
 

 
 
 
 
 
 
 
 
 
Patterson, J.W., Taylor, C.D., and Willis, P.J. (2009) Reconstructing 
vectorised photographic images. In: Conference for Visual Media 
Production, 2009. CVMP '09., 12-13 Nov 2009, London, UK. 
 
 
Copyright © 2009 IEEE 
 
A copy can be downloaded for personal non-commercial research or 
study, without prior permission or charge 
 
Content must not be changed in any way or reproduced in any format 
or medium without the formal permission of the copyright holder(s) 

 

 
When referring to this work, full bibliographic details must be given 

 
 
 
http://eprints.gla.ac.uk/47879/ 

 
 
 
  Deposited on: 16 December 2010 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Enlighten – Research publications by members of the University of Glasgow 
http://eprints.gla.ac.uk 



RECONSTRUCTING VECTORISED PHOTOGRAPHIC 
IMAGES 

 

J.W. Patterson*, C.D. Taylor†, P.J. Willis†† 
*University of Glasgow, UK , jwp@dcs.gla.ac.uk  

†University of Heriot-Watt, UK, C.D.Taylor@hw.ac.uk 
††University of Bath, UK, P.J.Willis@bath.ac.uk 

 
Keywords: Model-based coding, Rendering, Level Sets. 

Abstract  

We address the problem of representing captured images in 
the continuous mathematical space more usually associated 
with certain forms of drawn (‘vector’) images. Such an image 
is resolution-independent so can be used as a master for 
varying resolution-specific formats. We briefly describe the 
main features of a vectorising codec for photographic images, 
whose significance is that drawing programs can access 
images and image components as first-class vector objects.  
This paper focuses on the problem of rendering from the 
isochromic contour form of a vectorised image and 
demonstrates a new fill algorithm which could also be used in 
drawing generally. The fill method is described in terms of 
level set diffusion equations for clarity. Finally we show that 
image warping is both simplified and enhanced in this form 
and that we can demonstrate real histogram equalisation with 
genuinely rectangular histograms. 

1 Introduction 

 A common problem in distributing digital images and 
movies is that of catering for varying image or film formats. 
For example a short sequence of a feature film may be shown 
on standard TV (768x576), HDTV (1920x1024), internet 
video (various), or even mobile phones (anything from 384 x 
256 upwards). If shown for publicity reasons the producers 
will want this to be shown at the best quality possible. In 
effects houses which concentrate on advertising a significant 
proportion of time is spent just converting between the 
various digital formats on which the advertisement is to be 
shown. The problem arises because all digital images have to 
be sampled in order to be seen at all, but different kinds of 
display device have, of necessity, to show the images at 
differing resolutions.  Vector formats, historically associated 
with drawn images rather than with photographs, can provide 
such a resolution-independent rule but none of the existing 
fully automatic fill rules for vector formats work well on 
photographic images. This paper describes a new fill regime 
based on diffusion which results in images which are visually 
indistinguishable from their originals after conversion into 
and out of a vector representation. 

 

Figure 1 : (i) Original digital photo 

 (ii)Rendered: flat-fill 

(iii) Rendered: interpolated fill 
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There are a number of systems and plug-ins available to turn 
images into vector form (e.g. Adobe Live Trace™) but they 
are all compromised by the absence of a good rule for 
determining varying colour values in a continuous field. 
Tools like Live Trace™ extract isochromic contours from 
sampled images but have to extract a sufficiently large 
number of contours to preserve the illusion of a smooth 
surface on a sampled display. This is because the usual rule 
for automatically filling between contours is to provide a 
constant colour (here called flat fill) in the viewable rasterised 
version of the image so the results can be thought of as 
providing a series of step changes in colour values rather than 
a continuous variation in those values. In Figure 1 ii  we have 
used a flat fill regime on an image which was vectorised for a 
diffusion-based fill regime of the kind described later in this 
paper. The diffusion-based approach allows for the use of 
fewer contours without compromise to the appearance of 
smoother parts of the image and this has shown up a 
particular weakness of flat fill in the form of visible bands of 
colour changes (Mach bands). Indeed the usual application of 
such systems is to produce an artistic effect rather than a 
realistic outcome.  
 
