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A continuous path of singular masas in the
hyperfinite II1 factor

Allan Sinclair∗ and Stuart White†

Abstract

Using methods of R.J.Tauer [13] we exhibit an uncountable family
of singular masas in the hyperfinite II1 factor R all with Pukánszky
invariant {1}, no pair of which are conjugate by an automorphism of
R. This is done by introducing an invariant Γ(A) for a masa A in
a II1 factor N as the maximal size of a projection e ∈ A for which
Ae contains non-trivial centralising sequences for eNe. The masas
produced give rise to a continuous map from the interval [0, 1] into the
singular masas in R equiped with the d∞,2-metric.

A result is also given showing that the Pukánszky invariant [11] is
d∞,2-upper semi-continuous. As a consequence, the sets of masas with
Pukánszky invariant {n} are all closed.

1 Introduction

The study of maximal abelian self-adjoint von Neumann subalgebras (masas)
in II1 factors dates back to J.Dixmier [5] in 1954, who classified them using
normalisers. Given a masa A in a II1 factor N , the normaliser group N (A)
consists of all the unitaries u ∈ N with uAu∗ = A. The masa A is Cartan
if this normaliser group generates N as a von Neumann algebra whereas at
the other end of the spectrum, A is called singular if N (A) ⊂ A.

Given two Cartan masas A and B in the hyperfinite II1 factor R, there
is an automorphism θ of R with θ(A) = B ([3]). We say that masas A and
B with this last property are conjugate via an automorphism of R. The
most sucessful invariant for distinguishing between non-conjugate singular
masas is that of L.Pukánszky [11], which he used to give countably many
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pairwise non-conjugate singular masas in R. More recently, E.Størmer and
S.Neshveyev [8] have used the Pukánszky invariant to exhibit uncountably
many pairwise non-conjugate singular masas in R and they also give two
non-conjugate singular masas in R with the same Pukánskzy invariant. One
of our objectives here is to produce uncountably main non-conjugate singular
masas in the hyperfinite II1 factor with the same Pukánszky invariant. This
result, stated formally as Theorem 1.1 below, follows directly from Theorem
5.1.

Theorem 1.1. There exist uncountably many singular masas in the hyper-
finite II1 factor R, each with Pukánszky invariant {1}, such that no pair of
these masas is conjugate by an automorphism of R.

To show the non-conjugacy of pairs of masas we look for non-trivial cen-
tralising sequences for R lying in these masas — the idea used by Størmer
and Neshveyev in [8] to distinguish between two singular masas with Pukán-
szky invariant {1}. The presence of non-trivial centralising sequences inside
masas has also been used by A.Connes and V.Jones [4] to give a factor con-
taining two non-conjugate Cartan masas, and by V.Jones and S.Popa [6] in
the context of non-conjugate semi-regular masas whose normalisers generate
the same irreducible subfactor of R.

There is a natural metric, d∞,2, on the space of all masas of a II1 factor,
[10]. The uncountably many masas we shall produce for Theorem 1.1, will
actually give us a continuous map from the unit interval, [0, 1] into this
metric space — a continuous path of pairwise non-conjugate singular masas.

In the next section we state some background, defining the metric d∞,2,
the Pukánszky invariant and Tauer masas. In section 3 we discuss the be-
haviour of the Pukánskzy invariant on limits of sequences of masas, showing
that it is upper semicontinous and that the sets of masas with invariant {n}
are all closed (Theorem 3.2, Corollary 3.3). Next, in section 4, we define a
Γ-invariant for masas using centralising sequences and establish some basic
properties for later use. It is this invariant we use in section 5 to show the
non-conjugacy of the masas we construct to establish Theorem 5.1, the main
result of the paper. The work in this paper forms part of sections 3.1 and
3.3 of the second authors PhD thesis [15].

