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Peptide Vocabulary Analysis Reveals Ultra-Conservation
and Homonymity in Protein Sequences
Derek Gatherer
MRC Virology Unit, Institute of Virology, Church Street, Glasgow G11 5JR UK.

Abstract: A new algorithm is presented for vocabulary analysis (word detection) in texts of human origin. It performs at 
60%–70% overall accuracy and greater than 80% accuracy for longer words, and approximately 85% sensitivity on Alice 
in Wonderland, a considerable improvement on previous methods. When applied to protein sequences, it detects short 
sequences analogous to words in human texts, i.e. intolerant to changes in spelling (mutation), and relatively context-
independent in their meaning (function). Some of these are homonyms of up to 7 amino acids, which can assume different 
structures in different proteins. Others are ultra-conserved stretches of up to 18 amino acids within proteins of less than 40% 
overall identity, refl ecting extreme constraint or convergent evolution. Different species are found to have qualitatively 
different major peptide vocabularies, e.g. some are dominated by large gene families, while others are rich in simple repeats 
or dominated by internally repetitive proteins. This suggests the possibility of a peptide vocabulary signature, analogous to 
genome signatures in DNA. Homonyms may be useful in detecting convergent evolution and positive selection in protein 
evolution. Ultra-conserved words may be useful in identifying structures intolerant to substitution over long periods of 
evolutionary time.

Keywords: peptide vocabulary, vocabulary analysis, word detection, motif, protein structure, bioinformatics, gene families, 
genome signature, peptide conservation, peptide homonymity

Introduction
First used at least as early as the beginning of the 1970s, the concept of “the language of the genes” has 
become a recurring explanatory tool in popular presentations of molecular genetics (Chargaff, 1971; 
Jones, 1993). Genomes may be compared to libraries of genetic information, with each chromosome 
as a book, genes as chapters, and DNA bases as the letters in which the text is written (Ridley, 1999). 
In principle, the linguistic analogy may be applied equally to protein sequences as to DNA, simply by 
increasing the alphabet from 4 to 20 letters. The prevalence, and utility, of this metaphor in under-
graduate teaching and the popular science media, obscures a deeper controversy concerning its genuine 
applicability in research (Searls, 1993; Ji, 1999; Searls, 2002; Sakakibara, 2005). Attempts have been 
made to apply generative grammar structures to gene organization in bacteria (Collado-Vides, 1991, 
1992, 1996), DNA-protein interaction (Bentolila, 1996; Wang et al. 2005), the problem of gene prediction 
(Dong and Searls, 1994; Muggleton et al. 2001), protein folding (Gimona, 2006) and RNA structure 
prediction (Matsui et al. 2004). These efforts in molecular biology are in the tradition of wider attempts 
to create formal grammars, or to use the grammatical metaphor, for other kinds of biological data 
(Gutfreund, 1976; Jerne, 1985; Hamilton, 1993; Wang, 2004). A related metaphor is that of genome 
sequence as a code to be deciphered by the molecular biologist, who thus becomes a “biomolecular 
cryptologist” (Konopka, 1994; Bodnar et al. 1997). Conversely, techniques developed in molecular 
biology are now being recycled back into cryptography (Spencer et al. 2004).

Under the terms of these general analogies, short sequences of DNA may be regarded as words. 
Often, any k-mer is referred to as a word (Mantegna et al. 1994; Chatzidimitriou-Dreismann et al. 1996) 
but here these will be designated strings. Where a string has some local functional signifi cance in a 
sequence and consequently has been conserved throughout the evolutionary process, it may be referred 
to as a motif (Waterman, 1989; Hu et al. 2000). Identifi cation of motifs is usually based on large-scale 
comparative analysis and alignment of related sequences.

Counts of DNA string frequency have been used as a means of differentiating classes of DNA 
sequence, such as exons, introns and promoters (Beckmann et al. 1986; Solovyev and Lawrence, 1993; 
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Solovyev et al. 1994b, 1994a; Bains, 1997; 
Frontali and Pizzi, 1999; Bultrini et al. 2003), 
although the meaning of such differences in terms 
of the linguistic metaphor of the genome has been 
disputed (Konopka and Martindale, 1995; 
Chatzidimitriou-Dreismann et al. 1996; Martindale 
and Konopka, 1996; Tsonis et al. 1997). String 
counts, after correction for underlying base com-
position, have been assembled into vectors known 
as genome signatures, refl ecting their apparent 
distinctiveness between genomes (Karlin and 
Mrázek, 1997; Karlin et al. 1997; Karlin, 1998; 
Karlin et al. 1998; Campbell et al. 1999). Such 
composition-corrected string frequency vectors 
have proved useful in detecting horizontal gene 
transfer events between species of bacteria (Karlin, 
2001). A further development based on genome 
signatures is that of compositional spectra, 
designed to reduce vector size and increase 
technical tractability (Bolshoy, 2003; Kirzhner 
et al. 2003).

This paper investigates the meaning of the 
linguistic metaphor in more detail in protein 
sequences, with particular emphasis on the iden-
tifi cation of words. A protein word, rather than a 
string, is here taken to be more literally compa-
rable to a word within a text of human origin. 
Therefore, words are only a subset of strings. 
Likewise, a word differs from a motif, in that 
motifs are often fuzzy (meaning tolerant to sub-
stitution) and are best viewed in the context of 
an alignment of related sequences. Within a text 
of human origin, a word has some context-
independence. It has clear boundaries and may 
appear fl anked by very different text in different 
cases. Fuzziness is also not tolerated; a word has 
a correct spelling. The total assembly of detected 
words is referred to as the vocabulary, and the 
word detection process as vocabulary analysis.

The pioneering vocabulary analysis in DNA 
sequences was carried out by Brendel et al. (1986). 
Their metric was based on contrasting frequencies 
of substrings within the candidate word. For a 
string, s, of length k, its expected occurrence, E, is 
the product of the occurrences of its left and right 
substrings, divided by the occurrence of its internal 
substring.

For each string, s, the difference between its 
expected occurrence, E(s) as calculated above, and 
actual occurrence, f(s), is quantifi ed by:

 

This provides a z-score for the actual occurrence 
of the string. Brendel et al. (1986) defi ne a contrast 
word as any string where std(s) � 3. Brendel et al. 
(1986) were able to identify several contrast words 
of lengths k = 3 to 6 in the genomes of E. coli and 
two coliphages. Conversely, avoided words could 
also be detected, where std(s) � −3. An essentially 
similar metric has been implemented by others 
(Phillips et al. 1987a, 1987b; Merkl et al. 1992; 
Colosimo et al. 1993; Castrignanò et al. 1997; 
Rocha et al. 1998; Apostolico et al. 2003).

In principle, this method could also be applied 
to detect contrast words in protein sequences, but 
the combinatorial explosion caused by the presence 
of a 20-letter code in proteins as opposed to the 
4-letter code in DNA, has restricted work on string 
frequency in proteins to k = 2 (i.e. dipeptides) only 
(Solovyev and Makarova, 1993). Application of 
the contrast words method to human texts was 
extended by Schmitt et al. (1996). Analysing Alice 
in Wonderland, they found that it performed rela-
tively poorly, essentially due to the fact that the 
26-letter alphabet of a text in English has a string 
combinatorial explosion problem even worse than 
that of 20-letter protein sequences.

This paper proposes improvements on the con-
trast words method, initially comparing their per-
formance, in the tradition of Schmitt et al. (1996), 
on Alice in Wonderland. The most accurate method 
for identifying true words is then applied to several 
other human texts, to the NRL3D set of proteins 
of solved structure, and to the proteome sets of 
several species from all three superkingdoms 
(NCBI Taxonomy Browser classifi cation) of cel-
lular organisms.

The concept of synonymity is familiar in molec-
ular biology. Within the degenerate genetic code, 
many amino acids may be encoded by more than 
one codon. A protein sequence may therefore be 
potentially coded by a combinatorially vast number 
of synonymous DNA sequences. Here the term is 
used in a more general sense. When two protein 
strings have different sequences, but perform the 
same function in their respective proteins, they are 
said to be functionally synonymous. Fuzzy motifs 
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are an example of functional synonymity within 
protein families. The converse concept, that of hom-
onymity, has not been explored (although see Lennon 
and Nussinov, 1984). Where a non-fuzzy word 
occurs in two different proteins and performs a dif-
ferent function in each, that peptide word is function-
ally homonymous. At a trivial level, it is immediately 
possible to see that the longer a peptide, the less 
likelihood it has of functional homonymity. The 
questions of the longest existing homonymous word, 
the prevalence of peptide homonymity, and its 
origins are all explored in this paper.

Methods

Texts and protein sequence sources
Public domain texts were downloaded from Project 
Gutenberg (http://www.gutenberg.org). Punctua-
tion, non-alphabetic characters, numbers and 
spaces were removed. Word counts were case-
insensitive.

