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Summary

Neural networks underlying visual perception exhibit oscil-

lations at different frequencies (e.g., [1–6]). But how these
map onto distinct aspects of visual perception remains

elusive. Recent electroencephalography data indicate that
theta or beta frequencies at parietal sensors increase in

amplitude when conscious perception is dominated by
global or local features, respectively, of a reversible visual

stimulus [6]. But this provides only correlative, noninterven-
tional evidence. Here we show via transcranial magnetic

stimulation (TMS) interventions that short rhythmic bursts
of right-parietal TMS at theta or beta frequency can causally

benefit processing of global or local levels, respectively, for
hierarchical visual stimuli, especially in the context of salient

incongruent distractors. This double dissociation between

theta and beta TMS reveals distinct causal roles for partic-
ular frequencies in processing global versus local visual

features.

Results and Discussion

We tested whether theta and beta rhythms are causally related
to global versus local visual processing via the emerging
method of ‘‘rhythmic’’ transcranial magnetic stimulation
(TMS). This stimulates the brain with short bursts of TMS at
particular frequencies [7–10] to test any causal relation to
specific processes. We tested for a double dissociation
between the impact of TMS bursts at theta versus beta
frequency on global versus local visual processing.

We applied TMS bursts at either frequency over a right
parietal site (see Figure 1B and Experimental Procedures)
immediately prior to visual stimulus onset (Figure 1A). Our
global/local stimuli comprised Navon-like hierarchical letters
[11], adapted from [12] (see Experimental Procedures). The
stimuli were blurred or unblurred, making the global or local
level, respectively, more salient (see Figure 1C). Participants
judged the presence or absence of a target letter at the global
level while ignoring the local level, or vice versa, with attended
level blocked. Depending on stimulus format and which level
(global or local) was judged, either the target level was more
salient than the distractor level or vice versa (see Figure 1C).
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The letter or letters at the distractor level were congruent or
incongruent with the letter or letters at the target level. Instruc-
tions stressed both speed and accuracy. For simplicity, we
focus on one score that combines reaction time and accuracy
(inverse efficiency, which is reaction time divided by propor-
tion correct [12, 13]), but our critical results were present for
all these measures.
A sham-TMS control (see Experimental Procedures) served

to establish baselines in separate blocks from active TMS. The
sham conditions replicated previous behavioral findings [12]
of stronger interference from incongruent distractors at the
currently irrelevant level when these were more salient (see
Figure S1A available online). These sham-TMS conditions
control for nonspecific effects, such as the ‘‘click’’ sounds
made by TMS bursts at different frequencies (see Supple-
mental Experimental Procedures). We then subtracted sham
TMS from active TMS for each condition and frequency to
test whether active TMS at different frequencies would
modulate the striking interference found from salient incon-
gruent distractors in the sham conditions. We hypothesized
(based on existing electroencephalography [EEG] data [6])
that beta TMS would benefit local targets, thereby reducing
interference from salient global incongruent distractors,
whereas theta TMS would benefit global targets, thereby
reducing interference from salient local incongruent
distractors.
Active versus sham rhythmic TMS did affect processing of

local and global levels differentially in a manner that de-
pended, as anticipated, on TMS frequency (interaction of
task 3 TMS frequency in repeated-measures analysis of vari-
ance [ANOVA] on active 2 sham differences; F(1,11) = 9.1,
p = 0.01). Active theta TMS (but not beta) enhanced perfor-
mance for the global task (theta TMS versus sham, improve-
ment of 235 for inverse efficiency 6 17.6 standard error,
t(11) = 23.76, p = 0.003), whereas for active beta TMS versus
sham, any nonsignificant trend in the global task was for
impaired performance instead (+13.3 6 26.8, t(11) = 0.65, not
significant [NS]). Conversely, active beta TMS (unlike theta)
versus sham enhanced performance for the local task instead
(improvement of 259.34 6 40.6, t(11) = 23.5, p = 0.005),
whereas for active theta TMS versus sham, any nonsignificant
trend in the local task was for worse performance instead
(+16.5 6 30.3, t(11) = 0.99, NS). This indicates a differential
role of theta and beta rhythms for global versus local tasks,
respectively.
As anticipated, these frequency-specific benefits mainly

