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Abstract. 

Atrial fibrillation (AF) causes substantial morbidity and mortality. It may be triggered and sustained 

by either re-entrant or non-re-entrant electrical activity. Human atrial cellular refractory period is 

shortened in chronic AF, likely aiding re-entry. The ionic and molecular mechanisms are not fully 

understood, and may include increased inward rectifier K
+
 current and altered Ca

2+
-handling. Heart 

failure, a major cause of AF, may involve arrhythmogenic atrial electrical remodelling, but the pattern 

is unclear in humans. Beta-blocker therapy prolongs atrial cell refractory period; a potentially anti-

arrhythmic influence, but the ionic and molecular mechanisms are unclear. The search for drugs to 

suppress AF without causing ventricular arrhythmias has been aided by basic studies of cellular 

mechanisms of AF. It remains to be seen whether such drugs will improve patient treatment. 

Keywords: Atrial fibrillation; Arrhythmias (mechanisms); Refractory period; Transmembrane action 

potential; Ion current; Heart failure; Beta-blocker; Electrical remodelling. 

 

 

List of abbreviations. 

4-AP (4-aminopyridine); 5-HT (5-hydroxytryptamine/serotonin); AA (abnormal automaticity); AF 

(atrial fibrillation); AP (action potential); APD (action potential duration); APD50 (action potential 

duration at 50% repolarisation); AT (atrial tachypacing); CA (constitutively active); CAD (cellular 

arrhythmic depolarisation); CHF (congestive heart failure); CS (cardiac surgery); DAD (delayed 

afterdepolarisation); EAD (early afterdepolarisation); ERP (effective refractory period); ET-1 

(endothelin); ICaL (L-type Ca
2+
 current); If (funny current); IK1 (inward rectifier K

+
 current); IKACh 

(acetylcholine-activated K
+
 current); IKATP (adenosine triphosphate-sensitive K

+
 current); IKr (rapid 

delayed rectifier K
+
 current); IKS (slow delayed rectifier K

+
 current); IKur (ultra-rapid delayed rectifier 

K
+
 current); INa (Na

+
 current); INa/Ca (Na

+
-Ca

2+
 exchange current); Ip (Na

+
, K

+
 pump current); ISO 

(isoproterenol); ITO (transient outward K
+
 current); LVSD (left ventricular systolic dysfunction); MDP 

(maximum diastolic potential); NDA (no data available); PK (protein kinase); PV (pulmonary vein); 

SR (sinus rhythm); Vm (resting potential); Vmax (maximum upstroke velocity); VTP (ventricular 

tachypacing); λ (wavelength); θ (conduction velocity). 
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Electrophysiological mechanisms of human AF, and their study in single atrial cells. 

 Atrial fibrillation (AF) is the most common sustained cardiac arrhythmia. It causes substantial 

morbidity and mortality. The majority of atrial premature beats that initiate AF originate from focal 

ectopic electrical activity in the pulmonary veins (PV). AF is sustained by single or multiple circuit 

intra-atrial re-entry and/or focal ectopy, and the latter may be re-entrant or non-re-entrant.
1
 Non-re-

entrant mechanisms include abnormal automaticity (AA) and triggered activity. Abnormal 

automaticity is the premature firing of action potentials (AP) due to abnormal diastolic membrane 

depolarisation (Fig 1A), and is favoured by, e.g., β-adrenergic stimulation or decreased vagal activity. 

Triggered activity is premature firing due to afterdepolarisations. These may be early (EAD), 

occurring during repolarisation and favoured by AP-prolongation, or delayed (DAD), occurring after 

an AP and favoured by intracellular Ca
2+
-overload (Fig 1A). Re-entry is rapid circuitous activation 

caused by unidirectional conduction block, and favoured by premature impulses, heterogeneity and 

shortening of effective refractory period (ERP), and slowing of conduction velocity, θ (Fig 1B). 