The NRL3D set of sequences of proteins of 
solved structure (Pattabiraman et al. 1990) was 
downloaded from the University of Hong Kong 
(http://bioinfo.hku.hk/db/nrl_3d/NRL3D/nrl_
3d.seq). Non-contiguous sequences (those annotated 
as “fragments”), sequences containing ambiguities 
and exact duplicates were removed using a Perl 
script. This reduces the number of sequences from 
23301 to 6168. Further trimmings were performed 
using CD-HIT (Li and Godzik, 2006), which can 
produce datasets with maximum degrees of pairwise 
identity. Such reduced sets are subsequently referred 
to as NRL3D_nn, where nn is the maximum pair-
wise identity. The justifi cation for this trimming is 
that most words will occur in closely related 
sequences, and will consequently be explicable at a 
trivial level. Trimming with CD-HIT reduces the 
number of words detected and maximises the like-
lihood that they will be found in less closely related 
proteins, and thereby be potentially more interesting 
from a functional point of view. As a negative con-
trol, trimmed NRL3D data sets were shuffl ed using 
shuffleseq (http://emboss.sourceforge.net/apps/
release/4.0/emboss/apps/shuffleseq.html) from 
EMBOSS (Rice et al. 2000).

Proteomes (meaning predicted protein sets 
derived from genome projects) were downloaded 
from the EBI Integr8 database (http://www.ebi.
ac.uk/integr8). They were similarly reduced by 
CD-HIT.

Vocabulary analysis algorithms
For each text or proteome, and for NRL3D, over-
lapping strings of all lengths from k = 1 to 20 
were counted using a Perl script running the 
BioPerl (Stajich et al. 2002) SeqWords module 
(http://doc.bioperl.org/releases/bioperl-current/
bioperl-live/Bio/Tools/SeqWords.html). The 
SeqWords output was then analysed in the fol-
lowing ways. Each metric is given an acronym 
for easier reference.

1) CW: Contrast words method (see
Introduction)

 This is the method of Brendel et al. (1986). The 
difference is that the std(s) threshold was set at 
0.1 to maximise the number of candidate 
words.

2) RS: Raw strings
 The simplest possible method: all strings of 

length k � 5, occurring at n � 20, were assessed 
as candidate words.

3) ES: Equal substrings
 The raw strings extracted as above were 

trimmed to include only those having equal 
occurrences of left and right substrings.

 f s s f s sk k1 1 2… …−( ) = ( ) 

 The rationale for this approach is that many true 
words tend to satisfy this criterion. For instance, 
in Alice in Wonderland, the true word ALICE 
is revealed by:

 f ALIC f LICE( ) = ( )  

 following to the fact that Alice in Wonderland, 
despite referring to several species, does not 
mention lice.

4) CW-ESM: Equal substrings of middle
substring of contrast words

 Combining methods 1 and 3, middle substrings 
were extracted from contrast words with 
std(s) � = 0.1. These were then examined for 
equal substrings:

 f s s f s sk k2 2 3 1… …− −( ) = ( )  
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 The rationale for this approach is the ad hoc 
empirical observation that false positive contrast 
words, of which there are many (Schmitt et al. 
1996), frequently have true words embedded 
within them as middle substrings.

5) RS-ESM: Equal substrings of middle
substring of raw strings

 Combining methods 2 and 3, since equality of 
substrings within the middle strings of contrast 
words was frequently found to be an indicator 
of a true word, the same was applied to raw 
strings. The additional proviso was that the left 
and right substrings of the raw string were not 
of equal occurrence to each other or the middle 
substring.

 f s s f s sk k2 2 3 1… …− −( ) = ( )  
  and

 f s s f s sk k1 1 2… …−( ) ≠ ( ) 
  and

 f s s f s sk k1 1 2 1… …− −( ) ≠ ( ) 
  and

 f s s f s sk k1 2 1… …( ) ≠ ( )−  

 The rationale for this was that, for instance, 
within the raw string DALICET, the true word 
ALICE is revealed by:

 f ALIC f LICE( ) = ( )  
  and

 f DALICE f ALICET( ) ≠ ( )  
  and

 f DALICE f ALICE( ) ≠ ( )  
  and

 f ALICET f ALICE( ) ≠ ( )  

 CW-ESM and RS-ESM are equivalent, except-
ing that CW-ESM takes contrast words as its 
starting point, and RS-ESM uses raw strings. 
In both cases the candidate word is the middle 
substring, should it satisfy the criteria given.

Measurement of accuracy
In human texts it is possible to score true words 
among the detected candidate words. Accuracy is 
measured using the Sen2 statistic (Milanesi and 
Rogozin, 1998):

Sen TP TP FP2 = +( )/

where TP are those candidate words identifi ed as 
true positives, and FP are those identifi ed as false 
positives.

Perl scripts are available on request from the 
author.

Assessment of hits
Protein domains were determined by reference to 
Pfam (http://www.sanger.ac.uk/Software/Pfam—
Finn et al. 2006) and Prosite motifs detected using 
ScanProsite (http://www.expasy.ch/tools/scan-
prosite—de Castro et al. 2006). Alignments were 
performed using ClustalW (Chenna et al. 2003) or 
bl2seq (http://www.ncbi.nlm.nih.gov/bl2seq/
wblast2.cgi—Tatusova and Madden, 1999).

Structural visualization
Solved proteins structures were downloaded from 
PDB (http://www.pdb.org) and visualization was 
carried out in MOE (http://www.chemcomp.
com).

Results

Vocabulary analysis in human texts
Alice in Wonderland is a short novel of 26587 
words. The total vocabulary is 2593 different words, 

Table 1. Commonest 10 words in Alice in Wonderland, 
sorted by their occurrence, n.

Word n

THE 1631
AND 865
TO 728
A 628
SHE 541
IT 530
OF 512
SAID 462
I 410
ALICE 386
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of which 1475 are used more than once and 1072 
more than twice. For illustrative purposes, the 10 
commonest words are shown in Table 1. As might 
be expected, these are all small prepositions and 
pronouns, except for the name “Alice” which has 
386 occurrences and is the 10th commonest word, 
and the verb past tense “said” at 462 occurrences.

The words in Table 1 are derived from a spaced 
text, with only punctuation and other extraneous 
characters removed. Spaces were then removed for 
testing of the various metrics. Again for illustrative 
purposes the top 10 hits using each method are 
shown (Tables 2 to 6), but the fi nal comparison 
was made using all the hits for each method 
(Table 7).

1) RS metric
The commonest raw strings in Alice in Wonderland 
of length k = 5 to 20 are tabulated in Table 2.
Only 3 of the commonest raw strings in Table 2 
are true discrete words or phrases (DWoPs—
shaded grey). “Alice” as a raw string has a 
slightly higher occurrence than the word “Alice” 
in a spaced text (397 vs. 386—see Table 1) as 
it also occurs as part of the possessive “Alice’s”. 
As Table 2 suggests, RS is a relatively poor 
metric for identifying true words. Almost all of 
the raw strings in Table 2 are components of the 
single DWoP “said the”.

2) CW metric
CW (Brendel et al. 1986) performs equally 
poorly, as previously demonstrated by Schmitt 
et al. (1996). Table 3 shows the top 10 contrast 
words of length k = 7 to 20, sorted by descending 
std(s). There are only two DWoPs detected.

 It was noted that the some of the false positive 
contrast words in Table 3 contained the true 
DWoPs “of the” (twice), “in the” and “little” as 
their middle substrings. This stimulated the 
further investigation of the middle subwords.

3) ES metric
Table 4 tabulates the 10 highest hits with ES, 
sorted by their occurrence, n. This contains 6 
true DWoPs (shaded).

Table 2. 10 commonest raw strings of k = 5 to 20 in 
unspaced Alice in Wonderland. True discrete words 
or phrases (DWoPs) are shaded.

Word n
ALICE 397
SAIDT 266
AIDTH 224
SAIDTH 222
IDTHE 221
SAIDTHE 212
AIDTHE 212
ANDTH 169
THING 169
DALICE 162

Table 3. Top 10 contrast words of k = 7 to 20 in uns-
paced Alice in Wonderland, sorted by std(s), their 
z-score. True DWoPs are shaded. k: length of 
contrast word, n: occurrence, n-L: occurrence of left 
substring, n-R: occurrence of right substring, n-M: 
occurrence of middle substring, std(s): z-score (see 
Introduction).

Word k n n-L n-R n-M std(s)
ROUGHTH 7 11 14 13 114 7.44
TOTHINK 7 7 7 7 43 5.49
TOFTHEW 7 10 14 25 156 5.18
OINTHED 7 9 21 10 109 5.10
AIDNOTH 7 6 6 6 34 4.80
POFTHEE 7 5 7 6 156 4.73
DIDTHEY 7 5 9 8 221 4.67
THECOUR 7 16 16 18 52 4.45
ESAIDTO 7 26 40 77 266 4.24
RLITTLET 8 7 15 14 128 4.18

Table 4. Top 10 hits for ES of k = 5 to 20, sorted by 
occurrence. True DWoPs are shaded. k: length of raw 
string, n: occurrence, n-L: occurrence of left substring, 
n-R: occurrence of right substring, n-M: occurrence of 
middle substring.

Word k n n-R n-L n-M
ALICE 5 397 397 397 401
LITTLE 6 128 128 128 128
LITTL 5 128 128 128 193
SAIDALICE 9 116 116 116 116
SAIDALIC 8 116 116 116 116
THOUGH 6 91 91 91 91
HERSELF 7 83 83 83 83
THEQUE 6 77 77 77 78
THEKING 7 62 62 62 62

HEKING 6 62 62 62 64
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 ES performs rather better than CW or RS, 
although it can accumulate nested strings. For 
instance in Table 4, “saidalic” is found to be a 
substring of “saidalice”, “littl” of “little” and 
“heking” of “theking”. This suggested the com-
bination of ES with the other methods.

