
 
 
 
 
 
 
 
Kelly, T., and Wonka, P. (2011) Interactive architectural modelling with 
procedural extrusions. ACM Transactions on Graphics, 30 (2). ISSN 
0730-0301
 
http://eprints.gla.ac.uk/48707/ 
 
Deposited on: 26th January 2012 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 

http://eprints.gla.ac.uk/view/author/12389.html
http://eprints.gla.ac.uk/view/journal_volume/ACM_Transactions_on_Graphics.html


Interactive Architectural Modeling with

Procedural Extrusions

Tom Kelly
University of Glasgow

Peter Wonka
Arizona State University

April 2011

Abstract

We present an interactive procedural modeling system for the exte-
rior of architectural models. Our modeling system is based on procedural
extrusions of building footprints. The main novelty of our work is that
we can model difficult architectural surfaces in a procedural framework,
e.g. curved roofs, overhanging roofs, dormer windows, interior dormer
windows, roof constructions with vertical walls, buttresses, chimneys, bay
windows, columns, pilasters, and alcoves. We present a user interface to
interactively specify procedural extrusions, a sweep plane algorithm to
compute a two-manifold architectural surface, and applications to archi-
tectural modeling.

1 Introduction

The main motivation for our work is to develop an interactive and procedural
modeling tool for complex architectural surfaces. We are interested in proce-
dural and interactive modeling for three reasons. First, procedural descriptions
allow edits to architectural surfaces at multiple levels and previous edits will
adapt to subsequent ones. For example, the scene in Fig. 2 can be edited by re-
shaping the building footprints, and the model buildings, including the complete
roof construction, will change according to the new input. Second, procedural
modeling is the most efficient method to generate larger urban environments.
Finally, we want to combine interactive and procedural modeling, because a fre-
quent obstacle to using procedural tools is that it requires scripting. Eliminating
scripting will enable more people to use procedural modeling tools.

Our goal is to model complex architectural features, including overhanging
roofs, dormer windows, interior dormer windows, roof constructions with ver-
tical walls, buttresses, chimneys, bay windows, columns, pilasters, and alcoves.
See Fig. 1 for an example showing some of these features. These complex ar-
chitectural surfaces have not been handled in procedural modeling before, and

1



Figure 1: Procedural extrusions allow a footprint (2d plan) to be extruded to
form the walls and roof of a house (inset). Meshes and procedural details can
then be attached (main).

the main contribution of this paper is to introduce the first procedural model-
ing solution that includes these surfaces. Previous work in procedural modeling
using shape grammars [1, 2] is able to model some architectural roof surfaces
on a restricted set of footprints, but not the more complex roofs of arbitrary
footprints shown in this paper.

The first part of our solution is to identify the most important edits and to
design a user interface to specify procedural extrusions. We consider this part
interesting because after analyzing examples, such as the one shown in Fig. 1, it
is not clear how to model such a building, and what editing operations are even
necessary to ensure that a larger class of interesting architecture can be modeled.
An important aspect of our solution is to model buildings from floorplans and
profile curves, see Fig. 5. In Sec. 3 we will describe our user interface in more
detail including the architectural configurations that motivated the different
user interface parts. The goal of our work is to have tools that are expressive
enough to be able to quickly model most aspects of a building. We will evaluate
our system on a catalog of 50 buildings in various styles in Sec. 6 to demonstrate

2



Figure 2: We present an interactive procedural modeling system that is able
to model difficult architectural surfaces, such as roof constructions. This figure
shows procedural extrusions applied to 6000 floorplans from a GIS database of
Atlanta.

the efficiency of our tools and to document geometric configurations that are
difficult to reproduce.

The second part of our solution is a collection of algorithms to compute pro-
cedural extrusions from the user specification, see Sec. 4. We propose a sweep
plane algorithm to grow the architectural surface upwards and to handle vari-
ous events stemming from user edits or plane intersections. Our algorithms are
inspired by the straight skeleton [3]. We want to note that the computational ge-
ometry community emphasizes provably correct algorithms and therefore often
favors rational arithmetic. In contrast, our work consists of heuristic algorithms
that emphasize computation speed and are geared towards a floating point im-
plementation. While our heuristics include various mechanisms to make the
results more robust, it is possible that the computations can fail. For example,
in the Atlanta data set of 6000 buildings we noted that two roof planes were not
computed correctly. The approximate nature of our floating point computation
also results in roof planes being moved by millimeters.

The contributions of our work are:

• the design of the system and the set of tool choices to enable procedural
modeling of complex architectural surfaces.

• heuristic algorithms to generate a polygonal mesh from the user specifica-
tion that is approximately consistent with the input data.

• the evaluation of the system on a collection of examples to verify its prac-
tical utility, and to identify configurations that are difficult to model with
our tools.

2 Related Work

In architecture, Stiny pioneered the idea of shape grammars [4]. In computer
graphics grammars were used as a design tool for architecture by Wonka et al. [5],

3



Figure 3: These two examples show architectural surfaces overlayed with the
user input. Plans (green), profiles (blue), natural steps (orange) and offset
events (red) are specified in the user interface. The output of our system is an
architectural shell (gray).

Müller et al. [1], Aliaga et al. [6], and Lipp et al. [2]. L-systems [7] were also
proposed for procedural modeling of architecture [8]. Merrel and Manocha [9]
propose a more general approach that can create new models from an example
mesh. Given a man-made model as input, great results for reshaping were
achieved by Cabral et al. [10] and Gal et al. [11]. The output of our procedural
extrusions could also be further processed to distribute brick patterns [12].

The straight skeleton was introduced by Aichholzer et al. [3,13] and the authors
commented how the straight skeleton computes a very plausible roof construc-
tion over a polygon. The idea of weights for the straight skeleton has been briefly
mentioned by Eppstein and Erickson [14], but the topic was only developed for
a convex polygon decomposition [15]. These papers are the inspiration for our
work, and they aim to make a contribution to theory in computational geom-
etry. In contrast, we focus on the application to modeling and extensions that
are inspired by the demands of our modeling system. A starting point for our
implementation was the work by Felkel and Obdrzalek [16] and Cacciola [17].

4



Figure 4: Three example buildings constructed in our user interface. We demon-
strate multiple profiles on a simple plan (abcd), modeling overhangs (efghi) and
anchors (jklmn). Simple profiles (ab) are applied to the green and purple edges
of the plan (c) to create the geometry (d). Note the horizontal profile section.
Overhangs are defined using an additional pair of profile polylines associated
with every edge (ef) to create typical roof geometry (hi). Anchors (magenta
circles) are defined on the profile (j) and the plan (l) to position features. In
this example the anchors position a rectangular natural step (m) with a profile
(k) that creates a roof-window (n).

Applications to architectural modeling of extrusion operations and the straight
skeleton were demonstrated by several authors, e.g. [1, 18–21]. Our goals are
similar to these approaches and we contribute new extensions to the straight
skeleton and an interactive procedural modeling system.