Several electrophysiological parameters which may affect AF genesis and maintenance have been 

measured in human atrial isolated cells. The cellular ERP
2
 and AP maximum upstroke velocity, Vmax 

(Fig 1C) contribute to myocardial ERP and θ, respectively, so their reduction could promote re-entry 

by shortening its wavelength, λ (Fig 1B). “Cellular arrhythmic depolarisations”, CADs
3
 (Fig 1D) may 

represent AA, EADs or DADs, with potential involvement in non-re-entrant mechanisms.  

 

Atrial cellular electrical remodelling in AF. 

 Atrial myocardial electrical and mechanical activity and structure adapt, or remodel, in response to 

a variety of diseases and other stimuli. For example, congestive heart failure (CHF) may involve 

electrical remodelling, atrial dilation and interstitial fibrosis, each potentially predisposing to AF. 

Once AF occurs, the rapid atrial rate causes atrial electrical remodelling which promotes AF, so AF is 

auto-perpetuating. In goats, induced AF progressively shortened atrial ERP and AF-interval over 24 

hr, which reduced the re-entry λ and increased AF vulnerability.
4
 Maximal ERP-shortening may 

precede maximal AF duration, but the ERP-shortening contributes to the AF substrate. In our 
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laboratory, a similar ERP-shortening was found in atrial cells isolated from patients with chronic AF 

(Fig 1C). This was associated with impaired ERP rate-adaptation, shortening and triangulation of the 

AP, and no change in Vmax.
2
 The shortened AP permitted full repolarisation at the fast rates typically 

encountered in AF, and thus prevented the depolarisation of the maximum diastolic potential (MDP) 

which was observed in sinus rhythm (SR).
2
 This effect on MDP might limit Ca

2+
-overload in the 

remodelled atrium, but the ERP changes favour re-entry. The ERP is largely determined by the AP 

duration (APD), which depends on a delicate balance of inward and outward ion currents flowing 

through a variety of membrane protein channels, pumps and exchangers. Therefore, an understanding 

of the mechanisms of human AF-induced atrial electrical remodelling requires knowledge about 

precise changes in each of these currents, and their contributions to the AP, in AF. 

 

Potential ionic mechanisms of electrical remodelling in AF. 

 Many human atrial ion currents have so far been studied in AF; collated in the Table. The inward 

rectifier K
+
 current (IK1) is the main determinant of the resting potential (Vm). Other currents 

contribute, including acetylcholine-activated K
+
 current (IKACh), Na

+
, K

+
 pump current (Ip), and 

possibly ATP-sensitive K
+
 current (IKATP). IK1 and IKACh also contribute to terminal repolarisation. 

There is consensus that chronic AF is associated with increased density of IK1 (Table). Furthermore, 

despite decreased parasympathetic-regulated IKACh, a constitutively active (CA) IKACh, not requiring its 

endogenous agonist, is induced in AF (Fig 2). A single study on Ip, from our laboratory, showed no 

change in AF, and changes in IKATP are variable. The reported increases in IK1 and CA IKACh were most 

prominent (with enhanced inward current) at voltages more negative than the AP voltage range. 

However, enhanced outward IK1 has also been reported, within the AP voltage range,
5,6,8
 which may 

contribute to the APD- and ERP-shortening in AF. Increased IK1 should also hyperpolarise Vm; whilst 

difficult to ascertain in human atrial isolated cells since the “chunk” isolation method may depolarise 

them, this has been reported in atrial trabeculae.
6
 The AP fires when depolarisation sufficient to drive 

Vm to threshold activates inward Na
+
 current (INa), causing the regenerative and rapid AP upstroke; the 

larger INa, the faster Vmax. A single study reported no change in INa density in AF, consistent with Vmax 

(Table), though its inactivation voltage-dependency was altered. Partial, or early, repolarisation 
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follows the AP upstroke, via activation of a transient outward K
+
 current (ITO) and the ultra-rapid 

delayed rectifier K
+
 current (IKur). AF consistently and markedly reduced ITO, but data for IKur are 

equivocal (Table). The ITO reduction may contribute to AP triangulation in AF, as shown by blocking 

ITO with 4-aminopyridine (4-AP).
2
 However, its contribution to the APD90 and ERP is unclear since 4-