4) RS-ESM metric
RS-ESM shows a further marked improvement. 
Nested substrings are avoided, and 9 out of the 
top 10 hits are true positives (Table 5).

5) CW-ESM
CW-ESM appears to be the best method on fi rst 
examination. All of the top 10 hits are true DWoPs 
(Table 6). However, a decision on the best method 
to apply to biological sequences requires a fuller 
assessment of the output beyond the top 10 hits.

Comparison of methods
Table 7 compares the methods on Alice in 
Wonderland. Since the initial string count was to 
k = 20, the two ESM methods are limited to k = 18 
as their longest identifi able word.

Table 7 demonstrates that the CW metric is the 
poorest. Although it generates a large number of 
hits, the true positive rate is barely more than 6%. 
RS gives greater numbers of candidate words as the 
thresholds for occurrence and string length are 
dropped, but Sen2 does not rise above 24%. Adding 
a requirement for equal right and left substrings, ES, 
brings the number of candidates down dramati-
cally—from 1213 hits to 241 hits where k = 5–20, 
n � 20. Sen2 increases from 17% to just over 25%. 
However, for the combination methods, Sen2 
increases considerably. For contrast words (CW-ESM) 
just under 58% accuracy can be achieved, and just 
over 68% accuracy for raw strings (RS-ESM). The 
latter also has a larger number of hits, generating 
895 true positives. Considering only 1042 words 
are used more than twice in Alice in Wonderland, 
this is a reasonable fi gure.

The next question to be investigated is whether 
or not the quality of hits varies across k. Figure 1 
plots the true positive rate against the length of the 
candidate word for RS-ESM in Alice in Wonder-
land. Sen2 increases with length k. Although the 
overall Sen2 is 0.682 (Table 7), Sen2 rises above 
0.8 for k = 11–15. The majority of strings of length 
k = 4 and 5 are false positives.

Table 5. The top 10 hits with RS-ESM of k = 5 to 18, 
sorted by their occurrence, n. True DWoPs are shaded. 
k: length of raw string, n: occurrence.

Word k n
ALICE 5 397
OFTHE 5 156
LITTLE 6 128
SAIDALICE 9 116
LIKE 4 97
THOUGH 6 91
HERSELF 7 83
THEQUE 6 77
THEKING 7 62

TURTLE 6 61

Table 6. Top 10 hits using CW-ESM of k = 5 to 18, sorted 
by std(s), their z-score. True DWoPs are shaded. k: 
length, n: occurrence of the contrast word in which they 
are embedded, std(s): z-score.

Word k n std(s)
OFTHE 5 68 5.18
LITTLE 6 44 4.18
ALICE 5 198 3.21
SHOULD 6 14 3.20
THEMARCHHARE 12 4 3.17
THEDORMOUSE 11 9 3.09
BEGIN 5 11 2.63
WHICH 5 8 2.51
MINUTE 6 21 2.50

VENTURE 7 10 2.50

Table 7. Comparison of the methods described above. 
TP: True positive DWoPs detected. Sen2: accuracy 
(see Methods).

Method Hits TP Sen2
RS-ESM, k = 2–18, n � 2 1312 895 0.682
CW-ESM, k = 4–18, n � 2 673 388 0.577
ES, k = 5–20, n � 20 241 61 0.253
RS, k = 3–20, n � 10 2293 540 0.235
RS, k = 5–20, n � 20 1213 206 0.170
CW, k = 7–20, n � 4 1927 117 0.061
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Extending the analysis to a range of other human 
texts, Figure 2 plots the number of candidate 
DWoPs detected for each against the length of the 
text in 1000s of characters (kchar). There is a clear 
correlation (r = 0.994) between number of different 
words and size of text. This has also been observed 
for the number of different raw strings, a phenom-
enon known as Heaps’ Law (Heaps, 1978).

Vocabulary analysis in sets of real 
and shuffl ed protein sequences
Figure 1 suggests that there may be increased 
artefactual detection of false positive DWoPs for 
RS-ESM at k = 4 and 5, based on the identifi cation 
of such false positives in Alice in Wonderland. 
Greater than 60% true positivity is only obtained 
at k � 7 and 80% at k � 11. When a text of human 
origin is being analysed, one can reliably identify 
the false positives and thus precisely quantify Sen2. 
However, in a protein sequence set, whether 
NRL3D or a naturally occurring proteome, scoring 
of accuracy requires the use of shuffl ed sequences. 
In the shuffl ed sequences, all hits are by defi nition 
artefactual. Figure 3 plots the distribution of can-
didate words in real and shuffl ed NRL3D_63 
protein sequence set (see Methods) for both RS-
ESM and CW-ESM methods. It can be seen that 

the shuffl ed sequence sets give false positives at 
up to k = 6 for RS-ESM. However, the ratio of 
hits of k = 6 in the real as compared to the shuffl ed 
genome is much higher than at k = 5 or less. 
Therefore, it seems that k = 6 should be considered 
an ambiguous category. Although most hits at 
k = 6 are likely to be genuine, there is a far greater 
risk of a false positive than at k � 7. The 
observation that Sen2 is less than 0.5 for k � 5 
(Fig. 1) also justifi es concentration on longer 
candidate words. This supports the earlier fi nding 
by Thode et al. (1996), who found that matches 
of 6 residues within a window of length 10, could 
be found far more frequently between pairs of real 
proteins than random sequences. By contrast, CW-
ESM, although producing fewer hits, has no hits 
in shuffl ed sequences above k = 5. Therefore, it 
might be preferred for investigating words of 
length k = 6.

Structural meaning of words
The words of k = 12–18 identifi ed in NRL3D_63 
using RS-ESM are shown in Table 8.

The protein family in which the word is located 
is designated from the NRL3D annotation, or 
where that is ambiguous, by reference to Pfam 

Figure 1. RS-ESM performed on Alice in Wonderland. Number of hits plotted against k. TP: true positives. Sen2 is also plotted (×100) 
to show its improvement at higher levels of k.
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Figure 2. Number of candidate DWoPs (×1000, kword) plotted against length of text (kchar) for RS-ESM, k = 6–18. Alice: Alice in Wonder-
land, Gulliver: Gulliver’s Travels, Oliver: Oliver Twist, Chaucer: Canterbury Tales in 19th century translation, Origin: Origin of Species, Don 
Quixote: 19th century English translation of same, KJB: King James Bible.

Figure 3. NRL3D_63 (solid lines) and its shuffl ed equivalent (dotted lines), tested with both RS-ESM (squares) and CW-ESM (triangles). The 
logarithm of the number of hits, n, is plotted against k. Log(0) is arbitrarily designated zero. Pseudocounts are therefore added when n = 1.
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(Finn et al. 2006). Most of these hits are found 
within fairly well conserved proteins, often 
orthologues having the same essential function in 
different species within the same major phyloge-
netic class. In some cases, however, the hits are 
found to be stretches of total conservation within 
otherwise somewhat divergent proteins, often 
having slightly variant functions and from rather more 
distant species. The 14-mer LGGTCVNVGCVPKK 

is found in glutathione reductase (EC 1.6.4.2) from 
humans and E. coli, and in the related enzyme 
trypanothione reductase (EC 1.6.4.8) from two 
genera of trypanosome.

Although LGGTCVNVGCVPKK is completely 
conserved within an alignment having generally 
poor levels of conservation (Fig. 4), spanning bac-
teria, trypanosomes and humans, all these proteins 
possess a pyridine nucleotide-disulphide 

Table 8. Words of length k = 12–18 in NRL3D_63, using RS-ESM. The protein family is derived from the NRL3D 
annotation.