3 User Interface Description

Our interface controls a sequence of extrusions that are particularly suitable for
creating the shell of architectural models. In this section we will introduce the
functionality of our user interface.

3.1 Modeling With Profiles

The inspiration for our work comes from simple roofs, that are defined by a 2d
polygonal floorplan and an angle that defines the roof slope. We extend this
simple concept to construct a wide variety of roofs by using different angles on
each edge and entire building shells by changing the angle as we ascend using
profiles, Fig. 3.

To construct our geometry we use a sweep plane that rises vertically from the
base of the building. This sweep plane defines an active plan that combines the
changing profiles, and discrete modifications to create complex architecture.

5



Figure 5: The interactive interface during the design of a temple. The right
window contains the output preview whilst the left window contains the plan
and the profile editors.

3.2 Plans and Profiles

The UI consists of one pane showing the plan, one pane for profile, and a 3d
preview window as shown in Fig. 5.

The plan is a set of edges (see Sec. 4.1 for the definition of a plan). For each
edge in the plan, there is an associated collection of polyline segments, called
a profile, that define the shape of a cross-section through the building at that
plan edge. As the user edits either the plan or the profiles, our system shows
the resulting architectural shell in the 3d preview window.

The user interface presents standard operations for inserting, deleting, and mov-
ing vertices in the profile polylines, and vertices (called corners) in the floor plan.
In Fig. 4(abcd) we show an example with one polygon as the plan (c) and two
profiles (a and b). The plan edges are color coded to show which of the two pro-
files is associated with each edge. Note that the profiles have to be monotonic
in the vertical direction, but we allow horizontal polyline segments as special
case. In the implementation, every change of direction in a profile will lead to
an edge direction event (Sec. 4.5).

3.3 Overhangs

One important design choice we had to make is how to model overhangs. There
are two possibilities: 1) Allow the user to draw arbitrary polylines as profiles
that can go up or down in the vertical direction; 2) Force the user to explicitly
model profiles as multiple polylines where each polyline must be monotonic
in the vertical direction. After some experiments we decided that the second
option makes it easier to synchronize overhangs across multiple profiles. We will

6



explain the process of modeling overhangs using the second example in Fig. 4
(efhgi).

The user creates the input floor plan shown in (g). The edges in this floor plan
are color coded as either red or blue. A red edge will be extruded according
to the red profile (e) and the blue edges will be extruded according to the blue
profile (f). The final geometric construction is shown in (h) and (i). The red
profile as well as the blue profile each consist of three polylines. Each of these
polylines is monotone in the vertical direction. Modeling overhangs is an explicit
operation. The overhang is modeled by inserting two new polylines into both
profiles at a certain height. In the user interface this is one atomic insertion
operation. If the user clicks to add a new vertex overhang in one profile, then
all profiles will obtain two new polylines at the same height. The user can
edit the new polylines for each profile independently, only the starting height
will remain synchronized. In the implementation, we will trigger a profile offset
event (Sec. 4.6) at this height.

3.4 Anchors

Several editing operations require us to locate features on the manifold. These
might include meshes, such as doors and windows, or discrete changes to the
plan, such as chimneys. The features have to be placed so that they can still be
located after subsequent edits. This is called the persistence problem in editing
procedural models [2], and we introduce anchors as a solution in our system.

The user can place anchors by selecting a location in the 3d view, or by selecting
points on the input plan’s edge and the corresponding profile polyline. In Fig. 4
(jklmn) the anchors are shown as magenta circles on a floor plan edge and a
profile edge. We allow the user to select from two types of anchor on a plan
edge — relative and absolute. A relative anchor’s location is a fraction of its
length on the active plan edge. If the edge is represented in the active plan at
the specified height, the feature is instanced.

Absolute anchors are defined on an input plan edge, and define a plane per-
pendicular to this edge. The intersection of this plane and the corresponding
edge in the active plan at the height specified by the profile anchor defines the
instance location. Because an edge in the active plan may shrink as it ascends,
absolute anchors may not be instanced if they lie outside the edge on the active
plan. Because an active plan edge may grow, it is possible to position absolute
anchors beyond the ends of the input plan edge.

3.5 Plan Edits

Discrete edits to the plan at a certain height are know as plan edits. These are
located by anchors specified by the user, and may modify, create or delete edges

7



in the active plan. In the example Fig. 4 (jklmn) a plan edit is introduced at
the location of the anchor. The plan edit itself is a set of edges (m). These
edges are extruded along the new profile (k). Again the user is offered several
techniques with different advantages. Forced steps insert an arbitrarily set of
edges into the plan, while natural steps offer a range of simple shapes that can
be inserted. For reasons that are discussed later, forced steps are more powerful,
but can lead to self intersections, while natural steps are guaranteed to create
manifold geometry.

Figure 6: Left: The plan (solid green line) and profiles (blue lines) define the
shape of the structure. The anchors (orange) locate the chimney (red). A
natural step is inserted into the building at the anchored location (dashed green
lines). Middle: The finished 3d geometry, showing the profiles for the new edges.
Right: Alternative natural step which adds an additional rectangle into the plan
(dashed green lines) to specify a chimney.

As shown in Fig. 6 we can use discrete plan edits to locate features such as
roof windows, or chimneys. Additionally, by adding a rectangle exterior to the
active plan, and applying the appropriate profiles, we can create buttresses, as
in Fig. 23. If the input plan has several repeated elements, such as bay windows
or buttresses, plan edits give a convenient tool for defining an instance once,
whilst repeating it at a number of different anchored locations.

3.6 Positioning Procedural Details

Anchors can be used to mark the top-left and bottom-right elements in a grid
of features, such as windows. Parameters can be set to control the width of
the repetitions, and when combined with relative anchors, allow features to
be distributed on resizable façades. Variations on this theme allow rows or
columns of features to be located, for example a line of dormer windows on
a roof. Anchors may also be used to specify the location of complex external
features, such as windows and doors, described by arbitrary meshes.

Faces of the output model can be identified by adding tags to the profile segment.
These are represented by small triangles in the user interface. Once the manifold

8



is complete, the faces that were generated from the specified profile segment are
post-processed in a particular way, for example to add tiles to the roof.

3.7 Modeling Larger Environments

We provide tools to model larger environments by example. We implemented
several feature extraction algorithms to automatically label the edges of a build-
ing’s plan. Example labels are length ∈ {short,medium, long} and orientation
∈ {street, side, back}. The most important label is an angle computed by ori-
enting the building to the street and mapping the normal vectors of the footprint
edges to the unit disk. We assume that each footprint in the environment is
labeled with a building type by another procedural algorithm. For each build-
ing type we can assign one or multiple profiles to each edge type including a
probability value if more than one profile is assigned.