In this paper we show how to resolve this problem.  As the 
contours can be thought of as a model of the image they need 
to be converted to a sampled image format in order to be seen 
on raster display devices. Thus a rendering process, entirely 
analogous to rendering processes used in 3D graphics, is 
required. The problem here is, if flat-fill is insufficient, how 
do we determine the intermediate pixel values between 
contours when rendering back to the sampled form? This 
problem and this paper's contribution to its solution are best 
illustrated in Figures 1 i-iii above.  In Figure 1-ii the 
straightforward approach of flat fill has been taken. More 
explicitly each contour footprint, here defined as the image 
region uniquely enclosed by a contour, has been filled with a 
constant 'average' colour. In Figure 1-iii a diffusion-based 
interpolation technique (described in section 4) has been used 
instead. Each rendered image was rendered from the same 

contour set. In Figure 1 ii the different outcomes are quite 
noticeable; flat fill shows Mach-banding artefacts which are 
wholly absent with the interpolated fill of Figure 1-iii.  As can 
be seen in Figure 1-iii the interpolating fill technique 
produces satisfactory results even though a quite simple rule 
has been used to determine which contour levels to use in the 
vector form. 
 
A major problem in determining this vector form is that of 
determining how many contours to use. A naïve approach 
would be to use one contour for every unit of colour 
quantisation but this not only produces far more contours than 
are needed for a visually faithful reproduction of the image 
but also far more detail in defining each contour than is 
needed. If flat fill is used within contour boundaries the 
inefficient naïve approach is the only technique which will 
assure an artefact-free result. Techniques based on 
morphological principles (e.g. [17]) do this and, while we 
reference these techniques as part of the historical record, we 
would like to draw a distinction between the morphological 
approach and ours, notably in terms of the number of levels 
required for a visually satisfactory rendering. In such an 
approach all that would be needed for a visually faithful 
rendering would be to fill the contour with an 'average' colour 
quantised to be the border colour. In fact far fewer contours 
are needed in practice as we show here. To illustrate the 
contours without too much visual confusion we chose the out-
of-focus image Figure 2(i). Here the images have been 
rendered from contour sets representing the YUV components 
of a colour image. As can be seen in Figure 2 iii-iv and Figure 
3 ii-iii there is very little detail in the U, V components so the 
size of the dataset is dominated by the Y-component. (This 
remains true even with a sharp, high-definition image.) The Y 
component (grey-scale) is held in levels-of-10 256-bit 
quantisations, i.e. the colours 127, 127+10 etc. 127-10 etc. of 
which there are 25 altogether; while the U,V components are 
held in levels-of-5 (so 127, 127-5, 127-10 etc.) of which there 
are 49 altogether. 

 

          
 
Figure 2 (i) colour image,      (ii) Y-component                    (iii) U-component in grey-scale    (iv) V-component in grey-scale 
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Figure 3 (i) Y-component 2-ii contourised  (ii) U-component 2-iii contourised (iii) V-component 2-iv contourised 
   

This selection of contour levels has proved satisfactory for 
the images we have used here (although it is possible to 
find counter-examples). The contours for the YUV 
components of Figure 2-i are shown in Figure 3. The red 
contours are unsmoothed versions of the green ones. 
Smoothing is achieved by ‘snapping’ together end-point 
tangents if they fall within a certain threshold of being 
directionally opposite. 
 
This paper is structured as follows. The next section (2) 
covers previous work in this area, some of which reaches 
back to the earliest days of computer graphics. Section 3 
discusses the main features of the vectorising codec we 
have used here, which has an encoder which works from a 
raster image to produce a vector image format and a 
decoder which renders the vector format back into a raster 
image. Section 4 discusses the decoding stage in more 
detail, and in particular the principles behind the diffusion-
based interpolating fill process. We will see that this fill 
could be used just like any other area fill technique used in 
rendering vector format images, and on its own would give 
a drawing program (or Scalable Vector Graphics - SVG[5] 
- interpreter) the ability to reconstruct contourised images 
to whatever degree of fidelity is required. Section 5 shows 
the results from some test images. Section 6 discusses 
some common image manipulation functions, including 
histogram equalisation, and here shows the consequences 
of producing truly rectangular histograms which are 
unachievable using sample-based techniques. Section 7 
will conclude the paper and review where this work places 
vector image formats. 
 