arose for trials with interfering incongruent rather than
congruent distractors, leading to a task3 TMS frequency3 in-
congruency interaction (F(1,11) = 11.2, p = 0.007). Effects of
theta TMS versus sham for global targets were significant for
incongruent (t(11) = 23.09, p = 0.01) but not congruent
(t(11) =21.82, NS) trials; likewise, effects of beta TMS for local
targets were significant for incongruent (t(11) = 23.15,
p = 0.009) but not congruent (t(11) = 20.67, NS) trials. Finally,
the benefits from the appropriate TMS frequency for a given
target level were particularly pronounced for distractor
salient incongruent trials (leading to an interaction of task,
TMS frequency, congruency, and saliency: F(1,11) = 7.84,
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Figure 2. Effects of Rhythmic TMS on Performance for Global or Local

Target Identification

Sham-normalized (active 2 sham TMS at each frequency) effects of

rhythmic right-parietal TMS bursts at 5 Hz (light gray bars) or 20 Hz (dark

gray bars) in the global task (right) or the local task (left). Data are shown

separately for distractor-salient and target-salient conditions; these show

a similar pattern that is stronger with salient distractors (top). The y axis

plots mean differences (for active 2 sham) in inverse efficiency (6standard

error of the mean), so that negative values correspond to improved perfor-

mance with active TMS and positive values correspond to impaired perfor-

mance with active TMS. Asterisks indicate significant differences on t tests,

either from the null hypothesis of no difference between active and sham

TMS or between pairs of conditions as bracketed. *p < 0.05; **p < 0.01.

See also Supplemental Experimental Procedures, Figure S2, and Table S1.

Figure 1. Experimental Design, Task, Stimuli, and Stimulation Site

(A) Experimental design and task. Rhythmic TMSwas applied in short bursts

of five pulses at one of two frequencies (theta band, 5 Hz; beta band, 20 Hz)

on each trial in the main experiment, in random order across trials, with 10 s

intervening between successive bursts. Onset of a global/local hierarchical

visual stimulus, centered at fixation, coincided with the last TMS pulse of

each burst so that the critical visual display closely followed the rhythmic

TMS bursts (future studies might vary this timing to examine the temporal

profile of our effects). A sham TMS condition was also conducted (coil tilted

at 90� over the same parietal site), in separate blocks that were randomly

intermingled with active-TMS blocks.

(B) Stimulation site for one representative participant. TMSwas applied over

a right-hemisphere intraparietal sulcus site in our main experiment, deter-

mined by neuronavigation with Brainsight and individual anatomical MRI

scans, at Tailarach coordinates 28, 251, 50 (see Results and Discussion

and Experimental Procedures).

(C) Examples of stimuli for the global/local target blocks. In the global target

blocks, observers were asked to detect the presence (versus absence) of

the global letter H (versus S or D). The local distractors were all Hs, or all

Ss or Ds, independent of global identity, leading to equiprobable congruent

and incongruent conditions. For blurred stimuli, the global letter was more

salient than the local letters; the reverse was true for nonblurred stimuli.

In other blocks of trials, the same stimuli were used, but the local level

was judged instead. For both tasks, salient incongruent distractors inter-

fered the most (see Supplemental Experimental Procedures and Figure S1).
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p = 0.017). These distractor salient incongruent trials are those
that led to the most interference in the absence of TMS (as in
[12]), as we replicated here for the sham conditions (see Fig-
ure S1A). Correspondingly, these trials benefit most from
TMS at the appropriate frequency (see Supplemental Experi-
mental Procedures). Figure 2 plots sham-normalized changes
in inverse efficiency due to TMS at one or the other frequency
for each condition. Lower (negative) scores correspond to
TMS-enhanced performance; higher scores correspond to
worse performance. Note that beta TMS particularly enhances
performance for the local taskwith incongruent salient distrac-
tors, whereas theta TMS particularly enhances performance
for the global task with incongruent salient distractors. This
same pattern is also evident for the RT or accuracy measures
when analyzed alone in the same way (see Supplemental
Experimental Procedures and Tables S1A and S1B). A similar
but reduced pattern is seen for target-salient conditions.