4 Computing Procedural Extrusions

In this section we give an overview of the procedural extrusion algorithm. We
begin by defining the terms used in the algorithm, the inputs and outputs, before
outlining the many possible events that take place. Finally we give details for
the computation of each event type.

4.1 Definitions

In this paper we compute an architectural shell in 3d Euclidean space with a
xyz world coordinate system. The up direction is along the z axis. See Fig. 7
for an illustration of the terms.

A (floor) plan is a planar partition (a straight line planar embedding of a planar
graph) that divides a plane into inside and outside regions. A plan has corners
and edges. A plan is embedded in a plane parallel to the xy-plane (the ground
plane), so that all corners of a plan have the same z (height) value. We require
that the boundaries of a plan are a non-intersecting collection of oriented poly-
gons. The inside is on the left-hand side of each oriented polygon edge. The
polygons are typically oriented counter-clockwise, but polygons describing holes
are oriented clockwise. Additional bounded regions may be recursively located
inside a hole. The jth polygon is described by nj polygon corners cji ∈ R3 with

1 ≤ i ≤ nj . Each corner cji is connected to the next corner (according to the

polygon orientation) by an edge, eji . In everything that follows, indices should

be treated cyclically, so that in a polygon with corners cj1, cj2, and cj3, the corner

cj4 means cj1.

9



Each edge in a plan is associated with a direction plane, dpji , which contains
the edge. It is defined by an angle θ such that −π/2 ≤ θ ≤ π/2. A vertical
direction plane has θ = 0, whilst a direction plane oriented towards the inside
(outside) satisfies θ > 0 (θ < 0 respectively). The angle is measured between
the direction plane and a vertical plane that also contains the edge.

A profile is a polyline that is used to control the direction plane of an edge. A
profile is modeled in a local 2d wz-coordinate system and consists of a list of m
points ti. The location of point i is (ti.w, ti.z) and we require that ti.z ≤ ti+1.z.
The profile defines m − 1 angles, θ1..θm−1. The angle θi is calculated as the
clockwise angle between a vertical line and the line ti to ti+1. The angle lies
in the range −π/2 ≤ θi ≤ π/2 and the final angle is constrained such that
θm−1 > 0.

4.2 Overview

We describe the input, the output, and give an outline of the algorithm.

Input: The input of the algorithm is a (floor) plan, called the input plan, profiles
associated with the edges of the input plan, profile offset events, and anchor
events. Anchor events specify the location of plan edits or a mesh instance.

Figure 7: Our algorithm constructs the architectural shell, shown on the right,
for an input plan, shown on the left. In this simple example, each profile only
has a single segment; Adding additional segments to the profile eventually allows
us to model an entire building, including the walls. The input is defined by the
corner positions cji , the angles θji , and the corner connectivity. The output is a

shell consisting of faces on the respective direction planes, dpji .

Output: The main output of the algorithm is an architectural shell (3d mesh)
in the xyz world coordinate system. In the non-degenerate case the shell is
watertight and two-manifold. An architectural shell is a polygonal mesh stored
in a half-edge data structure. For the sake of clarity we refer to these output

10



edges as arcs (after Aichholzer et al. [3]). The half-edge data structure stores a
set of vertices in R3, a set of arcs between the vertices, and a set of planar faces
which may contain holes. Faces are defined by a counter-clockwise ordering of
arcs.

The architectural shell can then be post-processed to apply textures, add pro-
cedural geometry (such as roof tiles), and attach meshes at anchor points.

main begin
Q = new priority queue;
foreach corner cji ∈ inputP lan do

foreach plan edge eji ∈
planDataStructure do

p1 = eji .directionP lane;
p2 =
cji .previousEdge.directionP lane;
p3 =
cji .nextEdge.directionP lane;
IE = intersect (p1, p2, p3);
/* Queue ordered by

z-height */

Q.insert (IE, IEi.z);

/* Insert edge direction events,

profile offset events and

plan events into the queue */

foreach event ue ∈ userEdits do
Q.insert(ue, ue.z);

sweepZ = 0;
while ! Q.empty() do

event = Q.nextEvent();
if event.position.z ≥ sweepZ
then

sweepZ = event.position.z;
/* handleEvents may

insert additional

events into the queue

*/

handleEvent(event);

end

Figure 8: Pseudo-code for the main loop.

Outline: The algorithm extrudes the input plan using a sweep plane algorithm.
At each height of the sweep plane a 2d cross-section through the building is
another 2d plan. We call the plan associated with the current sweep plane the
active plan. To extrude a plan, each plan edge moves to be colinear with the
intersection of the direction and sweep planes. This movement and the implicitly
defined geometry is straightforward until an event occurs. During events, we
process modifications to the active plan. After inserting edges into the active
plan, we must recalculate the intersection events between the direction planes.
The core algorithm, Fig. 8, is a loop that handles events according to their

11



height.

Figure 9: An example construction demonstrating basic intersection events, and
the active plan (blue, green and red lines) on the sweep plane after each event
is processed. In (1) three adjacent direction planes collide at an edge event. In
(2) we see a vertex event where more than three direction planes collide at one
point. Finally, in (3) we show a split event that splits the area bounded by the
plan.

Data structures: The plan data structure describes the implicit active plan on
the sweep plane [16]. This structure is a doubly linked list of corners. Each cor-
ner has a pointer to the next corner and the previous corner (assuming counter-
clockwise order) and a pointer to its previous and next edges, Fig. 10. At
the beginning of the algorithm the plan data structure encodes the input plan.
During the sweep the data structure is updated to encode any changes to the
active plan. To give a concise description we define the algorithm by discussing
changes to the implicit active plan.

The second important data structure is a priority queue that sorts events by
ascending height. Intersection events are automatically created, while others
(edge direction events, profile offset events and anchor events) are defined by
the user. We fill the priority queue with a large number of potential intersection
events. An intersection event occurs wherever three or more direction planes
intersect.

Given the active plan at all event heights, the generation of the half-edge data
structure describing the architectural shell and subsequent triangulation of shell-
faces is fairly straightforward.

12



Figure 10: The plan data structure, shown part way through the sweep.

4.3 Description of Events

In this section we describe the events encountered as the sweep plane ascends.

Generalized Intersection Event: There are three event types, given by pre-
vious authors [14,16], which automatically occur to the edges in the active plan
as the sweep plane rises. Edge events occur as the length of an edge shrinks
to zero. When an edge shrinks to zero the direction planes defined by three
consecutive (linked by corners) edges collide (Fig. 9, 1). Split events take place
when two adjacent direction planes, and one non adjacent direction plane col-
lide (Fig. 9, 3). These split the region bounded by the active plan into two
parts. Finally vertex events occur in the degenerate case when more than three
direction planes collide at one point (Fig. 9, 2).