AP also blocks IKur, though mathematical modelling suggested a negligible role.
34
 The AP plateau is 

maintained by inward, L-type Ca
2+
, current (ICaL), which is consistently and markedly reduced in 

chronic AF (Table), despite increased single channel open probability.
35
 Such ICaL reduction depresses 

the AP plateau, consistent with acute effects of nifedipine
2
 or simulated ICaL reduction,

34
 though its 

contribution, alone, to the APD90
2,34
- or ERP

2
- shortening may be small. Mid/late repolarisation results 

from activation of IKur, as well as the rapid (IKr) and slow (IKS) delayed rectifiers, balanced by inward 

Na
+
-Ca

2+
 exchange current (INa/Ca) following the [Ca

2+
]i transient. INa/Ca also underlies the transient 

inward current responsible for DADs. However, any role for these currents in human AF-remodelling 

is presently unclear, since data are either equivocal or unavailable (Table). Abnormal automaticity 

results from decreased outward and/or increased inward diastolic currents, including INa/Ca and the 

“funny” current (If). However, data on If are also lacking. 

 Human PV isolated cell electrophysiology has not yet been studied. Chronic atrial tachypacing 

(AT) in dogs produced qualitatively similar APD-shortening in PV cells to atrial cells, and also similar 

changes in IK1, ITO and ICaL.
36
 However, a current which may be analogous to human CA IKACh was 

increased more strongly in PV than atrial cells, perhaps favouring PV re-entry.
37
 The relative 

importance of re-entrant versus non-re-entrant activity to PV arrhythmogenesis, either before or after 

AF-remodelling, is unknown.
1
 

 Atrial electrical activity is intricately linked with cellular and sub-cellular Ca
2+
 fluxes, particularly 

via INa/Ca. Intracellular Ca
2+
-handling is altered in AF, though human data are sparse. In canine atrial 

cells, acute AT, analogous to a paroxysm of AF, abruptly increases diastolic [Ca
2+
]i, a potential trigger 

of the remodelling process. Chronic AT, by contrast, markedly decreased the [Ca
2+
]i transient 

amplitude,
38
 perhaps reflecting protection from [Ca

2+
]i-overload. This may result from a deficient 

trigger function of the markedly reduced ICaL, since sarcoplasmic reticular Ca
2+
 content was 

preserved.
38
 Human AF was associated with a potentially arrhythmogenic increase in the frequency of 
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Ca
2+
 sparks and waves.

39
 This may represent sarcoplasmic reticular Ca

2+
 leak due to ryanodine 

receptor hyperphosphorylation.
40
 

 Whether the combined ionic changes so far established in human AF can account for the 

associated AP changes is unclear, and will require the aid of mathematical models. One such model 

suggested that the combined IK1, ITO and ICaL changes could explain the AP changes,
34
 though in dog, 

concurrent [Ca
2+
]i changes were required.

38
 Another suggested a major contribution from the IK1 

increase to the stabilisation of re-entry.
41
 

 

 

Potential molecular mechanisms in AF: genetic and non-genetic. 

 Many atrial ion current changes in human AF are accompanied by, and often considered to be 

caused by, altered tissue expression of the ion channel pore-forming α-subunits that carry them; e.g., 

increased Kir2.1 (carries IK1) and decreased Kv4.3 (ITO).
11
 However, there are some intriguing and 

controversial exceptions. Protein levels of ICaL α-subunits were decreased by 40-55% in three 

studies,
35,42,43

 in line with ICaL reduction, but unchanged in four others.
11,20,21,44

 Also, despite increased 

CA IKACh in AF (Table), Kir 3.1 protein level was decreased.
43
 The apparent discrepancies between 

changes in ion current density and protein expression suggest post-translational modification or altered 

channel regulation. The magnitude of ICaL is influenced by a balance between channel phosphorylation 

by kinases and de-phosphorylation by phosphatases. Chronic AF upregulated phosphatase type-2A-C, 

reducing ICaL without requiring reduced channel protein.
20
 Similarly, induction of CA IKACh in human 

AF resulted from abnormal protein kinase C function.
12
 (Fig 2C). 