Word Length Protein family No. of proteins
TCNVAHPASSTKVDKKI 17 immunoglobulin 3
LLQLTVWGIKQLQAR 15 gp41 3
DATDRCCFVHDCCY 14 phospholipase 5
EKPYKCPECGKSFS 14 zinc fi nger domain 1 (internal repeat)
LGGTCVNVGCVPKK 14 2 kinds of reductase 3
LGRSGYTVHVQCNA 14 viral coat protein 3
TLGNSTITTQEAAN 14 viral coat protein 3
AFLGIPFAEPPVG 13 lipase/acetylcholinesterase 3
LGNGGLGRLAACF 13 phosphorylase 3
LLRISLLLIQSWL 13 growth hormone 3
TTPPSVYPLAPGS 13 immunoglobulin 3
AVLPGDGIGPEV 12 dehydrogenase 3
CLNVGCIPSKAL 12 dehydrogenase 3
FDTGSSNLWVPS 12 pepsin 3
HVQCNASKFHQG 12 viral coat protein 3
LRKAMKGLGTDE 12 annexin 3
PKDATDRCCFVH 12 phospholipase 4
QSQIVSFYFKLF 12 interferon 3
SDGIMVARGDLG 12 pyruvate kinase 3
SHVSTGGGASLE 12 phosphoglycerate kinase 3
SNASCTTNCLAP 12 phosphatase 4

1GRT       ACRQEPQPQGPPPAAGAVASYDYLVIGGGSGGLESAWRAAELG-ARAAVV 49 
1GER B     ----------------MTKHYDYIAIGGGSGGIASINRAAMYG-QKCALI 33 
1BZL A     ----------------MSKIFDLVVIGAGSGGLEAAWNAATLYKKRVAVI 34 
1TYP A     ----------------MSRAYDLVVIGAGSGGLEAGWNAASLHKKRVAVI 34 
                               :* :.**.****: :  .**     : *:: 

1GRT       ESH---------KLGGTCVNVGCVPKKVMWNTAVHSEFMHDH--ADYGFP 88 
1GER B     EAK---------ELGGTCVNVGCVPKKVMWHAAQIREAIHMYG-PDYGFD 73 
1BZL A     DVQMVHGPPFFSALGGTCVNVGCVPKKLMVTGAQYMEHLRESAGFGWEFD 84 
1TYP A     DLQKHHGPPHYAALGGTCVNVGCVPKKLMVTGANYMDTIRESAGFGWELD 84 
           : :          **************:*   *   : ::     .: :  

1GRT       SCEGKFNWRVIKEKRDAYVSRLNAIYQNNLTKSH-IEIIRGHAAFTSDPK 137 
1GER B     TTINKFNWETLIASRTAYIDRIHTSYENVLGKNN-VDVIKGFARFVD--A 120 
1BZL A     RTTLRAEWKNLIAVKDEAVLNINKSYDEMFRDTEGLEFFLGWGSLESKNV 134 
1TYP A     RESVRPNWKALIAAKNKAVSGINDSYEGMFADTEGLTFHQGWGALQDNHT 134 
               : :*. :   :   :  ::  *:  : ... : .  * . : .    

Figure 4. The fi rst 150 residues of the alignment of the four sequences containing the word LGGTCVNVGCVPKK (shaded). The proteins 
are identifi ed by their PDB designations—1GRT: human glutathione reductase; 1GER: E. coli glutathione reductase; 1BZL: Trypanosoma 
cruzi trypanothione reductase; 1TYP: Crithidia fasciculata trypanothione reductase.
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oxidoreductase domain (Pfam PF07992). LG-
GTCVNVGCVPKK is also recognised by Scan-
Prosite (de Castro et al. 2006) as containing a 
pyridine_redox_1 motif (ProSite PS00076). The 
word therefore may be taken to have equivalent 
function within these proteins and is not a homonym 
as defined in the Introduction. LGGTCVN-
VGCVPKK in all four cases is found at the beginning 
of a long helix. Superposition of the structures of the 
4 proteins to 1.894 Å in MOE demonstrates excellent 
conservation even over the poorly conserved regions. 
LGGTCVNVGCVPKK assumes a highly similar 
structure in all cases (Fig. 5).

As an additional example, AFLGIPFAEPPVG 
is found in the N-terminal regions of acetylcholin-
esterase (EC 3.1.1.7) from mouse and the electric 
ray and also in triacylglycerol lipase (EC 3.1.1.3) 
from yeast. As before, the word represents a stretch 

of total conservation in an otherwise low identity 
alignment (Fig. 6). Despite this, all 3 of these pro-
teins contain a carboxylesterase domain (Pfam 
PF00135), and their solved structures may be 
superposed over their full length to 3.70 Å in MOE 
(not shown).

One phenomenon that appears in the output, 
that has no analogue in texts of human origin, is 
the detection of homopolymers. The longest 
homopolymeric word in NRL3D_63 is the hep-
tamer AAAAAAA, detected in antifreeze protein 
A from the fl ounder and also in an amine dehy-
drogenase from Thiobacillus versutus. However, 
it occurs in the extreme C-terminus and N-terminus 
respectively of these two proteins. Homopolymers 
are a consequence of regions of low complexity 
within coding DNA, and have no analogue within 
human texts. They formally constitute words, and 

Figure 5. Superposition of sequence LGGTCVNVGCVPKK in the 4 proteins aligned in Figure 4. The helical backbone is shown in black. 
Despite the variability of the other parts of these proteins, LGGTCVNVGCVPKK represents a region of extreme structural, and presumably 
functional, conservation between E. coli, humans and trypanosomes.

1EVE            DHSELLVNTKSGKVMGTRVPVLSSHISAFLGIPFAEPPVGNMRFRRPEPKKPWSGVWNAS  
1MAAD           EDPQLLVRVRGGQLRGIRLKAPGGPVSAFLGIPFAEPPVGSRRFMPPEPKRPWSGVLDAT  
1LPM            --APTATLANGDTITGLNAIIN----EAFLGIPFAEPPVGNLRFKDPVPYSGSLDGQKFT  
                  .   . .... : * .        .*************. **  * *     .  . : 

1EVE            TYPNNCQQ----------YVDEQFPGFSGSEMWNPNREMSEDCLYLNIWVPS-PRPKS-T  
1MAAD           TFQNVCYQ----------YVDTLYPGFEGTEMWNPNRELSEDCLYLNVWTPY-PRPASPT  
1LPM            SYGPSCMQQNPEGTYEENLPKAALDLVMQSKVFEAVSPSSEDCLTINVVRPPGTKAGANL  
                ::   * *            .     .  :::::.    ***** :*:  *  .:. :   

1EVE            TVMVWIYGGGFYSGSS---TLDVYNGKYLAYTEEVVLVSLSYRVGAFGFLALHGSQ-EAP  
1MAAD           PVLIWIYGGGFYSGAA---SLDVYDGRFLAQVEGAVLVSMNYRVGTFGFLALPGSR-EAP  
1LPM            PVMLWIFGGGFEVGGTSTFPPAQMITKSIAMGKPIIHVSVNYRVSSWGFLAGDEIKAEGS  
                .*::**:****  *.:   .      : :*  :  : **:.***.::****    : *..  

Figure 6. The fi rst 150 residues of the alignment of the three sequences containing the word AFLGIPFAEPPVG (shaded). 1EVE: Torpedo 
californica acetylcholinesterase; 1MAAD: mouse acetylcholinesterase chain D; 1LPM: Candida rugosa lipase.



111

Vocabulary analysis of proteins

Bioinformatics and Biology Insights 2007:1 

indeed in the case of AAAAAAA a homonym, 
within the terms of the algorithms used, but are 
neglected owing to their lack of likely functional 
signifi cance.

Leaving aside the homopolymers, there is only 
one identifi able homonym in NRL3D_63 of k � 7. 
SLGDRVT is found in a beta-lactamase from Strep-
tomyces albus and also in two mouse antibody 
proteins (1JRHL and 1NMCL). The two mouse 
proteins are 61% identical as assessed by bl2seq 
(Tatusova and Madden, 1999), and SLGDRVT is 
found in both cases in the N-terminus of the solved 
structure of the protein, where it is part of the V-set 
domain (Pfam PF07686) The two mouse proteins 
superpose to 0.821 Å over the entire length of their 
solved structures (not shown), and their SLGDRVT 
sequences have good structural alignment of their 
backbones (Fig. 7).

In the eubacterial lactamase 1BSG, SLGDRVT 
is found in a different conformation (Fig. 8). In this 
protein is it part of a helix rich beta-lactamase 
domain, but does not occur within a helix.

SLGDRVT is the only homonym detectable in 
NRL3D_63 at k = 7 using RS-ESM. Although there 

are many at k = 6 (37 with CW-ESM and 36 with 
RS-ESM). As shown in Figure 3, CW-ESM may 
be preferable to RS-ESM at k = 6 in that, although 
less sensitive, it is less inclined to false positives 
at k = 6.

In summary, within NRL3D_63, longer words 
are mostly indicative of conservation. Some of them 
are islands of ultra-conservation within distinctly 
divergent proteins. However, annotation or Pfam 
domain mapping indicates that these are always, at 
least in the cases examined (both above and data 
not shown), within proteins of similar general 
functionality. The longest homomym is a solitary 
example found at k = 7 but they appear to be 
plentiful at k = 6. The latter however, must be under 
suspicion of false positivity, owing to the number 
of hits at k = 6 in shuffl ed versions of the NRL3D 
database. The relative paucity of homonyms of 
reliable length suggests that future fi ne-tuning of 
the algorithm ought to be performed on protein 
sequence sets where functional annotation of motifs 
and domains is more complete than in NRL3D.

Since NRL3D is a compendium of proteins of 
highly diverse origin, but also enriched for 
sequences of easily solved structure, its vocabulary 
may be very different in character to that of 

Figure 7. Superposition of SLGDRVT in mouse antibody proteins 1JRHL (white) and 1NMCL (black). Backbone traces are rendered as fi ne lines.
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individual proteomes. These were therefore exam-
ined for the presence of homonyms and island of 
extreme conservation.

Vocabulary analysis on individual 
proteomes
Figure 9 plots the number of words detected using 
RS-ESM versus the size of the proteome in terms 
of number of proteins. All proteomes were previ-
ously reduced to no more than 63% identity by use 
of CD-HIT, as performed on NLR3D. Figure 9 
indicates that Heaps’ Law (see Fig. 2 above) also 
applies to proteomes. This had previously been 
observed for raw strings in proteins (Mukhopadhyay 
et al. 2006). The same trend applies when the pro-
teomes are measured in kilo-residues (comparison 
not shown).