2 Preliminaries

Let N be a II1 factor. Write tr for the faithful normal trace on N , and
let ‖x‖2 = tr(x∗x)1/2 be the Hilbert space norm induced on N by tr. Write
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L2(N) for the completion of N in this norm. Given a linear map Φ : N1 → N2

between two II1 factors write ‖Φ‖∞,2 for the norm of Φ regarded as a map
from N1 into L2(N2) [12], that is

‖Φ‖∞,2 = sup { ‖Φ(x)‖2 | x ∈ N1, ‖x‖ ≤ 1 } .

Given a von Neumann subalgebra M of N , let EM be the unique trace-
preserving normal conditional expectation from N onto M . This conditional
expectation is obtained by restricting to N the orthogonal projection eM

from L2(N) onto L2(M). In [10] a metric, d∞,2, is introduced on the set of
all von Neumann subalgebras of N , by

d∞,2(M1,M2) = ‖EM1 − EM2‖∞,2 .

This metric is equivalent to an older metric of E.Christensen defined in [2].
As a consequence the set of all von Neumann subalgebras equipped with
d∞,2 is a complete metric space, and the subsets of all masas, all singular
masas, all subfactors and all irreduicble subfactors are closed, [2].

To define the Pukánskzy invariant [11] of a masa in the separable II1 fac-
tor N , we form the standard representation of N acting by left multplication
on L2(N). Let J denote the modular conjugation operator on L2(N) given
by extending x 7→ x∗ from N . For each x ∈ N , JxJ is the operator of right
mutiplication by x∗ and x 7→ JxJ is a conjugate linear anti-isomorphism of
N onto N ′. Given a masa A in N , let A = (A ∪ JAJ)′′ — an abelian von
Neumann subalgebra of B

(
L2(N)

)
, so that A′ is type I. The orthogonal

projection eA from L2(N) onto L2(A) lies in A and A′eA = AeA = AeA

— an abelian algebra. The Pukánszky invariant is obtained by taking the
type decomposition of A′(1 − eA). More formally, Puk (A) is the subset of
N ∪ {∞} consisting of all those n for which there is a non-zero projection
p ≤ 1− eA in A such that A′p is type In [11].

We shall use the methods of R.J.Tauer [13] to construct masas in the
hyperfinite II1 factor R. The second author introduced the concept of a
Tauer masa in R in [14, 15]. A masa A in R is said to be a Tauer masa if there
exists an increasing chain (Nn)∞n=1 of matrix algebras with (

⋃∞
n=1 Nn)′′ = R,

such that A ∩ Nn is a masa in Nn for each n. In this case we write An for
A∩Nn and say for emphasis that A is Tauer with respect to (Nn)∞n=1. Tauer
masas have Pukánszky invariant {1}, [14, Theorem 4.1]. Chains (Nn)∞n=1

of matrix algebras in R can always be realised as a tensor products. More
formally, there are finite dimensional subfactors (Mm)∞m=1 of R such that we
have Nn =

⊗n
m=1 Mm, for each n. We use the notation of [14, 15] to consider

the inclusions An1 ⊂ An2 of approximates of a Tauer masa A with respect
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to the chain (Nn)∞n=1. Let Pmin(An1) denote the set of minimal projections
of An1 . The finite dimensional approximation An2 can then be written as

An2 =
⊕

e∈Pmin(An1 )

e⊗A(e)
n2,n1

, (2.1)

for some masas A
(e)
n2,n1 in

⊗n2
m=n1+1 Mm.

In [14, Theorem 3.2] a technical criteron was given for a Tauer masa to
be singular in terms of these A

(e)
n2,n1 . We use part of this calculation, which

is essentially Proposition 3.5 of [14]; the exact statement given can be found
as Proposition 2.2.2 of [15].

Proposition 2.1. Let A be a Tauer masa in R with respect to the subfactors
(Nn)∞n=1. If for infinitely many n1 ∈ N, each minimal projection e of An1

and ε > 0, there is an n2 > n1 and a unitary we ∈ A
(e)
n2,n1 with∥∥∥E

A
(f)
n2,n1

(we)
∥∥∥

2
≤ ε,

for every minimal projection f 6= e in An1 , then A is singular.