 AF may be a heritable disorder: positive family history was identified in 5% of patients with AF.
45
 

Several genetic mutations have been associated with familial AF, mainly for K
+
 channels. Most are 

“gain of function”, increasing IKs, IKr or IK1 and expected to shorten ERP and promote re-entry, though 

an IKur loss of function mutation might prolong ERP.
45
 However, such mutations occur in other 

diseases, e.g., dilated cardiomyopathy, long-QT, short-QT and Brugada syndromes, some of which are 

co-morbidities for AF. Nevertheless, it seems that genetic variants are involved in the pathogenesis of 

AF in a proportion of cases. 
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Neurohumoral involvement in AF. 

 AF can result from a sympathetic/parasympathetic imbalance. Furthermore, neurohumoral 

activation in CHF, an important cause of AF, increases circulating levels of catecholamines, 

angiotensin and endothelin (ET-1). Beta-adrenergic-stimulation from catecholamines may promote 

DADs, by increasing ICaL and Ca
2+
-induced Ca

2+
 release. AF-remodelling potentiated the relative 

increase in ICaL produced by β-stimulation (Table). We demonstrated that ET-1 had no direct effect on 

ICaL, APD or ERP in human atrial cells. However, it abolished isoproterenol-induced increases in ICaL, 

APD50 and CADs (Fig 1D), with no effect on ERP.
3
 Thus, ET-1 might exert an anti-adrenergic anti-

arrhythmic influence in the atria of patients with CHF. Serotonin (5-HT) is released from platelets 

aggregating in static blood in fibrillating atria. We demonstrated that 5-HT may be arrhythmogenic in 

human atrium, by increasing ICaL and producing CADs, without affecting ERP.
33
 Atrial remodelling by 

AF may protect from these effects, however, since they were attenuated in cells from patients with 

chronic AF
7
 (Table). 

 

Post-operative AF: is there a predisposing atrial cellular electrophysiological substrate? 

 AF is common in patients following cardiac surgery (CS). Post-CS AF is independently predicted 

by old age, pre-CS AF and pre-CS P-wave changes. Therefore, pre-CS atrial cellular 

electrophysiology could influence the propensity for new onset AF post-CS; an issue presently under 

debate. An early study showed an association between post-CS AF and an enhanced pre-CS ICaL;
18
 

potentially arrhythmogenic post-CS, when catecholamines are elevated. However, we recently 

demonstrated, by contrast, that neither pre-CS ICaL, AP parameters or ERP were predictive of post-CS 

AF.
22
 Furthermore, no other ion current measured, nor the ICaL response to β-stimulation, were 

different between patients with and without post-CS AF (Table). Some currents remain to be studied, 

but it appears that the electrically remodelled state caused by chronic AF (Table) is not present pre-CS 

in the atrial cells of patients who develop new onset post-CS AF. 
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Heart failure-induced atrial remodelling. 

 AF is common in patients with CHF, and left ventricular systolic dysfunction (LVSD) 

substantially increases the risk of AF. It is unclear whether atrial cellular electrical remodelling, in 

patients in SR, contributes to this predisposition to AF. The available human data are scarce and 

inconsistent (Table), and compounded by inevitable variability in patients’ disease states and drug 

treatments. Atrial cellular electrical remodelling has been demonstrated in canine models of chronic 

ventricular tachypacing (VTP)-induced CHF. AF was invariably promoted, but the remodelling 

pattern differed from AF: atrial ERP was unchanged or increased, IK1 was not increased, both ITO and 

IKS were decreased, ICaL was only moderately decreased, and INa/Ca was increased.
46,47

 The increased 

INa/Ca might favour a triggered origin of AF in this model. CHF also caused atrial fibrosis, and whilst 

the ionic remodelling reversed after ceasing VTP, the fibrosis and AF persistence did not.
46
 Thus, 

atrial electrical remodelling may contribute to AF genesis, but was not necessary for its maintenance 

in this model. Human CHF or LVSD were associated with variable changes in APD, and cellular ERP 

has not been studied (Table). Human atrial ionic changes in CHF or LVSD may be expected to differ 

from those in chronic AF, with decreased IK1 and increased ITO, decreased or unchanged ICaL, and a 

decreased ICaL response to β-stimulation, so far reported (Table). The pattern may depend on the 

degree of atrial dilation, which itself may cause ionic remodelling (Table). Moreover, CHF- and AF-

induced atrial remodelling interact. In dogs, this interaction was complex, not summative: chronic AT, 

imposed on a CHF-remodelled atrium, caused moderate ERP-shortening, IK1-increase and ICaL-

decrease, but did not further remodel ITO, IKS or INa/Ca.
47
 No comparative human atrial data could be 

found. 