2  Previous work 
 
Vectorising (contourising) as applied to an array of sample 
points is a technique whose origins go back to 

geographical information systems [23], where contour 
maps were to be produced from spot height surveys, and 
was first applied directly to photographic images by 
Matheron [9] and later by Serra[17] (these are the early 
references to the morphological approach). At about the 
same time Nakajima et al. [10] (a more accessible 
reference is Agui et al. [1]) proposed an approach more 
closely allied to the techniques of computer graphics. The 
fill methods used in image reconstruction in all these 
references is flat fill. More recently Price & Barrett [14] 
and Sun et al. [20] have proposed methods for generalising 
from flat fill while keeping the same number of contours 
[20] or sample points [14] by building an adaptively 
subdivided mesh where colours are associated with mesh 
intersection points, although some interaction is required 
to determine the starting shape of the mesh. Both the 
method of contour finding and mesh generation (Live 
Trace™[14][20] and gradient mesh tool[20] respectively) 
are available in commercial drawing packages but the 
papers focus on smooth colour interpolation and mesh 
optimisation for minimal dataset size. However this 
approach simply swaps one set of sample points for 
another more feature-oriented set, as befits the type of 
calculation they want to do, and offers no help to 
calculations like histogram equalisation or processes 
involving preserving features of the isosurface topology 
(The isosurface is defined by a given set of isochromic 
contours selected from the set of quantised colours used). 
 
Another approach is to use a data-dependent triangulation 
(DDT) based on a range of techniques such as the 
approach used by  Yu et al. [24]. Here the idea is to 
adaptively triangulate the image so that each vertex is 
associated with a colour and the image is reconstructed by 
a barycentric interpolation between the colour values 
associated with each vertex. The main part of the 
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algorithm involves an initial convex hull triangulation 
based on image sample points so that triangle edges 
approximately align themselves with isochromic contours 
while optimising an overall smoothness function, and then 
improves this triangulation by edge reconnections and 
deletions. While the contours are not found explicitly, the 
alignment of some edges will correspond to image features 
and the optimisation steps are aimed at enhancing these 
correspondences. This in effect replaces a sampled form of 
the isochromic surface with an approximate triangulation 
of the continuous isosurface as is commonly done in 
topology [2]. However, once again there is no support for 
the kinds of image operation we consider here as for 
example there is no guarantee that a given isochromic 
contour will be matched everywhere by a connected set of 
triangle edges. There is also the question as to whether a 
planar triangulation will survive an arbitrary (2D) image 
warping operation. 
 
There are, however, other approaches to the problem of 
vectorising images than by using isochromic contours, for 
example the ARDECO approach [7] where a 
segmentation, filled by the various fills available to SVG, 
is fitted to an image to within a given error bound, here a 
threshold. The resulting structure can be made to support 
statistical image manipulation operations like histogram 
equalisation in a similar way to our diffusion approach. In 
fact it is possible to extend 'flat fill' for a uniformly 
quantised colour space to a diffusion-like fill using the 
technique of Kim et al. [6] and that would include the 
simple contourisation model we have used for the images 
in this paper, but not its generalisations. As the Kim et 
al.[2006] algorithm attempts to model the isosurface as a 
smooth continuous surface everywhere other than at edges 
(so is non-linear anywhere) this complicates the working 
of an algorithm like histogram equalization, but does 
provide some degree of support. Another approach which 
does not use contours, but rather chooses edges as the key 
feature, is that due to Orzan et al. [11] [12]. Here the idea 
is to use edge-lines as the vectors and to decorate the lines 
with colour data. This is then propagated  away from the 
edge using a Poisson equation. When used for images the 
edge lines correspond to discontinuities in otherwise 
smooth shading and reconstructed images look a lot like 
their original forms although the unconstrained use of 
Poisson equation diffusion results in quite inaccurate 
diffusion boundaries. It is the insight of Lindeberg [8] (and 
others) that this inaccuracy tends not to be noticed which 
Orzan et al. are exploiting here. They also note ([12]) that 
a similar decorated-edge representation can be used to 
produce smooth-shaded images of a kind difficult to 
generate by other means. Similarly the diffusion method 
described in this paper could be used to generate different 
forms of smooth-shaded synthetic vector image although 
the method of control would be quite different. 
 