3 Semi-continuity of the Pukánszky invariant

The key tool in determining the limiting behaviour of the Pukánskzy invari-
ant on sequences of masas is a perturbation theorem for subalgebras of a II1
factor [10, Theorem 6.5], which we state below for the convenience of the
reader.

Theorem 3.1 ([10, Theorem 6.5 (ii)]). If A and B are masas in a separable
II1 factor N with d∞,2(A,B) ≤ ε, then there are projections p ∈ A and
q ∈ B, and a unitary u ∈ N satisfying

• u(Bq)u∗ = Ap;

• ‖u− EB (u)‖2 ≤ 45ε;

• tr(p) = tr(q) ≥ 1− (15ε)2.

Theorem 3.2. Let An be a sequence of masas in a separable II1 factor N
converging in the d∞,2-metric to a von Neumann subalgebra B of N . This
B is a masa in N , and

Puk (B) ⊂
∞⋃

r=1

∞⋂
n=r

Puk (An) . (3.1)

4



Proof. That the set of masas is d∞,2-closed is due to E.Christensen in [2].
For each n, we apply Theorem 3.1 to the pair (An, B) to obtain projections
pn ∈ An, qn ∈ B and a unitary un ∈ N satisfying the conditions of the
theorem. Take Bn = u∗nAnun — a masa in N which has Bnqn = Bqn, by
the first property of Theorem 3.1.

As An converges to B in d∞,2, the last property of Theorem 3.1 ensures
that

lim
n→∞

‖1− qn‖2 = 0.

For any x ∈ N ,

‖qnJqnJx− x‖2 = ‖qnxqn − x‖2 ≤ ‖qnx− x‖2 + ‖qn(xqn − x)‖2

≤ ‖qn − 1‖2 (‖x‖+ ‖qnx‖)
≤ 2 ‖x‖ ‖qn − 1‖2 ,

so that the projections qnJqnJ in Bn ∩ B converge strongly to 1, by density
of N in L2(N).

Given some m ∈ Puk (B), there must be a central projection f ∈ B =
B′ ∩ B with f ≤ 1− eB, such that B′f is of type Im. As qnJqnJf converges
strongly to f we must have qnJqnJf 6= 0 for sufficiently large n, those with
n ≥ n1 say. Now

B′nqnJqnJ = B′qnJqnJ,

a type I von Neumann algebra with centre BnqnJqnJ = BqnJqnJ . For
n ≥ n1, qnJqnJf is a non-zero projection in this centre, and B′nqnJqnJf is
then a central cutdown of B′f , so a type Im von Neumann algebra.

Observe that qn and JqnJ commute with both eB and eBn , as qn ∈ B ∩
Bn. We also have qneBn = qneB and JqnJeBn = JqnJeB, as Bnqn = Bqn.
In this way, qnJqnJf ≤ 1 − eBn , so that m ∈ Puk (Bn), for n ≥ n1. As Bn

and An are unitarily equivalent, m ∈ Puk (An) for all n ≥ n1, exactly as
required.

In the special case when the Pukánszky invariant of each An is {n}, the
only possibility for the Pukánszky invariant of the limit masa B is also {n}.

Corollary 3.3. Let N be a separable II1 factor. For each n ∈ N∪ {∞}, the
set of all masas with Pukánszky invariant {n} is d∞,2-closed.

In general we do not have equality in (3.1).