Figure 9 shows the same general relationship for 
proteomes as is demonstrated in Figure 2 for texts. 
The correlation is weaker for eukaryotes (not shown 
in Fig. 9) and archaea (r = 0.905 and 0.907 respec-
tively), but comparable for eubacteria (r = 0.996 
against r = 0.994 for texts). However, the range of 
proteome size in eukaryotes is generally not 

comparable with the other two superkingdoms, mak-
ing it diffi cult to draw any conclusions concerning 
differences in vocabulary structure between super-
kingdoms. Supplementary Material Tables 1, 2 and 
3 give the full results for the various species.

Table 9 shows that texts of human origin have 
a far richer vocabulary than proteomes, and that 
eukaryotes appear to have a richer vocabulary than 
eubacteria or archaea. However, when only eukary-
otic proteomes within the size range of the other 
two kingdoms are considered, this discrepancy 
decreases markedly, suggesting that it should be 
interpreted with caution.

Detailed analysis of all proteome sets would be 
inappropriate for a single paper. A number of 
individual proteomes were chosen for further 
analysis, contrasting the three superkingdoms, and 
also small and large proteomes where possible.

Vocabulary analysis in a small
eubacterial proteome
Chlamydia muridarum has 916 proteins, of which 
914 are no more than 63% identical, indicating a 
virtual absence of gene families of closely related 

Figure 8. Comparison of SLGDRVT word in Streptomyces albus lactamase 1BSG (white) and mouse antibody protein 1NMCL (black). 
Backbone traces are rendered as fi ne lines.
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proteins. Using RS-ESM, C. muridarum contains 
34 words of which 17 are k � 7 (Supplementary 
Material Table 4). One of these is the homo-
heptamer DDDDDDD, and 7 others are words that 

occur several times within single proteins, indicat-
ing repetitive sequences, or occurring in low com-
plexity areas of proteins. Of the remainder, all fall 
within clearly related proteins, except for two. 

Figure 9. Candidate words of k = 6 to 18, detected using RS-ESM, against number of proteins for 35 eubacterial (black circles) and 28 
archaeal (grey circles) proteomes.

Table 9. Summary of RS-ESM results on human texts and phylogenetic kingdoms. “euk. (eub. range)” refers to the 
eukaryotic proteomes that are within the same size range (in kilo-residues) as the eubacterial proteomes. Likewise, 
“euk. (arc. range)” refers to those within the same size range as the archaeal proteomes. For the human texts, 
“number of species” refers to number of texts, and average proteome size to average text size (in kilo-characters).

Superkingdom Number Total av. proteome av. protein Words/kres Words/prot
of species proteins size (kres) len. (res)

eukarya 36 382698 4902 461   1.615 0.745
euk. (eub. range)   7   15205 1025 472   0.957 0.452
euk. (arc. range)   4     3459   374 432   0.424 0.183
eubacteria 35 104006   947 319   0.670 0.214
archaea 28   65197   681 292   0.665 0.194
human texts   9 N/A 1322 N/A 13.939 N/A
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The fi rst of these, GPTGSGK appears at fi rst glance 
to constitute a homonym, occurring in 4 proteins 
(SwissProt identifi ers Q9PLF7, Q9PLM1, Q9PJG9 
and Q9PKD0) with different Pfam domains, 
although all are ATP-binding proteins. In each case 
GPTGSGK is found at or near the N-terminus of 
the main Pfam domain within the protein (being 
IPPT, AAA_2, GSPII_E and ABC_tran respectively, 
listed as “various” in Supplementary Material 
Table 4). In the case of Q9PKD0, GPTGSGK is 
annotated by ScanProsite as an NP_BIND ATP 
binding motif. Therefore, GPTGSGK is probably 
not a homonym but rather an ATP-binding cassette 
conserved or convergently evolved across diver-
gent proteins within C. muridarum.

A second word of interest is an ultra-conserved 
region within a set of rather divergent transporter 
proteins, where it constitutes, again like GPTGSGK, 
the NP_BIND motif for ATP-binding (Fig. 10). 
GPNGAGKSTL and GPTGSGK can be repre-
sented by the profi le GP(T/N)G(A/S)GK.

Of the 17 words in C. muridarum of k = 6, all but 
4 appear to be homonyms. However, these must be 
regarded with suspicion, as they can occur artefactu-
ally at k = 6 in shuffl ed sequences (Fig. 3). When C. 
muridarum is examined with the less sensitive CW-
ESM algorithm, which is also less liable to artefac-
tual hits at k = 6, there are only 6 hits at that length, 
of which only one is a homonym.

Vocabulary analysis in a large 
archaeal proteome
Methanosarcina acetivorans has 4467 proteins, of 
which 4080 are no more than 63% identical, indi-
cating that around 10% of the total is comprised 

of members of moderately or closely related pro-
tein families, in contrast to the virtual absence of 
such families in C. muridarum. In order to make 
the analysis more tractable, the M. acetivorans 
proteome is fi rst trimmed to 40% maximum iden-
tity, reducing it to 3655 proteins. Using RS-ESM, 
M. acetivorans contains 946 words or which 659 
are k � 7 and 300 are k � 10. Those satisfying 
both k � 10 and n � 9 are shown in Supplementary 
Material Table 5.

The words mostly represent islands of extreme 
conservation within what are fairly divergent 
families. For instance the 17-mer HHRIKNNLQ-
VISSLLDL is found in histidine kinases (Fig. 11), 
where its location corresponds to the start of the 
HisKA_2 domain (Pfam PF07568). There do not 
appear to be any homonymous words of k � 10 in 
the M. acetivorans proteome. M. acetivorans words 
are dominated by the preponderance of compo-
nents of histidine kinase domains and PKD 
domains (Pfam PF00801).

Vocabulary analysis in a medium-sized 
eukaryotic proteome
The fungus Yarrowia lipolytica has 6524 proteins 
of which 5864 are �40% identical. It therefore has 
almost exactly the same overall proportion (just 
under 90%) of proteins in gene families as M. 
acetivorans. Using RS-ESM, Y. lipolytica contains 
1954 words of which 940 are k � 7 and 401 are k 
� 10. All words satisfying both k � 10 and n � 9 
are shown in Supplementary Material Table 6. By 
contrast with M. acetivorans, the prominent Y. 
lipolytica words are composed entirely of simple 
sequence repeats.

Q9PKX1     MNRDNTIAWAVDDLCVNYDHSDVLCHIAFSLPSGAMAAIIGPNGAGKSTL 
Q9PK46     ------MSIVLDKIGKTLGTRVLFDDVSVVFNPGNRYGLTGPNGAGKSTL 
Q9PLP2     -------MLHLYDLHVCCEEKKILEGLSLSIRPGELHIIMGPNGAGKSTL 
                     : .:        ::  ::. : .*    : ********** 

Q9PKX1     LKASLG--LIRASSG----------------------------------- 
Q9PK46     LKIITG--VIEPSRGTISLPKKIGILRQNIDSFSDVVVLDCVIMGNSRLW 
Q9PLP2     AKVLSGDDSVEVASG----------------------------------- 
            *   *   :. : *                                    

Q9PKX1     -------------------------------------------------- 
Q9PK46     EAMQRRDALYAEEFTDAVGMELGEIEEIIGEEDGYRAESEAEELLLGIGI 
Q9PLP2     -------------------------------------------------- 
                                                              

Q9PKX1     QSLFFGQKFAKVHQRIAY--------MPQRASVDWDFPMTVLDLVLMGCY 
Q9PK46     PEEFFSQKMATIPLDLQFRVLLCQALFGHPEALLLDEPTNHLDLHSINWL 
Q9PLP2     RMTLSGSDLIEMSPEKRAHAGMFIS-FQHPPEIPGVNNRLFLKEACNACR 
              : ...:  :              : :   :        *.        

Figure 10. N-terminal region of 3 C. muridarum transporter proteins showing the GPNGAGKSTL word (shaded).
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Vocabulary analysis in a large
eukaryotic proteome
Brachydanio rerio, the zebrafish, has 14049 
proteins, of which 8312 are no more than 40% 
identical, indicating that just over 40% of the total 
are members of moderately or closely related 
protein families, a considerably higher proportion 
than in the smaller eukaryotic proteomes (at ∼10% 
for Y. lipolytica). Using RS-ESM, B. rerio con-
tains 2938 words or which 1380 are k � 7 and 
452 are k � 10. All words satisfying both k � 10 
and n � 9 are shown in Supplementary Material 
Table 7.

Just as prominent M. acetivorans words are 
dominated by components of histidine kinase 
domains and PKD domains, prominent B. rerio 
words are in most cases part of an EGF domain, 
with a handful of SCRC domains (PF00530). There 
are also several examples of low complexity words 

(Supplementary Material Table 7), similar to Y. 
lipoloytica.