 

Atrial remodelling by chronic drug therapy. 

 Atrial electrophysiology remodels in response not only to diseases and ageing, but also to long-

term drug treatments; so called “pharmacological remodelling”.
31
 This was originally demonstrated in 

rabbits: treatment with the β1-blocker metoprolol caused an adaptational prolongation of the atrial 

APD, maximally after 6 days.
48
 Beta-blockers are increasingly used to treat AF and HF. We 

demonstrated that in patients in SR, β1-blocker treatment for ≥7 days was independently associated 
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with prolonged atrial cell APD90 and ERP
22,31

 (Fig 3A&B), and not with ICaL.
22
 The ITO was reduced 

(Fig 3C), and ISUS was unchanged (Table). Preliminary data from our group suggest that the ITO 

reduction does not involve altered voltage-dependency or kinetics,
32
 nor altered ion channel 

expression,
49
 and that IK1 is also reduced.

32
 Recent sub-group analysis revealed a significant 

correlation between ERP and atenolol dose (Fig 3D), suggesting that the ERP prolongation is at least 

partly caused, directly or indirectly, by the atenolol treatment. Such ERP-prolongation might 

contribute to the anti-arrhythmic effects of beta-blockers, though a potentiation by chronic β-blockade 

of effects of 5-HT on ICaL (Table) and CADs
33
 could also oppose them. 

 

How research on cellular bases for human AF is driving new therapeutic strategies. 

 Traditional ERP-prolonging drugs, to inhibit re-entry, do so by blocking IKr. This is problematic 

because IKr exists in ventricle as well as atrium, risking ventricular EADs and fibrillation. IKur and 

IKACh are considered to be atrium-specific, so their block might prolong ERP in atrium only, depending 

on secondary ionic effects. However, targeting ion channel regulation may be preferable to ion 

channel block. Altering the PKC pathway which induces CA IKACh in chronic AF
12
 might avoid 

undesirable effects of inhibiting parasympathetic-regulated IKACh on sinoatrial node and bladder. 

Blocking the phosphatase-induced ICaL decrease caused by AF
20
 is another possibility. Moreover, “de-

remodelling”, in theory might be better than such “anti-remodelling”, since blocking potentially 

protective adaptations may be risky. Pharmacological targeting of non-re-entrant mechanisms of AF 

also may be considered. 

 AF is a highly complex, multifactorial and dynamic disorder with differing characteristics and 

aetiologies among individuals. As such, it presents an enormous challenge for the development of 

drugs for its effective and safe treatment. Current basic research is driving the search for new drugs. 

Several, including IKur and IKACh blockers, are entering clinical trials. It remains to be seen whether 

they will improve patient treatment. 
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Table and Figure legends. 

 

Table. 

Human atrial cellular electrophysiological changes associated with AF, ventricular dysfunction and 

drug therapy. Arrows show direction of change relative to “controls”. *=atrial dilation only. NDA=no 

data available. See text for definitions. 

 

Figure 1. 

Electrophysiological mechanisms of arrhythmias and their study in human atrial cells. A, 

Representation of premature action potentials (
 

 

) from abnormal automaticity (AA), early (EAD) or 

delayed (DAD) afterdepolarisations. B, Premature impulse divides at functional or anatomical 

obstacle, blocks at tissue with normal (left side) but conducts with short (right) ERP, and re-enters 

previously inexcitable zone. λ=wavelength. θ=conduction velocity. C, Original APs stimulated in an 

atrial cell from a patient in SR, and in AF, by conditioning pulses (S1) and premature test pulses (S2). 