In the end any accurate method of vectorising a 
photographic image needs to have some kind of 

interpretation of just what a pixel is and in essence we 
make a different interpretation of an image pixel on input 
to the interpretation made on output. Two papers which 
discuss this problem in ways we pay particular attention to 
are those due to Blinn[3] and to Smith[19]. Blinn[3] 
discusses eleven distinct ways in which to consider what a 
pixel actually is and this includes a discussion of the 
relationship between a sample and a sensor which generate 
samples, while Smith[19] makes a strong argument for not 
considering a pixel as being a square over which some 
simple form of integration is done (e.g. a tent filter). Pixel 
generation (in the decoder) uses supersamples under the 
footprint of a convolution kernel, which is quite different 
to the assumptions about input although the nature of the 
input environment may be taken into consideration when 
deciding what the pixel value might be, for example to use 
noise statistics to determine how closely to approximate 
the round off in quantisation. In fact we have combined 
regular 4 x 4 supersamples (sometimes 9 x 9 supersamples 
on a 4 x 4 sampling grid)  by integrating over a square in 
all our images in this paper without being caught out, but 
more stringent sampling or averaging regimes are not 
excluded by our approach. 
 
3  Main features of a vectorising codec 
 
An image vectorising codec starts from a sampled image, 
typically one obtained from a digital camera, encodes it 
into an annotated contour set (the level sets) and 
subsequently decodes it back into a sampled image after 
image transformation processes are applied to it. In our 
codec individual contours are represented by closed Bézier 
chains; contours clipped by the image border are 
completed by the shape of the border segment which falls 
within the contour footprint. The contours are found by 
first finding where they intersect lines between sample 
points derived from the original pixels.  A key aspect of 
the input process is the explicit assumption that the pixel is 
contaminated by noise which can arise from any source, 
quantisation, sensor noise, even numerical inaccuracy, so 
is essentially of unknown origin. For example when 
considering the degree of accuracy to which the isosurface 
is modelled the strictest requirement we can safely make is 
that the isosurface model lies everywhere inside the error 
bounds of the pixels.  
 
Pixel error can be modelled in a number of ways, 
essentially either globally or locally. The accuracy of the 
value derived from the model is not critical although too 
crude a model could result in retaining image noise in the 
final result or a result which loses detail. While more 
accurate local approaches are covered in Patterson & Willis 
[13] we should say that all the images in this paper were 
generated assuming a simple global noise value (±constant 
around each pixel value) without apparent loss of detail due 
to that assumption. If we are to attempt to preserve noise 
statistics in the final image, as suggested earlier, more 
accurate, local, methods will be needed.  
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Error terms ε , however derived, can be converted into 
spatial error δx , δy  in the x or y direction by applying the 
formulae: 

δx = ε ⋅ ∂φ
∂x

   
   
   

   
   
   
−1

  ,    δy = ε ⋅ ∂φ
∂y

   

   
   

   

   
   
−1

 

 
Here  φ = φ x, y( ) is the continuous approximation of the 
'true' isosurface. Accordingly any isochromic contour is 
derived in terms of an error bound around it, initially 
identified in the x, y directions and subsequently 
interpolated as a ribbon of error within which the contour 
may take any shape which fits.   In fact we associate these 
errors with points on the contour line when fitting the 
Bézier chain but any fitting algorithm (e.g. the method 
outlined by Schneider[16] or by Vansichem et al. [21]) has 
to take into account different values for that error around 
each sample point. One way to relax this condition is to 
multiply the derived error values with a constant and the 
consequence will be to reduce the number of segments in 
the chain and increase its smoothness. It turns out that 
failing to take into account the presence of noise results in 
large numbers of Bézier segments in every contour as it 
twists and turns around single pixel-sized 'features' which 
are no more than noise-induced deviations from local 
correlation. If instead we account for noise adequately we 
get much smoother curves (with many fewer segments) 
whose smoothness has, up to a point, no perceptible effect 
on the resultant render. 
 