Discussion
An improved algorithm for vocabulary analysis in 
texts of human origin, has been applied to pro-
teomes. In its two variants, CW-ESM and RS-
ESM, it achieves an accuracy of 60%–70% 
(Table 7) and in the case of RS-RSM has approx-
imately 85% sensitivity. This sensitivity estimate 
is based on 895 true positive hits as compared to 
the 1042 words used more than twice in Alice in 
Wonderland. It remains an approximation as the 
algorithm detects phrases longer than single words 
(DWoPs, see Tables 2–6). Although CW-ESM is 
slightly less accurate than RS-ESM and less than 
half as sensitive (Table 7), it is less liable to false 
positives at k = 6 (Fig. 3). Since many protein 

Q8TKQ3     ---VDAARKKEIHHRIKNNLQVISSLLDLQAENFSKHEVCKTPKVVEAFK 
Q8TK73     ---IEAARKKEIHHRIKNNLQVISSLLDLQAEKFNKREGIKDSEVMEAFR 
Q8TMC7     ---AEKLRKKEIHHRIKNNLQVISSLLDLECDSLLSG-TPDHKKIAEAFR 
Q8TRB3     ---MKESRIKEIHHRIKNNLQVISSLLDLQAEKFEDP------TIRQAFR 
Q8TSN7     -AKIEDARKKEIHHRIKNNLQVISSLLDLQAEKFRDK------DVLEAFR 
Q8TSN6     LAEIDKTRIKEIHHRIKNNLQVISSLLDLQAEKFRDK------EVLEAFR 
Q8TR62     LATIEIARKKEIHHRIKNNLQVISSLLDLQAEKFGNKKYIMNSEVMDAFR 
Q8TQC1     -ANIEIARKKEIHHRIKNNLQVISSLLDLQADKFDNP------KVIEAFR 
Q8TT85     LENIEIARKQEIHHRIKNNLQVISSLLDLQAEKFNNREDIKDSEILEAFR 
Q8TIW4     -VKIEDARKKEIHHRIKNNLQVISSLLDLQAEKFSHREAVPTLEILEAFK 
Q8TRA6     -ANIEIARKKEIHHRIKNNLQVISSLLDLQAEKFRSREHVEDSEVLNAFK 
Q8TT86     -EKIDKIRIKEIHHRIKNNLQVISSLLDLQAEKFQNK------EVLEAFR 
Q8TP40     -EKMERIRIKEIHHRIKNNLQVISSLLDLQAEKFRDK------EVLEAFR 
Q8TPM8     --------IKEIHHRIKNNLQVISSLLDLQIDIFSNREICKTPEVIEAFR 
Q8TKN1     LDKIQIARQKEIHHRIKNNLQVISSLLDLQAGKFNNKEHIRDSEVLEAFK 
Q8TQA4     ---FELASKKELHHRIKNNLQVISSLLDLQADLFKGKKTITDSEVLKAFN 
Q8TU70     LANLEIARKKEIHHRIKNNLQVISSLLDLQAEKFNSREDIKDSEVLEAFR 
Q8TMA7     ---IETVRKQEIHHRIKNNLQVISSLLDLQAEQFKNRECIKNSEVLEAFR 
Q8TS36     LQEIDIIRKQEIHHRIKNNLQVISSLLDLQAEKFRGKKNIEDSKILEAFK 
Q8TM82     ---IESARKKEIHHRIKNNLQVISSLLDLQAEKFKDREDIKDSEVLEAFR 
Q8TQA5     ---IEIARKKEIHHRIKNNLQVISSLLDLQAEQFKNRENIKDSEVLEAFR 
                    :*:*****************:   :          : .**. 

Q8TKQ3     ESQDRVISIALIHEELHENGE--TDTLDFSPYLEKLVDALFQTYRLGNAR 
Q8TK73     ESQDRVISMALIHEELHKSGG--LDKLDFSSYIKELADNLFLTYRLGTID 
Q8TMC7     ESHNRIISMSVIHEELYNSRD--METINFASYLKKLTDDLFKSYKVGNSD 
Q8TRB3     ESQNRVISMALIHEELYESGE--IGTLNFAAYMQKLVENIFECYNIGDHK 
Q8TSN7     ESQSRVLSMSLIHEELYKGGE--TDTLDFSTYLEKLAENLFRTYSFRSKN 
Q8TSN6     ESQSRVLSMSLIHEELYKGEG--TDTLDFPTYLQKLAENLFQTYSFRSKN 
Q8TR62     ESQDRVISMALIHEELHKSEG--LDTLNFSPYIEELAENLFQTYRLGNSN 
Q8TQC1     ESQNRVISMALIHEELYKGEG--NDTLNFSTYIKELAGNLFQTYSLTSKN 
Q8TT85     ESQDRVISMALIHEELYKGGG--FDTLNFSSYIEELAENLFQTYSLGKAD 
Q8TIW4     ESQNRVISMSLIHEELYKGEG--TDTLNFSVYLRKLAENLFQTYSLCSKN 
Q8TRA6     ESQERVISIALIHEELHEGKG--TDTLNFSPYLQRLVKNLFQIYNLGNVD 
Q8TT86     ESQNRVTSMSLIHEELYKGGE--NNTLNFSTYLQKLAENLFQTYSLKSKK 
Q8TP40     ESQNRVVSMSLIHEELYKGEG--TDALDFSAYLRKLSEKLFQTYSLSSKN 
Q8TPM8     ESQNRVVSVALIHEELYKSKG--MDSLDFAAYLQKLTKNFLKSYNIDADD 
Q8TKN1     ESQDRVTSIALIHEELHEEEGKTTDTLNFPIYLQRLVKNLFRTYTLGNID 
Q8TQA4     ESIDRVLSIALVHEELYKGKN--IDLLNFSQYIKELANNLLLTYSLK-TD 
Q8TU70     ESQDRVISMALIHEELYKGGE--FDTLDFSSYIEELTENLFLTYRLGNTD 
Q8TMA7     ESQARVISMALIHEELYKGDG--LEMLNFSPYIEELAKSLFHTYRIGNSD 
Q8TS36     ESQDRVISMALIHEELHKSGE--IDTLNFSAYIHELSGNLFLSYRLGNDG 
Q8TM82     ESQDRVISMALIHEELHRNEG--LDKLNFSQYIKELADNLFLTYKLGNDG 
Q8TQA5     ESQDRVISMALIHEELYKGGG--FETLNFSPYIKELVENLFQTYRLGDID 
           **  *: *::::****:.        ::*. *:..*   ::  * .

Figure 11. HHRIKNNLQVISSLLDL (shaded) in part of a histidine kinase alignment.



116

Gatherer

Bioinformatics and Biology Insights 2007:1 

homonyms appear at k = 6, CW-ESM remains an 
important accessory algorithm for the study of 
short words in protein sequences. This paper there-
fore solves the problem posed by Schmitt et al. 
(1996) of how to apply the method of Brendel et al. 
(1986) to longer alphabets. Since the combinatorial 
explosion problem is greater in human texts than 
in protein sequences, the adequacy of the algorithm 
for detecting words in texts implies that it can do 
the same for proteins, should such words exist.

It is notable that the words detected by the algo-
rithm follow Heaps’ Law, a linear increase in word 
count as text size increases, for both human texts 
(Fig. 2) and proteins (Fig. 9). A similar result for 
raw strings in proteins is already known 
(Mukhopadhyay et al. 2006). Within superking-
doms, Heaps’ Law correlations are strongest for 
human texts and eubacterial proteomes. By contrast, 
between superkingdoms, eukaryotic proteomes 
appear to be nearly three times more word-rich on 
average than the two prokaryotic superkingdoms. 
However, caution must be exercised in inter-
superkingdom comparisons as the average pro-
teome size is almost four times larger for eukaryotes. 
When only small eukaryote proteomes are used, 
the proportionately larger number of words decreases 
to similar levels (Table 9). Heaps’ Law therefore 
appears to deviate from linearity in large eukaryotic 
proteomes, but eukaryotic proteomes may still be 
comparable to prokaryotic proteomes at smaller 
sizes. One possible explanation for this is that larger 
eukaryotic proteomes are richer in gene families, 
adding an extra source of words to the general trend 
implied by Heaps’ Law, and supported by the obser-
vation that about 40% of B. rerio proteins are �40% 
identical.

It should be noted that vocabulary analysis is 
not the same as segmentation (Wang, 2001; Cohen 
et al. 2002), when a text known to be composed of 
words is split into candidate words. Segmentation 
is often used in computer analysis of pictographic 
languages such as Japanese kanji script, where 
word boundaries are unclear. By contrast, vocabu-
lary analysis algorithms search for the presence of 
candidate word structures in bodies of symbols that 
may not necessarily contain them.

The fact that human texts are an order of mag-
nitude more enriched in words than proteomes 
(Table 9), suggests that the linguistic analogy for 
biological sequences remains a weak one, and 
furthermore that segmentation algorithms, relying 
as they do on complete decomposition of the text 

into words, are unlikely to be applicable to protein 
sequences. Nevertheless, the presence of identifi -
able word-like structures within proteomes is 
intriguing. Shuffl ed proteomes, like shuffl ed texts, 
lose their word content. Within a shuffl ed pro-
teome, false positives are rare and in neither RS-
ESM nor CW-ESM are found at k � 7. Words of 
k = 6 are ambiguous, as they are generated as false 
positives by RS-ESM (Fig. 3). By analogy with 
words in human texts, proteome words are sug-
gested to be sequences that are intolerant to 
mutation but are nevertheless relatively context-
independent in their function.