Example 3.4. Let A be a masa in the hyperfinite II1 factor R with Pukán-
skzy invariant {1}. Take projections pn 6= 1 in A with pn → 1 strongly.
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For each n, let Bn be a masa in the hyperfinite II1 factor (1− pn)R(1− pn)
with Pukánszky invariant {2}. The existance of such masas dates back to
Pukánszky’s original examples in [11]. Define

An = { apn + b | a ∈ A, b ∈ Bn } ,

which is a masa in R. It is then immediate that d∞,2(An, A) → 0 as n →∞
and that both 1 and 2 lie in Puk (An), for each n. It should be noted that
we do not know the exact Pukánskzy invariant of these An, only that 1 and
2 are members of Puk (An).

We can also use Theorem 3.2, to show that the Pukánszky invariant can
not be used to give a continuous path of non-conjugate singular masas even
though the cardinality of the set of non-conjugate singular masas is large
enough. The proof is omited, it can be found in [15, Corollary 3.1.8].

Corollary 3.5. Let N be a separable II1 factor. There is no continuous
map t 7→ A(t) from [0, 1] into the set of all masas in N equiped with the
d∞,2-metric such that t 7→ Puk (A(t)) is injective.

4 A Γ-invariant for masas

To show that all the uncountably many masas we shall produce are pairwise
non-conjugate via automorphisms of the underlying II1 factor, we introduce
a conjugacy invariant.

Definition 4.1. Let A be a masa in a II1 factor N . Define Γ(A) to be the
supremum of tr(p) over all projections p ∈ A such that Ap contains non-
trivial centralising sequences for pNp. If Γ(A) = 0, then we say that A is
totally non-Γ.

Recall that a centralising sequence in a non-empty subset B of a II1
factor N is a sequence {xn} ⊂ B with

‖xny − yxn‖2 → 0 for all y ∈ N.

The centralising sequence {xn} ⊂ B is trivial if there is a sequence {λn} ⊂ C
with ‖xn − λn‖2 → 0.

It is immediate that Γ(A) is a conjugacy invariant of A, in the sense that
for an automorphism θ of N , we have Γ(θ(A)) = Γ(A).

We shall produce masas in a similar fashion to Example 3.4, taking a
‘direct sum’ of a Γ-masa, that is one containing non-trivial centralising se-
quences for its underlying II1 factor, and a totally non-Γ masa. The next
lemma is the tool that allows us to do this.
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Lemma 4.2. Let A be a masa in a II1 factor N . Suppose that there is a
projection p ∈ A such that

• Ap contains non-trivial centralising sequences for pNp;

• A(1− p) is totally non-Γ in (1− p)N(1− p).

Then Γ(A) = tr(p).

Proof. Take a projection r ∈ A such that Ar contains non-trivial centralising
sequences for rNr. To obtain a contradiction, suppose that r 6≤ p. Let
(xn)∞n=1 be a non-trivial centralising sequence for rNr in Ar, write yn =
xnpr = xnrp and zn = xnr(1−p) so that xn = yn+zn for all n. The sequence
(zn)∞n=1 is a centralising sequence of r(1 − p)Nr(1 − p) and so is trivial by
hypothesis. Without losing generality, we may assume that zn = r(1 − p)
for all n.

Take a partial isometry v ∈ N with v∗v ≤ r(1 − p) and vv∗ = p0 ≤ pr,
so that ynv = xnv and v = vzn = vxn. Now

‖(yn − 1)p0‖2 = ‖(yn − 1)v‖2 = ‖xnv − vxn‖2 → 0, (4.1)

as n →∞.
By Kadison’s Theorem on projections in a masa ([7]) choose orthogonal

projections (pm)m0
m=1 in A, with pm ≤ pr and tr(pm) ≤ tr(r(1− p)), for each

m, so that
∑m0

m=1 pm = pr. Then, by (4.1),

‖yn − pr‖2 = ‖(yn − 1)pr‖2 ≤
m0∑

m=1

‖(yn − 1)pm‖2 → 0,

so that (xn)∞n=1 is a trivial centralising sequence. This contradiction ensures
that r ≤ p and so Γ(A) = tr(p), as required.