Prior to contourisation the original image is re-sized by a 
factor of two by interpolating additional sample points in x 
and y respectively. These sample points are interpolated 
using the modified linear interpolation process described 
by Carrato et al [4] which biases the result towards one or 
other of the interpolated pixels in the presence of a large 
gradient between the sample values. Contours are found 
first in terms of solving for points on the 'true' contour 
with associated spatial errors (which are actually a 
measure of local resolvability) in terms of the contour’s 
intersections with lines through the pixel centres in the x or 
y direction appropriately. Here we have done this 
calculation by linear interpolation alone, that is by solving 
in the appropriate direction for the point where the linear 
interpolant along x or y is equal to the sought contour 
value, and then interpolating between the sample errors by 
the same amount. If a local error had been calculated then 
it could have been used to determine which degree of 
interpolation was appropriate  on a solution-by solution 
basis by finding which derivative approximated to zero 
within the calculated error bounds for that 
derivative[Patt&06]. However past experiments with a 
pixel-level noise estimator have showed that for the 
majority of cases (approximately two-thirds in typical 
images) only linear interpolation could be justified and the 
rather basic assumptions about noise made here would not 

justify higher order interpolation anywhere. The resulting 
polyline approximation to the ‘true’ contour is simplified 
by finding the Bézier chain with the fewest segments 
which fit within the error ribbon the polyline 
approximation defines.  
 
In an encoder the contour values can be determined by a 
blind strategy or an adaptive strategy. In this paper we 
have used a simple but (reasonably) effective blind 
strategy of pre-selecting the values to be found. As a 
consequence all the images in this paper are represented by 
the same choice of contour levels and all the contours are 
found at the same time by a single scan of the image from 
top to bottom. Here we examine each pixel to see which 
contours pass through a bounding box around its centre 
and then join up the contours by matching adjacent 
bounding box edges. This approach is only really possible 
with a blind strategy as an adaptive strategy will of 
necessity contain a stopping condition based on testing the 
need for the contour loop under consideration.  
 
The outcome of the process is a hierarchy of contours 
(including contours R and S) defined in terms of the 
relation R encloses S  and the vector format consists of 
rules for drawing and filling these contours in order. The 
decoder ‘simply’ applies the fill rule for the footprint of 
each pair of contours in the hierarchy as defined by the 
footprint of the enclosing contour subtracted from the 
footprint of all the contours it encloses directly (i.e. with 
no intervening contours in the hierarchy). 

4 Rendering between nested contours 

The principal issue in rendering is to use a process which 
mimics to some degree the fall-off in values of pixels from 
a higher level to an adjacent lower one.  The intention is to 
develop a simple diffusion-based fill algorithm between 
levels, as defined by level lines (isochromic contours). We 
will first develop the idea in familiar level set terms and 
then show how to implement it without having to solve the 
differential equations which the invocation of level sets 
implies. The reason for doing this is that Level Set theory 
makes the issues clear in a direct and easily visualisable 
manner but the complexities of solving the equations led 
us to use known fast, scanline –based methods to give us 
quick renders. 
 
We derive the formulae in terms of a simple case (Figure 
4) of a single outer contour with level value R surrounding 
a single inner contour level S, and then generalise. We 
want to arrange for the inner contour S = ψ 0( ) to first 
expand (in the terminology of Vincent [22] 'to dilate') at a 
uniform (unit) speed until it wholly contains R (Figure 4-
i). At all times the level line for φ t( ), over the interval 
0 ≤ t ≤ 1, gives the shape of the intermediate dilation at 
instant t which we note is wholly dependent on S and has 
no connection with the shape of R.  If, at the same time,
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Figure 4(i) dilation of Ψ  to include Φ  (ii) contraction of Φ to inside Ψ (iii) matching Φ and Ψ indices 
   

