excited oscillations were predicted in an asymmetric channel with a tensioned massless elastic membrane (Luo & Pedley 1996). It is found that a different type of self-excited oscillation, a form of flutter, is superposed on the original large-amplitude, low-frequency oscillations. Unlike the tension-induced oscillations, the flutter has high frequency, and grows with time from a small amplitude until it dominates the original slower mode. The critical value of tension below which oscillations arise (at fixed Reynolds number) is found to increase as the wall inertia is increased. The rate at which energy is (a) dissipated in the flow field and (b) transferred to the wall during the flutter is discussed, and results at different parameter values are compared with those of a massless membrane. There is also a discussion of whether the onset of flutter, or that of the slower oscillations, is correlated with the appearance of flow limitation, as is thought to be the case in the context of wheezing during forced expiration of air from the lungs.

Item Type:Articles
Glasgow Author(s) Enlighten ID:Luo, Professor Xiaoyu
Authors: Luo, X., and Pedley, T.J.
College/School:College of Science and Engineering > School of Mathematics and Statistics
Journal Name:Journal of Fluid Mechanics
Journal Abbr.:J. Fluid Mech.
Publisher:Cambridge University Press
ISSN (Online):1469-7645
Published Online:08 September 2000
Related URLs:

University Staff: Request a correction | Enlighten Editors: Update this record