Our key finding is the double dissociation in how TMS at
theta or beta frequency impacts on global or local tasks,
respectively. Although some previous work has shown that
rhythmic TMS can be more effective at one frequency than
another (e.g., for some interesting visual effects with TMS at
alpha [8–10]), the present study, to our knowledge, is the first
to show that one task can be affected by a particular frequency
but not the other, whereas the reverse holds for another task.
Our effects are therefore genuinely frequency specific, rather
than having one particular frequency being more powerful
overall. These results show that directly stimulating parietal
cortex at perceptually relevant frequencies, via rhythmic
TMS, can be used to bias visual processing toward one or
the other of the two competing levels of hierarchical figures.
This provides new causal TMS evidence for a relationship
between particular frequencies and perception of the local or
global properties of an image.
At the request of reviewers, we performed two additional

control experiments to confirm the specificity of our results.
In the first control, we applied TMS over left rather than right
parietal cortex. This had no systematic impact on performance
(see Figure S2A) and differed significantly (see Supplemental
Experimental Procedures) from our critical findings for right-
parietal TMS in our main experiment. In the second control,



Current Biology Vol 21 No 4
336
we stimulated the right parietal site at 10 Hz (because 10 Hz is
a harmonic of 5 Hz, and activity in the alpha-band at around
10 Hz is known to be important for visual processing; e.g.,
[2–5, 8–10]). The outcome for 10 Hz differed qualitatively and
significantly from 5 Hz TMS (see Supplemental Experimental
Procedures and Figure S2B), confirming that our key finding
was indeed specific to 5 Hz stimulation and was not observed
with higher harmonics. Thus, the present results are specific to
the frequency of rhythmic TMS and to the right rather than left
parietal site, though it would be useful to examine further right-
hemisphere sites in future extensions.

Returning to our main experiment, the brief online rhythmic
TMS bursts did not impair but rather enhanced performance
in a frequency-dependent way. This does not accord with
the traditional concept of TMS acting as a ‘‘virtual lesion’’ but
fits other evidence showing that some forms of TMS can
enhance performance [7–10]. One interpretation of our current
right-parietal results at 5 Hz and 20 Hz could be in terms of
recent proposals [7–10] stating that rhythmic TMS bursts
may impact ongoing oscillatory neural activity. In principle,
this might even involve entrainment of neural networks
oscillating at the TMS frequency, which future electrophysio-
logical studies could test. It has been suggested that theta
may provide an important resonance frequency for brain
networks involved in binding global information together,
whereas more local networks may oscillate at higher frequen-
cies (e.g., [14]).

Any cross-frequency ‘‘rivalry’’ between theta and beta
appears to be less likely to explain our TMS effects, because
right-parietal theta TMS facilitated the global task but did not
impair the local task, whereas the opposite was true for beta
TMS. Refining the exact role of particular brain oscillations will
ultimately require neurophysiological measures (e.g., EEG), as
well as rhythmic TMS interventions. Indeed, it should be partic-
ularly interesting to combine rhythmic TMS with online neural
measures in future work. However, our behavioral results
alreadydemonstrateadoublydissociated impactofbetaversus
theta TMS for the first time. Rather than one TMS frequency
being most effective overall, beta TMS had the most impact on
the local task, whereas theta TMS had the most impact on the
global task. In providing this double dissociation, our results
illustrate more generally the potential of rhythmic TMS for
frequency-specific interventions in brain function.

Experimental Procedures

Main Experiment

Participants

All 12 healthy volunteers had normal or corrected vision by self-report (mean

age 28.25 yr, range 20–42 yr, five females). All gave written informed consent

in accord with local ethical approval (Faculty of Information and Mathemat-

ical Sciences, University of Glasgow) and were right handed by self-report.

Visual Stimuli and Task

These aspects were adapted from a previous study [12]. Stimuli were

presented on a 17 inch monitor (85 Hz refresh rate) on a black background.

Viewing distance was approximately 60 cm. White central dots indicated

fixation, appearing for 1.5 s followed by 200 ms of blank screen to alert

participants to the upcoming visual stimulus. Each such stimulus comprised

a modified version of Navon hierarchical letters [11], centered at the fixation

point, using the same modifications to these as in [12].

For the nonblurred displays with relatively high local saliency, the Navon

stimuli were created from orthogonal combinations of the letters H or S at

the global level, and multiple Hs or Ss at the local levels, with the letters in

the local dimension alternating between red and white (see Figure 1A).