 the corresponding level line for R is contracted ('eroded' 
[22], as in Figure 4-ii) at uniform speed until it falls 
wholly within S then the level lines for intermediate 
erosion at time point t2 , say, will intersect the level lines 
for dilation in a range around another time point t1. These 
time points t1 and t2  now correspond to the times taken to 
reach the nearest points on R and S respectively, so define 
linear distances which can be used to interpolate colours 
associated with R and S respectively at the points of 
intersection of these two curves. What we are saying is 
that for any point inside the region R - S (R with S 
removed from within it) the shortest distances to the 
boundaries of R and S respectively determine the 
interpolation of the colours associated with the bounding 
levels R, S at that point. These interior colours will usually 
vary linearly from the values associated with one contour 
to the other, but this only happens if the geodesics running 
through the points in question are straight lines, i.e. the 
boundaries are not occluded from the point. In more 
complicated situations the interior colours will vary as 
though affected by surface tension, which is likely to fit 
what is actually found. 
 
Taking the outwards direction as positive (as shown in Fig 
4-i), the level set equation for the expansion (dilation) of 
ψ  is: 

 
∂ψ
∂ t

= K.
∇ψ
∇ψ

   where K = 1 if distR-S ψ t( ),R( )> 0

0 otherwise

   
   
   

      
      (1) 

 
Here ψ t( ) is the expansion of ψ 0( ) clipped by R = φ 0( ). 
The function dist () gives geodesic distances of points in 
R, R i( ) say, from S using the value of t at the points at 
which ψ t( )= R i( ).   

We can obtain the morphological distance fields for 
-R and +S by evaluating equation (1) and its matching 
partner for the erosion  [22] of  R, equation (2) as in Figure 
4-ii: 

 

∂φ
∂ t

= −K.
∇φ
∇φ

   where K = 1 if distR-S φ t( ),S( )> 0

0 otherwise

   
   
   

      
      (2) 

 
This will give two Euclidean distances  t1,t2 , where 
φ t1( )= ψ t2( ) at zero or more points inside R – S (as in 
Figure 4-iii) so we can calculate the colour values C of 
those points from the colours CR , CS  associated with level 
lines R and S respectively as: 
 

C = CR ⋅ t2

t1 + t2

  

   
   

   

   
   + CS ⋅ t1

t1 + t2

   

   
   

  

  
   

 
We have used diffusion twice to give us morphological 
distances from each point in space in terms of the time to 
reach each of the two levels (here the speed of travel is 
unity so time = distance). When normalised by the sum of 
the distances this gives us an interpolation ratio between 
the two contour values which is linear for simple 
geometries but quadratic with a positive curvature - quite 
similar to the effects of surface tension - when the contour 
geometry becomes complicated. We refer to this process 
as double diffusion and note that isochromic lines are in 
effect interpolants between the shapes of the inner and 
outer contours, so it should properly be called  double 
diffusion interpolation. For this paper we used a 
computationally simpler measure than Euclidean distance, 
namely Manhattan distance, calculated outwards 
(inwards) from a border defined in terms of those pixels 
which contained the border contour.  The Manhattan 
distance can be calculated like a fill process in which 
successive erosions or dilations define an ascending index 
starting at 1. Although the Manhattan distance is always an 
overestimate this tends to get normalised by the division of 
indices calculated in the same way. If the calculation of 
dilation (or erosion) is carried out in a quantised manner 
this naturally supports Manhattan distances, but if it is 
carried out continuously (e.g. by equations 1 and 2) this 
naturally supports Euclidean distances and the precise 
calculation of interpolants which are smooth everywhere.  
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Figure 5(i):Original ‘Lena’ image (ii) Rendered from contours ( x 1 scale) 

(iii): (i) Scaled x 4 (bilinear) (iv) Control points from (ii) scaled x 4 

(v): (i) Scaled x 8 (bilinear) (vi) Control points from (ii) scaled x 8 
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5. Example applications 
 
Apart from Figure 1 all the examples showing our 
interpolation approach are applied to the reconstruction of 
YUV images with Y at intervals of 10 and UV at intervals 
of 5. In Figure 5-i and  we show an original pixel image 
(the standard test image ‘Lena’) and its re-rendered 
equivalent in Figure 5-ii.  At intervals of 10 between Y 
levels the re-render is visually indistinguishable from the 
original (input spatial resolution 256x257).   
 