Unfortunately, we did not find this categorization of events helpful to designing
an algorithm. In practice architectural models give rise to a large number of de-
generate events and the implementation is dominated by special event handling.
Since edge and split events are special cases of a vertex event, we introduce
one general intersection event that consists of an arbitrary number of direc-
tion planes, bounding one region, intersecting at one point. See Fig. 11 and 12
for four examples. We introduce a new algorithm to resolve this generalized
intersection event that uses chains of edges involved in the intersection.

Edge Direction Events: An edge direction event occurs when a profile curve
changes direction. The event updates the angle and direction plane associated
with a set of edges in the active plan.

Profile Offset Events: Profile offset events occur at heights specified by user
edits. Intuitively, a profile offset event results in additional inside regions being
added to the active plan at the specified height.

13



Figure 11: Procedural extrusions that give rise to three degenerate cases. At a
and b, four faces collide at one point. Point c shows seven faces colliding from
a variety of angles, including horizontally.

Anchor Events: Anchor events specify locations on the architectural shell,
and are defined by the user. There are two types of anchor events. Plan Edit
Anchors: These modify the active plan to insert new features such as chimneys,
or dormer windows. Mesh Anchors: These store the location of the anchors as
an attachment point for geometry.

4.4 Generalized Intersection Event

Generalized intersection events perform topological changes on the active plan
to ensure that it never self-intersects as the sweep plane ascends. These events
are automatic, not user driven.

There are many possible topologies that can give rise to a generalized intersec-
tion event. Previous authors have described how to adjust the active plan to
deal with split and edge events. These are the most frequent events when the
input is a random polygon. We describe a generalization of these techniques
to deal with the most likely class of topologies when dealing with architecture,
a locally connected region. When our interface is used to model architecture,
these account for the vast majority of events. A locally connected region is a
region, that immediately before the event is locally equivalent to a topological
disc, Fig. 11 (abc). In a single event the locally connected region may be either
an “inside” or “outside”.

In addition to locally connected regions, there are several unlikely classes of
increasingly degenerate events in which the intersecting edges define a nested

14



boundary, Fig 15. When this situation occurs we give a warning in the user
interface that the output may be undesirable.

Figure 12: Left: Five faces creating an intersection event. Right: Events can
interfere with each other if they have the same height, in this case the four
points share a roof ridge.

Event Detection: We use expanded bounds for intersection location cluster-
ing. This addresses two stability problems.

First, in symmetrical inputs, like architectural plans, it is very common for more
than three direction planes to meet at a point. To avoid degenerate output in a
floating point situation it is necessary to identify intersections whose locations
are close together, and treat these as a single event. See Fig. 12 (left) for an
example.

Second, direction plane intersections that are far apart from each other can
interfere if they are close to one other in height, Fig. 12 (right). It is neces-
sary to detect and handle these together to ensure the region bounded on the
sweep plane does not self-intersect and to resolve the ambiguities that can occur
(described in Sec. 4.8).

Event Clustering: After initialization we iteratively process (potential) events
stored in the priority queue. To address the two previously mentioned event
detection problems, we cluster the events in two directions. We poll the priority
queue to collect all intersection events whose height, z, is within some threshold,
δ1, of the initial event. Second, we cluster all the events according to their
location after projection onto the xy sweep plane. The clustered volume is
therefore a cylinder of radius δ2 and height δ1. See Fig. 13 for an illustration
of the clustering step. For our building floorplans with a size in meters we use
double precision floating point representations and values δ1 = 10−4, δ2 = 10−6,
found through trial and error on our large procedural floorplan set. There are
certain pathological inputs which cause this clustering stage to fail. An example
would be a row of events, each within δ1 of another, which could contain an
arbitrary number of events. In such a case we alert the user with a warning
message, but none of the users reported such a situation.

15



Input: The input of a generalized intersection event is a point l ∈ R3, and
a set of three or more active plan edges, f , whose associated direction planes
intersect at l. The point l is calculated as the center of the clustered volume.

Output: The output of a generalized intersection event is an updated active
plan. This represents the bounded region on the sweep plane after the event.

Figure 13: When an event is processed we simultaneously extract all intersection
events within a height of δ1. Then we cluster all events that are within a cylinder
of radius δ2 and height δ1.

Chain construction: We process the edges involved in the clustered inter-
section events into a set of chains. A chain defines a connected portion of the
active plan boundary involved in the event, Fig 14 (a). A chain, hi, is a list
of consecutive active plan edges, εi1...ε

i
hmaxi

. A cyclic chain list, b, contains all

such chains, h1...hbmax (we assume a cyclic index). The list is ordered by the
edge’s orientation around l.

The list of chains, b, is now processed to update the active plan in two stages.
First within each chain (intra-chain), and then between the chains themselves
(inter-chain).

Intra-chain handling: In a chain of 2 or more edges, the interior edges shrink
to length 0 as we approach the intersection event, Fig 14 (ε22). Therefore in the
intra-chain stage we remove all interior edges from a chain hi, leaving only the
start, εi1, and the end, εihmaxi

, of the chain as shown in Fig. 14 (cd). That is,

if hmaxi ≥ 3, then edges εi2..ε
i
hmaxi−1 are removed from the active plan, being

replaced by a new corner at l, connecting the end of εi1 to the start of εihmaxi
.

Inter-chain handling: In a typical intersection event, the closest edges in
adjacent chains move into each other. To allow this without self-intersections
the inter-chain stage takes place between each adjacent pair of chains, hx and
hx+1 in the cyclic chain list b. Firstly, if any chains contain only one edge, we
split that edge by inserting a corner at l, Fig. 14 (de). Secondly, for each pair of
adjacent chains we create a new corner at l and connect the start of the last edge
in the proceeding chain, εxhmaxx

, and the end of the first edge in the following

chain, εx+1
1 , Fig. 14 (e). Finally the inter-chain stage finishes by removing any

unreferenced corners from the active plan.

In addition to this basic technique, there a several implementation issues that

16



Figure 14: Active plan modification during a generalized intersection event. a)
The active plan just before the intersection of chains h1 (red), h2 (purple), and
h3 (green) at the point l. The chains consist of edges, ε. b) The topology just
before the event. c) The active plan geometry at the event, note the disappearing
region bounded by coincident edges ε21 and ε31. d) The topology of the chains
after the intra-chain stage. An edge, ε22, has been removed. e) The topology of
the active plan after the inter-chain stage. The edge in a chain of length one,
ε31, has been divided at l. After the edges are linked at l, the active plan has
been split into three regions. The three new corners (e, orange) are at the same
location, l, but they are expected to move in different directions over the course
of the extrusion process.

we address — the filtering of invalid events, checking for chain intersections and
local non connected events.

Filtering invalid events: Before the clustering stage we remove any invalid
edges from the edge set, f . Because the intersections are detected using un-
bounded direction planes, there may be edges in f that do not approach l on
the active plan. Such edges are removed from f . The line defined by the inter-
section of the direction plane and the sweep plane may pass close to l, however
the line-segment defined by the associated active plan edge may not. A small
epsilon range, δ3, expands the length of the edge and ensures that collisions
occur reliably. On our inputs we find δ3 = 10−5 a sufficient margin.