Analysis of the distribution of words in 
individual proteomes demonstrates two main 
categories:

 1.  conserved stretches within proteins of essen-
tially similar function (see Figs. 4–6).

 2.  homonyms appearing in proteins of demon-
strably different functions (see Fig. 8).

Conserved words can be further split into:
 a)  relatively uninteresting sequence identities 

within closely related proteins
 b)  ultra-conserved words in rather more diver-

gent proteins (see Figs. 4, 5, 6, 10 and 11 
for examples).

Homonyms are plentiful but short, rarely k � 6, 
whereas ultra-conserved stretches are often much 
longer, for instance the 17-mer HHRIKNNLQ-
VISSLLDL (Supplementary Material Table 5 and 
Fig. 11) which forms a word in a family of histidine 
kinase proteins in M. acetivorans. Only words of 
up to k = 18 were tested in this paper, so no estimate 
can be made of the longest existing word. M. ace-
t ivorans  has a low complexity 18-mer, 
STDDSTDDSTDDSTDDST (Supplementary 
Material Table 5), and Y. lipolytica has eight 
(Supplementary Material Table 6). The longest 
high complexity words are the 6 EGF domain 
words and a zinc fi nger word found in B. rerio 
(Supplementary Material Table 7).

Not all words can be easily designated as hom-
onyms or conserved. For instance, in C. muridarum 
GPTGSGK is found in different Pfam domains in 
different proteins (IPPT, AAA_2, GSPII_E and 
ABC_tran), initially suggesting homonymity. 
However, in all these cases GPTGSGK forms part 
of an ATP-binding cassette. Whether this is best 
explained by ultra-conservation within highly 
divergent ATP-binding proteins with a distant 
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GPTGSGK-containing ancestor or by the multiple 
evolution of ATP binding capacities by conver-
gence to these words, is debatable. The similar 
longer word GPNGAGKSTL (Fig. 10) is also an 
ATP-binding element, but, unlike GPTGSGK, 
GPNGAGKSTL is always found in the ABC_tran 
domain (PF00005), and therefore is more likely to 
be an example of ultra-conservation than conver-
gence.

Homonyms are assumed to have different func-
tions within their respective proteins, especially 
when they can be shown to have different struc-
tures (e.g. see Fig. 8). However, apparent hom-
onyms with similar structures may be a result of 
convergent molecular evolution on a micro-scale, 
perhaps the case with C. muridarum GPTGSGK. 
For a specifi c structural example, VLVIGA is a 
6-mer homonym in NRL3D, occurring in: 1BFD, 
a benzoylformate decarboxylase (EC 4.1.1.7) 
from Pseudomonas putida; 1AD3A, an aldehyde 
dehydrogenase (EC 1.2.1.5) from rat; and in 
1D4OA, a bovine NADPH transhydrogenase (EC 
1.6.1.1). In each of these cases VLVIGA is found 
in a different Pfam domain: in TPP_enz_M 
(PF00295), Aldedh (PF00171) and PNTB 
(PF02233) respectively. Nevertheless, the con-
formation of VLVIGA is remarkable similar in 
each case, always being the point at which a short 
beta-sheet ends (Fig. 12).

Comparison of different proteomes indicates 
that the peptide vocabularies can be quite different 
in character from species to species. For instance, 
the prominent words in the small eubacterial spe-
cies C. muridarum are dominated by components 
of adherence factor proteins mixed with a handful 
of peptides from other domains and some low 
complexity elements (Supplementary Material 
Table 4). The large archaeon M. acetivorans has 
many words from PKD and histidine kinase 
domains (Supplementary Material Table 5). The 
fungus Y. lipolytica has only low complexity words 
within its major vocabulary (Supplementary 
Material Table 6). Finally, the vertebrate B. rerio 
is dominated by EGF domain words (Supplementary 
Material Table 7). A fuller exploration of how 
typical these vocabulary patterns may be, is beyond 
the scope of the present paper. However, it indicates 
that each proteome may potentially be identifi able 
by the characteristics of its vocabulary; e.g. rich in 
low complexity, or with certain typical domain-
linked vocabularies, raising the prospect of a 
peptide vocabulary signature analogous to the 
genome signature found in DNA. This may be 
useful in metagenomic analysis.

Thode et al. (1996), in pairwise comparisons of 
proteins, found many matches of 6 residues within 
windows of 10, and showed that these occurred far 
less frequently between pairs of random proteins. 

Figure 12. VLVIGA in (from left to right) 1D4O.A, 1BFD and 1AD3.A. The backbone trace is drawn as a black line.
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The method of Thode et al. (1996), differs from the 
one presented here in that they used a criterion of 
60% identity with strings of k = 10. Unlike the pres-
ent method, there was no previous algorithmic iden-
tifi cation of candidate words by statistical properties. 
Rather, they commenced with a small group of 
proteins and extracted all their initial 10-mer strings 
from those sequences. These were then compared 
against the whole protein database, and matches of 
6/10 or better recorded. It thus has some similarities 
to method RS above, but incorporating fuzziness. 
Regardless of these methodological incongruences, 
the detection by Thode et al. (1996) of a far greater 
quantity of short common strings in real protein pairs 
than in shuffl ed ones, parallels the results presented 
in Figure 3. Therefore, it is justifi able to believe that 
even words of k = 6 may be mostly due to something 
other than random coincidence. The nature of this 
pressure may be conservation, amply demonstrated 
by the various ultra-conserved words within fairly 
divergent proteins (Figs. 4, 5, 6 and 11) or it may be 
convergent evolution. The latter of these raises the 
possibility than the presence of an apparent homonym 
within a protein may imply positive selection within 
the family to which that protein belongs, and which 
may be detectable using appropriate methods (Yang, 
1997; Anisimova and Yang, 2007). For instance, if a 
candidate homonymic word is found in two proteins 
of differing function, for instance different Pfam 
families, and positive selection can be statistically 
demonstrated in each of those families over the region 
of the homonym, a selective convergent scenario for 
the origin of that homonym would be highly 
suggestive.
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Table S1. Words detected in eukaryotic proteomes using RS-ESM, k = 6–18.

Species Proteins Kres Words
H. sapiens 37993 16405.3 30360
M. musculus 32971 14645.0 29463
A. thaliana 34712 14124.8 47516
T. nigroviridis 27836 11286.0 26742
C. elegans 22434 9699.5 14167
D. melanogaster 14396 8055.1 7509
D. discoideum 13017 6817.5 16628
A. gambiae 15145 6125.0 6509
C. briggsae 13192 6038.7 6687
G. zeae 11636 5952.6 5302
B. rerio 14049 5940.9 12267
A. oryzae 12053 5410.2 5498
R. norvegicus 11839 5350.2 10466
L. major 8010 5137.4 4795
D. pseudoobscura 9877 5115.2 4412
A. fumigatus 9906 4782.5 3891
P. falciparum (3D7) 5282 4001.3 10494
C. neoformans 6569 3558.9 2787
C. neoformans (JEC21) 6437 3449.1 2461
P. yoelii 7590 3385.6 9444
Y. lipolytica 6524 3118.5 3661
D. hansenii 6309 2902.5 2401
S. cerevisiae 5800 2891.7 2227
B. taurus 8292 2890.4 3652
C. glabrata 5180 2610.3 1742
K. lactis 5326 2504.6 1249
G. gallus 5387 2443.6 3384
S. pombe 5011 2351.3 1306
A. gossypii 4720 2314.3 1103
T. annulata 3790 2025.0 3409
T. parva 4070 1895.3 1899
C. hominis 3886 1757.6 924
E. cuniculi 1909 693.5 308
T. gondii 489 377.9 230
G. theta 598 178.5 38

Peptide Vocabulary Analysis Reveals Ultra-Conservation
and Homonymity in Protein Sequences
Derek Gatherer

Supplementary Materials
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Table S2. Words detected in eubacterial proteomes using RS-ESM, k = 6–18.

Species Proteins Kres Words
R. baltica 7271 2290.5 1658
Anabaena. sp 6069 1955.5 2196
A. tumefaciens (Cereon) 5305 1687.1 1195
A. bacterium 4771 1677.5 1011
B. fragilis (ATCC 25285) 4234 1537.1 841
A. dehalogenans 4345 1516.6 1902
B. anthracis (Sterne) 5288 1460.1 996
Azoarcus. Sp. 4490 1393.5 764
G. violaceus 4406 1377.7 1412
E. coli (K12) 4323 1372.0 687
C. diffi cile 3711 1164.1 884
L. interrogans (icterohaemorrhagiae) 3654 1150.7 705
Acinetobacter. Sp. 3310 1048.4 266
A. ehrlichei 2862 984.1 524
A. borkumensis 2752 908.2 236
D. geothermalis 2821 901.0 538
B. abortus 3023 877.9 273
T. denticola 2753 863.6 573
S. elongatus 2451 770.0 378
S. haemolyticus 2634 756.6 370
C. chlorochromatii 1991 750.9 907
T. thermophilus (HB27) 2200 667.6 552
P. amoebophila 2023 658.9 1210
F. nucleatum 2046 641.1 250
B. longum 1723 638.8 181
T. maritima 1852 582.8 191
C. jejuni 1836 538.6 104
H. pylori (26695) 1551 491.8 172
A. aeolicus 1552 488.9 121
P. marinus (CCMP 1378) 1707 484.4 105
D. ethenogenes 1502 416.5 95
B. afzelii 1257 357.8 223
C. muridarum 916 324.3 40
M. pneumoniae 687 239.7 380
A. yellows 690 176.6 266
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Table S3. Words detected in archaeal proteomes, using RS-ESM, k = 6–18.