Additionally we have shown in Figure 5-iii and 5-v two 
portions of ‘Lena’ scaled up by x 4 and x 8 respectively 
using bilinear interpolation (which is often preferred over 
higher order methods). As one expects the detail becomes 
more blurred. By comparison we have scaled the control 
points for the contours in Figure 5-ii, again by x 4 and x 8 
and rendered these as in Figures 5-iv and –vi where we can 
see that more detail has been carried into Figure 5 –vi than 
in Figure 5 –v.  

 

For our second application we chose a different kind of 
operation, histogram equalisation. The purpose behind 
histogram equalisation is to adjust pixel values so that each 
sub-region of the image yields equal energy. Properly 
histogram-equalised images should show the highest 
contrast everywhere in the image and this is supported by 
a rectangular histogram across the range, particularly for 
the Y component of a YUV image. Unfortunately pixel-
based histogram equalisation usually only manages to 
achieve the sort of result in Figure 6-i. The diffusion 
interpolating technique however does not require level 
lines to be associated with integral values although one 
might start out that way. Instead one could determine what 
level values would give the nearest to a rectangular 
histogram. The neatest way of doing this would be to start 
off with contours of values which vary in powers of 2 from 
127, i.e. 127, 63, 191, 31, 47, 159, 223 etc. The 127 
contour should partition the image area exactly in half and 
if not, its value needs to be reassigned to whichever 
contour comes closest to achieving that partition. 

 

 
 
Figure 6 (i) histogram equalized by pixel reassignment  (ii) same by level reassignment  
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We note that if the 127 level covers exactly half the image 
area then the 63 contour should cover half of that half (and 
the 191 level covers half of the other half plus a half) etc. 
In other words each level l can be re-assigned according to 
the proportion of pixels that the contour footprint should 
cover, e.g. as assigned by a 1:1 mapping H l( ). We  re-
assign the levels by indexing the inverse function H −1( ) 
by the proportion p of pixels actually covered ( 0 ≤ p ≤ 1).  
Here H l( )= 2ln l +1( )−8  so  H −1 p( )= p* 28 −1 (for an 8-bit 
per primary quantised colour space). 

Figure 6 shows the results of performing histogram 
equalisation in this way. Here the first row shows the 
resultant images and the second row shows the 
corresponding histograms. It is clear that the right hand 
image Figure 6 (ii)  has the strongest contrast enhancement 
of the two images and in particular lacks the artefacts of 
the left image Figure 7(i) which are in the main caused by 
the gaps introduced by pixel reassignment in the 
histogram.  

6. Conclusions 
Vector formats for photographic images have been studied 
for various purposes since the mid 1970s and there are 
broadly two approaches, the morphological approach 
which in effect requires every individual quantisation of 
the colour level to be represented, and the topological 
approach which attempts to model the isosurface as 
economically as possible. Level sets, as we have used 
them here, are a bridge between the two approaches and 
can benefit from results in either. Many image 
manipulation operations on this form are both simpler and 
seem to give better results (as here, warping and histogram 
equalisation) than their raster equivalents. One kind of 
transformation is particularly straightforward, that of 
varying the colour depth resolution in the resulting image. 
This is because the final samples for the observed image 
are calculated as a convolution of samples into the 
continuous field and these need then to be quantised to 
whatever colour depth is required. Thus the vector form is 
independent both of spatial and colour depth resolutions in 
the original input.  
 
