High-resolution 19F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate

Griffin, J.M., Yates, J.R., Berry, A.J., Wimperis, S. and Ashbrook, S.E. (2010) High-resolution 19F MAS NMR spectroscopy: structural disorder and unusual J couplings in a fluorinated hydroxy-silicate. Journal of the American Chemical Society, 132(44), pp. 15651-15660. (doi: 10.1021/ja105347q)

Full text not currently available from Enlighten.

Publisher's URL: http://dx.doi.org/10.1021/ja105347q

Abstract

High-resolution F-19 magic angle spinning (MAS) NMR spectroscopy is used to study disorder and bonding in a crystalline solid. F-19 MAS NMR reveals four distinct F sites in a 50% fluorine-substituted deuterated hydrous magnesium silicate (clinohumite, 4Mg(2)SiO(4)center dot Mg(OD1-xFx)(2) with x = 0.5), indicating extensive structural disorder. The four F-19 peaks can be assigned using density functional theory (DFT) calculations of NMR parameters for a number of structural models with a range of possible local F environments generated by F-/OH- substitution. These assignments are supported by two-dimensional F-19 double-quantum MAS NMR experiments that correlate F sites based on either spatial proximity (via dipolar couplings) or through-bond connectivity (via scalar, or J, couplings). The observation of F-19-F-19 J couplings is unexpected as the fluorines coordinate Mg atoms and the Mg-F interaction is normally considered to be ionic in character (i.e., there is no formal F-Mg-F covalent bonding arrangement). However, DFT calculations predict significant F-19-F-19 J couplings, and these are in good agreement with the splittings observed in a F-19 J-resolved MAS NMR experiment. The existence of these J couplings is discussed in relation to both the nature of bonding in the solid state and the occurrence of so-called "through-space" F-19-F-19 J couplings in solution. Finally, we note that we have found similar structural disorder and spin spin interactions in both synthetic and naturally occurring clinohumite samples.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Wimperis, Professor Stephen
Authors: Griffin, J.M., Yates, J.R., Berry, A.J., Wimperis, S., and Ashbrook, S.E.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Journal of the American Chemical Society
ISSN:0002-7863

University Staff: Request a correction | Enlighten Editors: Update this record