ERP (� ) =longest S1-S2 failing to produce S2 response of amplitude >80% of S1. D, Original APs 

stimulated by a pulse-train in the presence of 0.05 µM isoproterenol (ISO), producing “cellular 

arrhythmic depolarisations”, CADs (•). 
 

 

 may represent AA. C&D based on data in
2&3
 with 

permission from Elsevier. 

 

Figure 2. 

Induction of constitutively active acetylcholine-activated K
+
 current, CA IKACh, in human AF. Single 

channel IK1 and CA IKACh currents (A) and mean (±SE) open probabilities (B), recorded at -120 mV in 

atrial cells from patients in SR (
 

) and AF (
 

). *=P<0.05 vs SR. C, Potential signalling mechanism 

of increased CA IKACh in AF. In SR, IKACh may require channel phosphorylation by calmodulin-

dependent protein kinase (PK) II (CaMKII), PKG and PKC.
12
 In AF, CA IKACh may result from 

upregulation of PKCε.
12
 A&B based on data in

10
 with permission from Lippincott Williams & Wilkins. 
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Figure 3. 

“Pharmacological remodelling” of human atrial cell electrophysiology by β1-blocker therapy. A, 

Action potentials and ERP (� ); B, mean (±SE) AP duration at 50 and 90% repolarisation (APD50 & 

APD90) and ERP; C, transient outward K
+
 currents, recorded in single atrial myocytes from patients in 

SR, treated with a β1-blocker ≥7 days (
 

) vs those in SR, not treated with a β-blocker (
 

). *=P<0.05 

vs 
 

. D, Correlation between atrial cell ERP and patient’s atenolol dose/body weight. Heart rate ≤75 

beats/min. Dashed lines: 95% confidence interval. A&C based on data in
31
 with permission from 

Elsevier. 
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Table. 

 

 

 

 

Human atrial 

cell electro- 

physiological 

measurement 

Chronic 

AF 

Post- 

cardiac 

surgery 

AF 

CHF, LVSD 

and/or atrial 

dilation
 

Chronic 

ββββ- 

blocker 

therapy 

ERP �
2
 �

22
 NDA �

3,22,31
 

APD90 �
2,5-7
 �

22
 �

23,24
 �

25,26
 �

22,31
 

APD50 �
2,6
 �
7
 �

22
 �

23,24
 �
26
 �

3,31
 

AP Vmax �
2
 �

22
 NDA �

31
 

IK1 �
2,5,6,8-12

 �
9,22
 �

23
 � *

27
 �

32
 

IKACh �
5
 �
6,9,10,12

 �
9
 �

23
 NDA 

CA IKACh �
10,12

 NDA NDA NDA 

Ip �
13

 NDA NDA NDA 

IKATP �
14
 �
15

 NDA �
24
 NDA 

INa �
5

 NDA NDA NDA 

ITO �
2,5,8,16,17

 �
22
 �

26
 �*

27,28
 �

31,32
 

IKur (ISUS) �
8,16
 �

2,5,17

 �
22
 �

25,26
 � *

28
 �*

27
 �

31,32
 

ICaL �
2,5,7,11,18-21

 �
18
 �

22
 �

29
 �

25,30
 �*

27
 �

3,7,22,31,33
 

ICaL %� by β-stim �
18-21

 �
22
 �

29,30
 �

3,22
 

ICaL %� by 5-HT �
7
 NDA �

29
 �

7,33
 

INa/Ca, INa/H, IKr, 

IKs, ICl(swell), ICaB, If 
NDA NDA NDA NDA 
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Figure 1 

 

 

ERP ERP 

Re- 

entry λ 

= ERP x θ 

 B A 

AA 

EAD 

 

 

 

DAD 

D ISO-induced CADs 

 
0.5 s 

50 mV 

50 mV 
0.2 s 

Sinus rhythm 

Chronic atrial fibrillation 

S1 (7
th
)                                  S1  (8

th
)   S2 

C 



 19/20 
 

Figure 2 
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Figure 3 
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