However there are residual problems with the vector 
approach which can be summarised in terms of conversion 
speed and file size. Conversion times in and out of the 
vector format are approximately linear with input image 
size although it is known that images with a lot of high 
frequency detail take longer to encode and decode than 
images with a more usual distribution of frequencies. For 
example the 'mandrill' image (another one of the standard 
test set) takes twice as long to encode as  'Lena'. On a 
500MHz PC 'Lena' at 256x257 took 15 seconds to encode 
and 20 seconds to decode, but this is without any graphics 
acceleration assist. The codec is (by intention) well-suited 
to streaming and parallelisation. Our view is that, given the 

degree of support available for graphics processes, these 
times will be significantly improved in practice. On the 
other hand the fixed contour level setting strategy resulted 
in file sizes 10x larger than their pixel equivalents which 
we did not attempt to address in the work being reported 
here. However, the results of Lindeberg [1998] suggest we 
have been far too conservative in fixing the local 
resolution of contour segments in smooth areas. If we 
compute a resolution measure which scales with local 
smoothness we should be able to significantly reduce the 
number of  segments per contour. We have also 
(knowingly) been far too conservative in the numbers of 
contours we find, possibly by as much as a factor of 20, 
but it will take a (much more complex) adaptive encoder 
to find the local optima. Compression is an obvious focus 
for future work. 
 
Our original concern was to be able to reproduce 
photographic images from contour form so that they 
looked visually indistinguishable from the original. In this 
we were generally successful. Reliably better results could 
be obtained with an adaptive encoder which starts as we 
have done here by encoding contour 127 then splitting the 
intervals on either side etc. Such an adaptive encoder (e.g. 
Patt& [2006]) would maintain a test render and only split 
an interval further if the pre-render resulted in pixel values 
falling outside the assumed error bounds around the 
original pixels. Where this condition happened locally, a 
local decision to subdivide further could be taken. We 
estimate that such a codec would take twice as long to 
encode than our fixed-level encoder. It would take 
considerably less time to decode, although this time would 
be more image-dependent than before. File size should be 
significantly improved also. The gains here also depend on 
the noise-estimation method used as well as the extent to 
which the diffusion process mimics the expected variation 
of pixels values within a contour footprint. Here there are a 
number of possible improvements to be made. 
 
The main improvement is to use a standard level set 
approach [18] of adding or subtracting (depending on the 
sign convention used) the traversal speed of the level line 
with a (usually) small amount, calculated as (say) 0.01 x 
curvature, where curvature is calculated as ∇⋅

∇Ψ
∇Ψ

. This 

has the effect of smoothing out 'shocks' or discontinuities 
in the evolving line, which is a common problem in 
interpolating systems [15]. (We note also that loops are 
another problem with 2D interpolators but the rules for 
interpreting Level Set solutions explicitly precludes these 
under the ‘weakest solution’ rule; instead the loop is cut 
off at a point which often leaves a visible shock.) Shocks 
also arise when two advancing fronts intersect one another 
but again the 'weakest solution' [18] applies to determine a 
single front. Again the foregoing modification smoothes 
away the discontinuities, but the calculated indices are no 
longer computed from wholly linear (Euclidean) distance 
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values. It is also possible to manipulate these indices 
further so that tangents in the trajectories of index values 
are matched across contour boundaries to achieve G1 
continuity ( C1 can be achieved with greater difficulty, 
typically as a post-process if needed after establishing G1). 
While we would expect an improvement in image quality 
(and a matching improvement in file size) by these 
measures, such improvements are usually visually 
unnoticeable in an unwarped image. 
 
Our motivation for this work has been based on the 
intuition that contours will commonly follow the features 
of objects in the image. We hope in the future to be able to 
show that 'difficult' operations like matte-pulling and hole-
filling will be enhanced by vector formats in addition to 
the processes whose enhancement we have already 
demonstrated. Image re-sizing is such an example where 
the vector format can be exploited to define localised 
warps aimed at preserving the slope angle at edges. This 
has the effect of retaining feature sharpness but vector 
image resizing under various regimes is potentially the 
subject of an entire paper in itself, so, despite its 
importance to some industries, this has not been discussed 
here. What we have shown already is that there is a viable 
continuous image format and that it can be used for some  
conventional operations which are not handled easily in 
sampled formats. Moreover, while the representation 
cannot reveal more detail than in the original sampled 
image, it does offer a robust model of that image, with all 
the advantages of being able to render it at different 
qualities for different devices. It thus has the advantages 
that SVG offers for graphical pictures but with the ability 
to deliver the full quality of photographically-captured 
images. 
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