Second, an edge may have been removed from the active plan by a previous
event. These edges are also removed from f . After filtering, if the number of
edges in f is less than 3, the event is ignored.

Post inter-chain intersections: There are rare situations where the chains
after the inter-chain stage no longer form a valid plan on the sweep plane. To
test if the chains form a valid plan we predict the chain locations on a plane
higher than the active plan. If any of the chains intersect each other we use
an application of the winding rule to calculate valid region boundaries for the
current active plan. This may re-orient some edges, as well as insert new edges
or corners into the active plan.

Local non connected events: The above handling of locally connected events
is sufficient to create large cityscapes, Fig. 2. There are however, a class of de-
generate topologies that can occur on the active plan, which are not connected,
such as in Fig. 15. While we do not present a solution for each of these classes,

17



Figure 15: A complex, non-connected region, causing an intersection event.
Left: The active plan just prior to the intersection event between all the 9
edges. Middle: The output shell at this height, showing the edge angles and the
colliding edges. Right: One of several non-symmetrical solutions that removes
all but one edge.

the following observations are made.

If the edges in a chain form a closed loop, the chain may be simply removed. If
there is more than one chain of length one, the associated chain edges must be
parallel and the geometry between such adjacent chains may also be removed.
Finally, if a chain is nested inside another chain there are situations where inter-
chain updates no longer work. Here we just note that reversing a section of the
enclosing chain is enough to keep the area enclosed on the active plane well
formed. We note that we could not find an example where such degenerate
events were part of a meaningful architectural construction.

4.5 Edge Direction Events

A set of edge direction events are created for each profile. An edge direction
event updates the angle and direction planes of a set of edges. There are two
types of edge direction event, standard and near horizontal. Standard edge
direction events are constructed from a single angle in the plan, while a near
horizontal edge direction event is constructed from two consecutive angles and
a distance. These values are calculated from the profile polyline.

4.5.1 Standard Edge Direction Events

Input: A set of edges, f , in the active plan, each associated with the same
profile and a single new angle for all the edges, γ. Output: A new active plan
which replaces the original.

For each of these edges eji ∈ f , we update the associated direction plane by

setting its angle to γ. The edge, eji , continues to propagate over the sweep
plane as defined by the new angle.

18



4.5.2 Near Horizontal Edge Direction Events

We need a separate approach as the angle associated with an edge, θ, approaches
±π/2, as two parallel (horizontal) direction planes do not intersect to form a line.
Additionally, as the angle approaches these limits we are colliding near coplanar
planes, causing numerical instability. As Fig. 16 illustrates, we first increase
the angles for numerical robustness, recursively apply procedural extrusions,
and then project onto the sweep plane. This produces the required horizontal
surface.

Input: A set of edges in the active plan, f , associated with the profile, a dis-
tance, d, a direction angle, γ, and a following angle, ζ.
The angle γ ≈ π/2 (γ ≈ −π/2) specifies the direction of
the horizontal as towards the inside (respectively outside) of the active plan.
ζ specifies the angle of the following non-horizontal edge event. Output: A
new active plan which replaces the original.

Figure 16: The horizontal section desired (b) can be created by an additional
application of procedural extrusions to calculate the offset in the given direction.
After flattening (c) unchanged edges (red, d) are ignored.

First we create a temporary plan as a copy of the active plan. For each edge in
the original plan, eji , and associated angle θji , the temporary plan has an edge

Ej
i , and associated angle Θj

i . Secondly we update the angles in the temporary
plan according to the following mapping:

Θj
i =

 tan−1(d) if eji ∈ f and γ > 0

− tan−1(d) if eji ∈ f and γ < 0
0 otherwise

A recursive application of procedural extrusions extrudes the temporary plan
for a height of one unit. The temporary active plan is projected onto, and
replaces, the active plan in the original procedural extrusion instance. That is,
eji is replaced by Ej

i if it exists in the updated plan. If it does not exist in the

updated plan eji is removed from the active plan. The location of Ej
i is projected

onto the original active plan. Finally the values of θ in the original skeleton are

19



updated using the mapping:

θji =

{
ζ if eji ∈ f
θji otherwise

Occasionally multiple edge direction events occur at the same height. In this
situation the direction events are sequenced by the order of user creation. The
user can manually override this priority.

4.6 Profile Offset Events

Figure 17: Some meshes that can be computed from an input plan (a) using
profile offset events. Buildings b and c are shown in two orientations. By
creating two offset boundaries (e) that define an offset region (h), an overhanging
roof (b) can be generated from an arbitrary plan (a). If two edges are disabled
in the profile offset event, open-ended roofs can be created (c,f,i). Finally, by
offsetting inside the active plan, walled roofs can be created (d,g,j).

Profile offset events specify the start of overhangs. The difficulty of specifying
and handling profile offset events comes from the procedural definition. While

20



it is easy to specify overhangs for a given region, the geometry must adjust itself
according to subsequent user edits. Our technique must procedurally perform
changes to the active plan without creating awkward self-intersections.

At a profile offset event an additional inside region, called an offset region, is
inserted into the active plan (see Fig. 17). Two offset boundaries are grown from
the active plan to enclose the new offset region. We introduce new edges and
corners into the active plan to represent this newly enclosed region on the sweep
plane. The new edges are classified as inside, outside, or side, depending if the
edge stems from the first boundary, the second boundary, or an intersection
operation between the two boundaries described later in this subsection.

Figure 18: The recursive application of procedural extrusions (b) to a plan
(a) from Fig. 17 (c). The faces between z = 1 and z = 2 are projected onto
the primary active plan (c), before being merged (d). Zero area faces (blue
and purple) are removed, and profiles assigned based on the origin of the edge.
In (d) green edges are assigned profile inside, red profile outside and blue
profile side.

Input: A map for each edge in the active plan, eji to a tuple, tji = {disabledji ,
dist insideji , dist outside

j
i , profile inside

j
i , profile outside

j
i} and a single profile side.

The variable disabledji is a boolean value that specifies if the offset region asso-

ciated with this edge is present in the output; dist insideji and dist outsideji are
real values that define distance and direction from the active plan of the inside
and outside offset boundaries; profile insideji , profile outside

j
i and profile side

are profiles. We require that all values of dist insideji and dist outsideji have
the same sign; a positive (negative) sign indicates an offset (respectively inset)
of the active plan. To ensure proper topology on the active plan, the distance,

21



dist inside, is constrained to be non-zero. Output: The output of an offset
event is an updated active plan, typically with the additional region defined
either inside or outside of the input active plan.