Each local letter subtended approximately 1.34� 3 1.06� of visual angle

(in height and width, respectively), and the global letter subtended

8.26� 3 5.38� of visual angle with an interlocal-letter distance of 0.96�.
For the blurred displays with relatively high global saliency, the Navon

stimuli were created from orthogonal combinations of the letters H and D,

but now all local letters were red and underwent a blurring procedure in

Paint Shop Pro 7.0 with factor = 7 (see Figure 1A). Each local letter again

subtendedw1.34� 3 1.06� of visual angle (in height andwidth, respectively),

and the global letter subtended 5.66� 3 4.51� of visual angle with an inter-

local-letter distance of 0.38�. For further stimulus details, see [12].

Participants were instructed to detect the presence of a target H, or its

absence (S or D instead), at either the local or global level while ignoring

the other level, with this instruction applying for a block of trials and with

task blocks in random order. Participants responded on a two-choice

button box with right index finger for target presence and right middle finger

for target absence.

Experimental Procedure

Rhythmic TMS was applied while participants performed the Navon letter

discrimination task at the currently task-relevant level. Rhythmic TMS was

administered in short bursts of five pulses at one of two different frequen-

cies on each trial (5 Hz versus 20 Hz, random order across trials), immedi-

ately prior to visual presentation (target onset synchronized with fifth TMS

pulse; see Figure 1A). Trials, and thus TMS bursts, were separated by

10 s. The experiment comprised six blocks per condition, for active or

sham TMS, in separate blocks of 32 trials (z6–7 min per block), resulting

in a total of 960 active TMS pulses (plus 960 sham pulses).

TMS Stimulation

TMS was applied at a fixed intensity level of 60% of maximum stimulator

output using a Magstim Rapid2 Transcranial Magnetic Stimulator via

a 70 mm figure-of-eight coil (Magstim Company). In our main experiment,

the TMS site was over the right intraparietal sulcus (Talairach coordinates:

28, 251, 50). This site has previously been shown with fMRI to be coacti-

vated across several attention tasks, including feature-based attention

[15]. We neuronavigated the TMS coil to this target site in each individual

via Brainsight (Rogue Research) in combination with individual structural

MRI scans that could be normalized into standard Tailairach space to iden-

tify particular coordinates and then back into native space.

During active TMS, the coil handle was oriented parallel to the sagittal

plane and then tilted forward or backward until the coil surface was tangen-

tial to the scalp. Most of the current was therefore induced in the anterior-

posterior (y axis) and superior-inferior (z axis) dimension, with only minor

contribution to the left-right dimension (x axis). Sham stimulation (coil tilted

at 90� over the same area as active TMS; see also [8–10, 16, 17]) was

performed to account for any nonspecific effects of TMS due to the associ-

ated auditory clicks. The rate of these clicks over time (5 Hz or 20 Hz) inev-

itably covaried with TMS frequency, hence the critical importance of sham

controlling the impact of active TMS (see also Supplemental Experimental

Procedures).

The experiment comprised active and sham TMS blocks that were inter-

mingled across the experimental session and counterbalanced across

participants. TMS frequency (5 Hz or 20 Hz) was intermingled in an event-

related manner. Note that this will inherently subtract out any frequency-

dependent carry-over effects from one trial to the next because of the

randomized event-related ordering of conditions.

Data Analysis

To evaluate the within-trial effects of short bursts of rhythmic TMS on target

discrimination at different frequencies, we subjected data for active2 sham

inverse efficiency scores to a four-way, repeated-measures ANOVA, with

factors of TMS frequency (5 Hz versus 20 Hz), task (global versus local),

incongruency (incongruent versus congruent displays), and distractor

saliency (distractor salient versus target salient). Pairwise follow-up t tests

were calculated when appropriate. See Supplemental Experimental Proce-

dures for analyses performed on the sham-uncorrected data alone or on the

active TMS data alone, as well as separately for RT and accuracy scores

rather than for the combined inverse efficiency score.

For control experiments, see Supplemental Experimental Procedures.

Supplemental Information

Supplemental Information includes Supplemental Experimental Proce-

dures, one table, and three figures and can be found with this article online

at doi:10.1016/j.cub.2011.01.035.
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