Species Proteins kres Words
M. acetivorans 4467 1392.1 2317
H. marismortui 4234 1200.1 1006
M. barkeri 3616 1126.3 1701
M. mazei 3302 1004.3 939
M. hungatei 3095 997.2 792
S. solfataricus 2910 827.9 823
N. pharaonis 2784 815.9 571
H. walsbyi 2644 787.4 387
S. tokodaii 2816 757.9 399
H. salinarium 2426 680.0 449
M. burtonii 2242 676.7 313
A. fulgidus 2398 660.8 262
P. aerophilum 2589 654.9 473
P. kodakaraensis 2301 637.7 219
S. acidocaldarius 2221 631.7 188
P. furiosus 2045 577.7 202
P. horikoshii 2077 569.4 159
P. abyssi 1785 539.2 180
M. thermoautotrophicum 1869 524.7 145
M. jannaschii 1782 504.9 213
M. kandleri 1687 501.0 205
M. stadtmanae 1533 493.6 277
M. maripaludis 1722 490.7 113
A. pernix 1576 482.7 143
P. torridus 1535 471.3 79
T. acidophilum 1482 453.2 49
T. volcanium 1523 452.7 56
N. equitans 536 151.5 17
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Table S4. All words of k � 6 detected in C. muridarum (proteins �63% identical), using RS-ESM.

Word k Protein family n
GGKGGLTVQIGG 12 adherence factor 3
FQEEHGHCRVP 11 helicase 4
GPNGAGKSTL 10 ABC transporter 3
EPAPEPAPE 9 low complexity 3
SDTESTNGN 9 low complexity 3
NPQLASWV 8 helicase 4
SGSGKSSL 8 ABC transporter 3
IHDVEQNG 8 DUF1547 (PF07577) 3
GPTGSGK 7 various 4
FRVTDPN 7 adherence factor 3
GIEGLIH 7 S1 RNA binding 3
DDDDDDD 7 low complexity 3
EGRCMGL 7 adherence factor 3
NDVTPAD 7 adherence factor 3
KTAAKKA 7 histone-like 3
LGGGAIL 7 Chlam_PMP (PF02415) 3
HGIWIAG 7 adherence factor 3
SSSSSS 6 low complexity 5
RSLLNK 6 homonym 4
VLLGLG 6 homonym 4
GKLSED 6 helicase 4
SFRAIP 6 adherence factor 3
LPLFSL 6 homonym 3
SSSFAL 6 homonym 3
IAILLS 6 homonym 3
RLKTIL 6 homonym 3
ALGIAA 6 homonym 3
VVLFDE 6 homonym 3
AASLIR 6 homonym 3
SLQEGL 6 homonym 3
ALPGVG 6 homonym 3
PNVGKS 6 MMR_HSR1 (PF01926) 3
EKILSL 6 homonym 3
VLSYEL 6 homonym 3
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Table S5. All words of [k � 10 AND n � 9] in M. acetivorans (proteins �40% identical), sorted by occurrence, n.

Word k Protein family n
STDDSTDDSTDDSTDDST 18 low complexity 27
EIHHRIKNNLQVISSLL 17 histidine kinase 27
HHRIKNNLQVISSLLDL 17 histidine kinase 21
NMPVEYFDFNGN 12 PKD domain 20
VAYFHNMDWIE 11 PKD domain 20
GDGLYEDLTGNGEFSFVD 18 PKD domain 19
DLDGDGLYEDLTG 13 PKD domain 17
VVLATLTVSGKEKGSAN 17 PKD domain 15
VSGKEKGSANLSIGV 15 PKD domain 15
ISSLLDLQAEKF 12 histidine kinase 14
PLGIIVNELVSNSLKHAF 18 histidine kinase 13
GSANLSIGVKRLE 13 PKD domain 13
YSFLPVYSFLPVYSFLPV 18 low complexity 12
EGAADVVLATLTVSGKE 17 PKD domain 11
TVPEENITVPEEN 13 low complexity 11
AVPLGIIVNELVSNSLK 17 histidine kinase 10
GTAPLTVNFTDQSTGSP 17 PKD domain 9
STGSPTSWFWDFGDG 15 PKD domain 9
VSEASGSTVTLYFDP 15 PKD domain 9
PTSWFWDFGDGANST 15 PKD domain 9
LSPLPDQEYAPKDL 14 PKD domain 9
DITERKKAEEAL 12 histidine kinase 9
MDTAVPLGII 10 histidine kinase 9
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Table S6. All words of [k � 10 AND n � 9] in Y. lipolytica (proteins �40% identical), sorted by length, k.

Word Protein family k n
QQQQQQQQQQQQQQQQQQ low complexity 18 67
ATDTGATATDTGATATDT low complexity 18 22
TVTGPTAGTTTITGTDGK low complexity 18 15
SYSPTSPSYSPTSPSYSP low complexity 18 14
IFIFIFIFIFIFIFIFIF low complexity 18 14
YDSYDSYDSYDSYDSYDS low complexity 18 11
PLAEPMPLPLAEPMPLPL low complexity 18 10
SGSGSSGSGSSGSGSSGS low complexity 18 9
ATDTATDTAATDTATDT low complexity 17 31
GSGSGSGSEGSGSGSGS low complexity 17 19
SQSQSQSQSQSQSQSQS low complexity 17 17
NGNGSDGSNGNGSDGSN low complexity 17 16
GSGSGSGSDSGSGSGSG low complexity 17 13
SSSIPTGDVSSATPTGD low complexity 17 11
DASSSIPTGDVSSATPT low complexity 17 11
PTGDVSSATPTGDASSS low complexity 17 10
TGGADASSTGGADASST low complexity 17 10
TATDTGATDTATDTGAT low complexity 17 9
TEQITVAPTGPVTTKTV low complexity 17 9
KQKQKQKQKQKQKQKQK low complexity 17 9
ATQTGGNGNNSGSNTAT low complexity 17 9
ATDTGATATDTGATDT low complexity 16 12
SPSYSPTSPSYSPTS low complexity 15 13
ATDTGATATDTATD low complexity 14 12
EPVTSEPVTSEPVT low complexity 14 10
PGPAPSPGPGPAPS low complexity 14 10
SDSDSDSDSDSDS low complexity 13 32
DSDSDSDSDSDSD low complexity 13 29
PSSTEAPSSTEAP low complexity 13 14
GSNTATQTGGNGN low complexity 13 9
TKTVTGPTAGT low complexity 11 13
ASASASASASA low complexity 11 9
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Table S7. All words of [k � 10 AND n � 12] in B. rerio (proteins �  40% identical), sorted by occurrence.

Word Protein family k n
DDDDDDDDDDDDDDDDDD low complexity 18 184
QQQQQQQQQQQQQQQQQQ low complexity 18 38
YQCKCEGLFVWPNDTCHA EGF domain 18 22
GSFNCSCLSAFTVTDRNQ EGF domain 18 19
AQAQAQAQAQAQAQAQAQ low complexity 18 16
KKKKKKKKKKKKKKKKKK low complexity 18 16
NGTEYECKCEVDHVWPSN EGF domain 18 14
CGLNGTEYECKCEVDHVW EGF domain 18 14
CGPNSICNNTIGSYNCSC EGF domain 18 14
MSDPEPCRIKQEETEELI zinc fi nger 18 13
YSNCTNEIGSYNCSCLDG EGF domain 18 12
CDVITNGSCTCINGLPA EGF domain 17 22
NGSCTCINGLPADGQFC EGF domain 17 21
VCSLNETRYQCKCEGLF EGF domain 17 19
ECLFSPPVCGPYSNCTN EGF domain 17 17
THTHTHTHTHTHTHTHT low complexity 17 17
CRELDCGAPVQVLRAA SCRC (PF00530) 16 19
DINECEDAASVCGQYS EGF domain 16 17
TDRNQPVSNSNPCNVC EGF domain 16 17
TCGCIQALPSEGSLCQ EGF domain 16 15
CDAAFDQQDAEVVCR SCRC (PF00530) 15 25
NSIGSFNCSCLSAFT EGF domain 15 19
IGGYMCSCWNGFNVS EGF domain 15 15
QVCDSIVGSTCGCIQ EGF domain 15 14
SINNTCEDVNECLKS EGF domain 15 12
SNSNPCNVCSLNET EGF domain 14 18
PERPPVSAPAPERP low complexity 14 16
LTETQVKIWFQNRR homeobox 14 12
DIDECLFSPPVCG EGF domain 13 12
PVCGPYSNCTNE EGF domain 12 15
PGGVGGVPGGVG low complexity 12 13
NLPINSNNTCTD EGF domain 12 13
LRAAAFDKGD SCRC (PF00530) 10 13
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