We create a temporary plan as a copy of the primary (input) active plan. For
each edge in the primary plan, eji , the temporary plan has an edge Ej

i , and

an associated profile, profile recursiveji . Edge Ej
i is constructed by projecting

eji onto the plane z = 0. The profile profile recursiveji defines the angles

Θj
i = tan−1(dist insideji ) at z = 0, and Θj

i = tan−1(dist outsideji ) at z = 1.
We execute a recursive application of procedural extrusions using the temporary
plan as input. It is executed from height 0 to 2, to create a temporary output
shell. Faces of the shell between the planes z = 1 and z = 2 are projected onto
the primary active plan, forming the offset region, Fig. 18.

The projection associates each tuple, tji , with an offset region in the primary
active plan. The entire offset region is bounded by the projected edges, r.
Additionally the projection defines a 1:1 mapping between the new edges, ekl ∈ r,
and a subset of the temporary shell’s arcs Ak

l . We remove from the primary
active plan any edges in r that enclose an offset region of area 0 or that are
associated with a tuple containing a value of disabledji = true. We update

the profile, profileji , associated with each edge, eji , in the primary active plan
according to the function:

profileji =


profileji if eji /∈ r

profile insideji if Aj
i lies in the plane z = 1

profile outsideji if Aj
i lies in the plane z = 2

profile side otherwise

Finally we merge adjacent parts of the offset region to avoid self-intersections.
We remove the corresponding edges and corners from the active plan.

4.7 Insertions into the polygon

Plan edits introduce discrete changes to the active plan at specified heights.
We describe how plan edits operate efficiently and detail two methods to define
them.

When performing a plan edit, some edges are deleted, some edges are moved,
and some edges are inserted, Fig. 19. These new edges are at the height of the
current sweep plane.

Our user interface offers two types of plan edits. Inserting an arbitrary shape
gives the largest variety of geometric designs. However these forced steps offer
no guarantees that the resulting active plan will not self intersect and create an
invalid topology. The challenge comes again from the procedural nature of our
approach and the fact that the edit has to work for all input plans. Natural steps

22



Figure 19: Inserting a plan edit into the active plan during execution. a) The
plan data structure (blue dots, green arrows) implicitly defines the active plan
(cyan). b) To insert new edges into the active plan, corresponding edges are
linked into the plan data structure. c) The resulting architectural shell.

offer a solution to this problem by using a recursive application of procedural
extrusions to insert edges into the active plan.

Natural steps are calculated on the active plan at a given height by amending
a small (typically 10−3 by 10−3) protrusion. This is offset by a recursive appli-
cation of procedural extrusions such that it does self intersect, Fig. 20. This is
similar to the edge direction events of Sec. 4.5. This application of procedural
extrusions is constructed by assigning θ = 0 to all edges not part of the feature,
and a user defined θ to those edges in the protrusion. The resulting temporary
active plan is calculated at a specific height, and this is incorporated into the
original active plan. The new edges in the active plan have the relevant profiles
assigned to them.

4.8 Ambiguities in Procedural Extrusions

We show that procedural extrusions (as well as the weighted straight skele-
ton [14]) are ambiguous in the concave case. Different modeling choices lead to
different ambiguous-case resolution strategies, Fig. 22.

The ambiguous case may arise when two (or more) neighboring edges in the
active plan become colinear on the same side of a region. This happens, for
example, when edges previously separating the colinear edges are eliminated.
We may also arrive in this situation if the input, or any of the plan edits,
introduce colinear edges.

If the two neighboring and colinear edges bound different sides of a region the

23



Figure 20: Given an intricate plan, calculating a robust perturbation is chal-
lenging. Forced steps are positioned at the location of the anchors (a, orange).
These are combined with the boundary using a geometrical union operation.
However many geometry artifacts are undesirable (c, red) in an architectural
situation. Given natural steps at certain positions (a, orange), small changes to
the boundary are made (d), which are then grown (e) using a recursive appli-
cation of procedural extrusions, to create more natural geometry (f).

output is an arc representing a ridge and the computation proceeds as normal,
assured that at the opposite end of the ridge the two edges will collide again [16].
This is not an ambiguous event and we can distinguish the regular roof ridge case
from an ambiguous event by making use of the fact that we use oriented edges
to describe a plan. When the edges have the same orientation (they bound the
same side of a region) we are not able to determine the direction of the output
arc, Fig. 21. This produces an ambiguity.

The individual ambiguous events need to be solved consistently from a global
perspective, Fig. 21; This is one reason for the vertical clustering outlined earlier.
All colinear consecutive edges involved in an intersection on the active plan are
grouped together. We resolve the situation by merging all consecutive edges
into one and applying the profile of the edge that has the highest priority. Then
we remove the other edges involved in the ambiguous events. To select the one
edge we assign a priority ordering over the edges and choose the edge with the
highest priority.

We introduce three possible priority schemes. It is interesting to note that
most architectural roof structures (such as bay or dormer windows) enclose the
maximum volume in the ambiguous case. This leads to our default scheme in

24



Figure 21: An ambiguous situation that arises in the case of a concave input
plan, a. The intersection of the yellow and green edge’s direction planes gives
two possible output arc directions (a, red). This may be resolved into two ways,
b,c.

which the highest priority edge, eji , has the lowest (closest to −π/2) associated
angle, θ. Alternately the minimum case (largest associated θ) may be useful
when estimating conservative offsets. The third option is to manually define the
priority function in the user interface. Section 6.2 describes situations where it
is desirable for the user to manually define the priority function.

5 Results

5.1 Modeling Results

In this section we show several interesting applications of modeling with proce-
dural extrusions.

Fig. 23 shows many typical architectural shells that are not possible using just
the straight skeleton or other existing procedural modeling tools. We can also
create buildings with horizontal roof overhangs, such as Fig. 24. The alcoves
and columns show how disconnected regions can merge together and interact.
This is only possible because we allow negative angles for the roof planes.

Procedural extrusions may be used on a large scale to describe cityscapes.
We created a procedural model using about 6000 footprints from Atlanta (see
Fig. 2). The current model has three million polygons, 5 different building
styles, took 20 minutes modeling time, 10 minutes to compute the procedural
extrusions, and 15 minutes to render. Our current limitation is that we were not
able to find a rendering infrastructure to render a few hundred million polygons
of a detailed model. We therefore had to omit ornaments and some details of
the roof constructions from the designs.

25



Figure 22: Two identical bay windows that lead to the same two events (red
circles) involved in an ambiguous situation (red line). To resolve the ambiguous
situation, a single edge must be chosen to replace the others. The building on
the left (right) resolves the ambiguity using the volume maximizing (respectively
minimizing) priority technique. The resulting unused section of the original
profile is shown in orange. Note that in each case, two ambiguous events occur
at the same height, and must create globally consistent output.

We implemented the proposed system in Java and measured the running time
of our system on 64bit 2.6GHz Xeon.

We created a procedural model for town homes adjacent to a curved street,
Fig. 26. The street can be reshaped interactively, while the building models
adapt to the new footprints. Finally, procedural extrusions can be used to
model other architectural features such as windows or moldings, Fig. 27.

6 Evaluation

To evaluate the skeleton as a modeling primitive we constructed 50 buildings.
Here we detail the process we undertook to perform the modeling.

6.1 Evaluation Setup

We modeled each building from a plan and a perspective image. A set of four
simple meshes (Fig. 28) were used to add detail to the structures. The events
used for modeling were edge direction events, profile offset events and natural
steps.

26



We undertook the evaluation with the goal that all major roof features from the
elevation drawings should be present, although smaller details (such as cornices,
plumbing and decorative windows) may be excluded. We traced the plans from
those specified or aerial views of the property. The construction of profiles and
positioning of features was performed by eye by the first author of this paper.

The first 45 buildings were taken from a library of ready designed architectural
styles for family homes [23]. We modeled the first example in each of the cate-
gories the library provided. The library contained styles as diverse as ranch or
Dutch (Fig. 25, examples 13 and 32 respectively), however much of the stylis-
tic content was dependent on architectural details that were replaced with our
simple meshes. Because the plans were pre-designed, they had predominantly
90◦ and 45◦ degree angles between floorplan edges. That is, the design was not
constrained by environmental features. To provide more challenging examples,
we chose an additional five buildings from European cities that had irregular
plans (Fig. 25, examples 46-50). These buildings were modeled from satellite
and aerial views, Fig. 29.

The modeling times ranged from 20 to 120 minutes with a mean time of 63
minutes. Features on the input plan smaller than 30cm were not modeled. We
also recorded a number of additional metrics for each building: the number of
vertices in the input plan and in the model; the number of corner-loops in the
input and in the model; the number of profiles in the model, the number of
offset events, the number of natural step templates and the number of instances
of those steps.

6.2 Evaluation Results

It was possible to model all the buildings using our interface. Some roof-lines
were easier than others, and in this section we describe some of the problems
encountered.

The most common issue when modeling was the construction of roof areas that
contained edges not specified in the input plan (Fig. 30 (a). In these circum-
stances it was necessary to add extra edges to model these features. These
would either be added in the plan, leading to the difference between the vertices
in the input plans and the model in several of the examples, or by natural steps
at certain heights.

We share a limitation with the straight skeleton that certain smaller edits to
the footprint can result in bigger changes to the roof surface [14]. For example
when two adjacent edges with different angles are nearly parallel, the behavior
of the resulting roof can be erratic as the angle between the edges is set to
greater than, or less than zero. In practice these edges do not appear often in
architecture, and we often end up adding a perpendicular edge (Fig. 30, a).

In several circumstances one face relies upon another, spatially separated, face to

27



halt its propagation at the correct time, that is an edge is fated to meet another
(Fig. 30, b). When another feature blocks, or changes the course of one of these
faces, the other may not terminate, or collide in an unexpected location. These
fated edges lead to potentially undesirable intermediate outputs while editing.

Modeling circular arches was difficult because any adjustment in the width of
the arch, would have to be accompanied by a re-scaling of the profiles. Modeling
techniques such as shape grammars are able to retain such semantic information
to automate such a process, and it is possible to imagine a similar system for
the procedural extrusions.

It is not convenient to model a roof that is held only by a large number of
pillars, because it is not easy to model the transition from pillars to the roof.
For example, pergolas (Fig. 25, example 31) contain no walls to allow the plan
to generate a roof. These were not a large part of our data set, and were
approximated by walled structures of similar volume.

It was occasionally necessary to override our default of a volume maximizing
priority in the ambiguous case. For example, in the case of a chimney stack or a
dormer window (Fig. 30, c). To do this we used tags to specify high priority and
low priority profile segments. This proved simple compared to the alternative
of specifying a priority for every pair of segments.

While allowing one profile to split into two is the simple case of inserting an
edge with a step, allowing two profiles to merge to one is more difficult (Fig. 30,
d). We see this architectural feature as two different profiles to merge at the
top of a shorter roof (Fig. 25, examples 3, 20). To design a profile with a face
co-planar to another is difficult, especially if the second edge starts from an edge
parallel, but not colinear to the first.

Natural steps proved very versatile for inserting edges into the polygons. For
example, Fig. 25 (example 34) required a new edge internal to the plan for the
back-facing wall of the tower. By positioning a wide square natural step on the
end of the building, it was possible to split the polygon into two. One partition
became the tower, and the other the remainder of the roof structure.

From a development perspective the algorithms are difficult to implement. It is
hard to give a formal guarantee that the implementation will work correctly on
all inputs. This may be observed when using our user interface, as occasionally
a face will not contain enough arcs to close the area. In this case the face
will not be visible to the user. This may occur once in every 5 minutes of
interactive editing with multiple edits per second; It is certainly possible to
construct pathological input cases. In the procedural case, we visually identified
missing faces in two of the meshes, from the 6000 floorplans in the GIS database,
Fig. 31.

However, our modeling system is more specialized than most commercial polyg-
onal modeling packages. The virtual model of Atlanta is unique and we argue
that no existing approach can model a city of comparable (roof) complexity in

28



reasonable time.

7 Discussion

A major design decision for our system was to choose between a rational arith-
metic or a floating point implementation. Our floating point implementation is
better suited to interactive modeling applications because it prioritizes interac-
tive update speeds over high precision. A rational arithmetic approach may be
important to give theoretical guarantees and such an alternative implementation
would be very valuable.

We are the first to introduce an algorithm for extrusions using edges with inde-
pendent per-edge angles (weights). This results in a 3d instead of a 2d algorithm.
We are also the first to recognise the difficulty of independent per-edge angles.
The possibility of a 2d weighted skeleton is discussed in previous work [14, 24],
but no algorithm is given and the ambiguous cases were not discovered. Even
though our work is based on previous work in the unweighted case, e.g. [16,17],
our modifications result in substantial improvements in the range of forms that
can be produced, Fig. 32.

In previous work [19] the direction of the extrudes is monotonic in the upwards
direction, that is they are limited to angles above the sweep plane. By using
profile offset events, we can allow non-monotonic profiles.

8 Conclusions

We believe that the combination of interactive and procedural modeling is a
significant boost to artists productivity and a great complement to existing
modeling tools. In some sense our work is complementary to previous work by
Lipp et al. [2]. Our approach to encoding procedural models is very different
from the previous shape grammar approach [1,2]. We believe that we are the first
to provide a solution for the procedural modeling of roofs, procedural modeling
from arbitrary building footprints, and other complex architectural surfaces.
However, previous work is better suited for placing elements on facade planes
and we see some potential in combining both approaches in future work.

The main contribution of this paper is the design of the system and the set
of tool choices to enable procedural modeling of complex architectural surfaces.
Procedural extrusions can model many complex architectural surfaces that could
not be easily modeled with previous procedural modeling tools. Examples are
curved roofs, overhanging roofs, dormer windows, interior dormer windows, roof
constructions with vertical walls, buttresses, chimneys, bay windows, columns,
pilasters, and alcoves.

29



References

[1] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc
Van Gool. Procedural modeling of buildings. ACM Trans. Graph., 25:614–
623, July 2006.

[2] Markus Lipp, Peter Wonka, and Michael Wimmer. Interactive visual edit-
ing of grammars for procedural architecture. ACM Trans. Graph., 27:102:1–
102:10, August 2008.

[3] O. Aichholzer, F. Aurenhammer, D. Alberts, and B. Gaertner. A novel
type of skeleton for polygons. Journal of Universal Computer Science,
12(12):752–761, 1995.

[4] G. Stiny. Pictorial and Formal Aspects of Shape and Shape Grammars.
Birkhauser Verlag, Basel, 1975.

[5] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky.
Instant architecture. ACM Trans. Graph., 22:669–677, July 2003.

[6] Daniel G. Aliaga, Paul A. Rosen, and Daniel R. Bekins. Style grammars
for interactive visualization of architecture. IEEE Transactions on Visual-
ization and Computer Graphics, 13(4):786–797, 2007.

[7] P. Prusinkiewicz and A. Lindenmayer. The Algorithmic Beauty of Plants.
Springer Verlag, 1991.

[8] Jean-Eudes Marvie, Julien Perret, and Kadi Bouatouch. The FL-system: a
functional L-system for procedural geometric modeling. The Visual Com-
puter, 21(5):329–339, 2005.

[9] Paul Merrell and Dinesh Manocha. Continuous model synthesis. ACM
Trans. Graph., 27:158:1–158:7, December 2008.

[10] Marcio Cabral, Sylvain Lefebvre, Carsten Dachsbacher, and George Dret-
takis. Structure preserving reshape for textured architectural scenes. Com-
puter Graphics Forum (Proceedings of the Eurographics conference), 2009.

[11] Ran Gal, Olga Sorkine, Niloy J. Mitra, and Daniel Cohen-Or. iWires: an
analyze-and-edit approach to shape manipulation. ACM Trans. Graph.,
28:33:1–33:10, July 2009.

[12] Justin Legakis, Julie Dorsey, and Steven Gortler. Feature-based cellular
texturing for architectural models. In Proceedings of the 28th annual con-
ference on Computer graphics and interactive techniques, SIGGRAPH ’01,
pages 309–316, New York, NY, USA, 2001. ACM.

[13] Oswin Aichholzer and Franz Aurenhammer. Straight skeletons for general
polygonal figures in the plane. In Computing and Combinatorics, pages
117–126. Springer-Verlag, 1996.

30



[14] David Eppstein and Jeff Erickson. Raising roofs, crashing cycles, and play-
ing pool: applications of a data structure for finding pairwise interactions.
In SCG ’98: Proceedings of the fourteenth annual symposium on Compu-
tational geometry, pages 58–67, New York, NY, USA, 1998. ACM.

[15] Franz Aurenhammer. Weighted skeletons and fixed-share decomposition.
Comput. Geom. Theory Appl., 40(2):93–101, 2008.

[16] Petr Felkel and Stepan Obdrzalek. Straight skeleton implementation. In
Proceedings of Spring Conference on Computer Graphics, pages 210–218,
1998.

[17] Fernando Cacciola. A CGAL implementation of the straight skeleton of a
simple 2d polygon with holes. In 2nd CGAL User Workshop, 2004.

[18] R. G. Laycock and A. M. Day. Automatically generating large urban envi-
ronments based on the footprint data of buildings. In SM ’03: Procedings
of the ACM symposium on Solid modeling and applications, pages 346–351,
NY, USA, 2003. ACM Press.

[19] S. Havemann. Generative Mesh Modeling. PhD thesis, TU Braunschweig,
2005.

[20] Tom W A Kelly. City architecture generation. Master’s thesis, Bristol,
2006.

[21] Autodesk Inc. Revit
TM

. http://www.revit.com.

[22] Microsoft Corp. Bing maps
TM

. http://www.bing.com.

[23] Hanley Wood, LLC. eplans.com, sept 2010. http://www.eplans.com.

[24] Gill Barequet, David Eppstein, Michael T. Goodrich, and Amir Vaxman.
Straight skeletons of three-dimensional polyhedra. In ESA ’08: Proceedings
of the 16th annual European symposium on Algorithms, pages 148–160,
Berlin, Heidelberg, 2008. Springer-Verlag.

31



Figure 23: From top, left: buttress, dormer windows, flying buttress, bay win-
dows, curved plan, eight faces meeting on a symmetrical footprint with a chim-
ney, hipped roof, curved roof, a horizontal overhang, an overhanging gable,
standard gable and interior dormer windows

32



Figure 24: Inset: the output of our procedural extrusions using a complex
footprint, horizontal sections and plan edits. We are able to create pillars,
covered parking and alcoves respectively. Main: A procedural condo with roof
texture surrounded by procedural trees

33



Figure 25: The example cases and modeling statistics. v Vertices in modeled
plan (additional vertices); l Polygons in modeled plan (polygons in library plan);
p Number of profile sections in model; s Number of natural steps designed
(number of natural step applications); o Number of offset events.

34



Figure 26: A procedural model that renders a street from a spline. In this case
the street was generated by four points defining the street’s curve. Seed points
were grown using another application of the skeleton to create the building
footprints.

Figure 27: Using a creative set of profiles, a wide range of architectural features
can be created. By setting the input in a different plane, various windows may
be extruded.

35



Figure 28: The four example meshes used in the evaluation. The meshes are
parameterized via control points (blue and green circles) and can be instanced
to different sizes.

Figure 29: Sample aerial photographs of buildings used for modeling examples
46 to 50 in Fig. 28. a,b) Stockholm, c) Copenhagen, d) Edinburgh, e) Vienna.
c©2011 Microsoft Bing Maps [22].

36



Figure 30: a) The red roof face is not described in the input polygon(left). By
creating a small change to the input polygon we can create the desired face
(green). b) left: edges can be expected to collide at a certain height (green
polygons), right: however when these edges are involved in other events (such
as those from the red polygon), there may be undesired consequences, here a
non-terminating polygon. c) Some structures (such as dormer windows and
chimneys) do not obey the volume-maximizing resolution to the ambiguous
case, in this situation we have to lower the ambiguous case priority of some
edges (blue) to get the desired result. d) A face (yellow) may be shared between
two profiles (blue lines), defining co-planar profile sections requires patience on
behalf of the user.

Figure 31: The two observed examples of missing geometry. Note the missing
roof sections in both buildings.

Figure 32: Left: Straight skeleton; Middle: Straight Skeleton with angle
changes; Right: Procedural extrusions

37


	citation_temp.pdf
	http://eprints.gla.ac.uk/48707/