The Γ-invariant is uniformally continuous with respect to the d∞,2-metric
on masas in separable II1 factors.

Lemma 4.3. For masas A and B in a separable II1 factor N , we have

|Γ(A)− Γ(B)| ≤ 15d∞,2(A,B).

Proof. Suppose that A and B are masas in N with d∞,2(A,B) ≤ ε. Let u, p
and q be as in Theorem 3.1, so that

‖1− p‖2 = ‖1− q‖2 ≤ 15ε.
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Given a projection e ∈ A such that Ae has non-trivial central sequences for
eNe, take f = uepu∗ — a projection in Bq with f ≤ q. Since uAepu∗ = Bf ,
we can use u to conjugate the centralising sequences for epRep lying in Ae
into centralising sequences for fRf lying in Bf . Therefore,

Γ(B) ≥ tr(ep) = tr(e)− tr(e(1− p)) ≥ tr(e)− ‖e‖2 ‖1− p‖2 ≥ tr(e)− 15ε

for every such projection e ∈ A. Hence,

Γ(B) ≥ Γ(A)− 15ε.

By interchanging the roles of A and B we have

Γ(A) ≥ Γ(B)− 15ε,

and these two inequalities combine to give the result.

One might attempt to produce uncountably many non-conjugate singular
masas in the hyperfinite II1 factor R with Pukánszky invariant {1} by taking
projections e ∈ R and singular masas B1 in eRe and B2 in (1 − e)R(1 − e)
both with Pukánszky invariant {1}, such that B1 is Γ in eRe and B2 is totally
non-Γ in (1− e)R(1− e). The ‘direct-sum’ A = { b1 + b2 | b1 ∈ B1, b2 ∈ B2 }
will be a masa in R with Γ(A) = tr(e) by Lemma 4.2. Unfortunately, we
do not have control over the exact Pukánszky invariant of such a masa A,
all we can say is that 1 ∈ Puk (A). Indeed, there is a masa A in R with
Puk (A) = { 1, 2 } for which there is a projection e ∈ A with tr(e) = 1/2
such that

Puk (Ae ⊂ eRe) = Puk (A(1− e) ⊂ (1− e)R(1− e)) = {1}.

Examples to this effect will be given in subsequent work by the second author.
In the next section, we get round this problem using Tauer masas to control
the Pukánskzy invariant of these direct sums.

5 A continuous path of singular masas

Here is the main result of this paper, from which Theorem 1.1 follows im-
mediately.

Theorem 5.1. There is a map t 7→ A(t), taking each t ∈ [0, 1] to a masa
A(t) in R such that

(i) d∞,2(A(s), A(t)) → 0 as |s− t| → 0.

8



(ii) Every A(t) has Pukánszky invariant {1}.

(iii) Each A(t) is singular.

(iv) Γ(A(t)) = t, for each t.

We shall construct Tauer masas, A(t), for a dense set of t in [0, 1] with the
required properties, then use continuity to produce the required path. The
construction in the dense set of t is based on a rapidly increasing sequence of
primes and adjusting the definition of the approximately finite dimensional
approximating algebras according to t being in suitable ranges of rationals.

Notation 5.2. Let k1 = 2, and for each r ≥ 2 take kr to be a prime
exceeding k1 . . . kr−1. Let Mr to be the algebra of kr × kr matrices. By
[9, Theorem 3.2], there is a family (rD(m))k1...kr−1

m=0 of pairwise orthogonal
masas in Mr. Write re

(m)
l for the minimal projections of rD(m) indexed by

l = 0, 1 . . . , kr − 1. Let Nn be the tensor product
⊗n

r=1 Mr. We have the
natural unital inclusion x 7→ x ⊗ 1 of Nn inside Nn+1 and we work in the
hyperfinite II1 factor R, obtained as the direct limit of these Nn with respect
to normalised trace.

For each n ∈ N write

In =
{

m

k1 . . . kn

∣∣∣∣ m = 0, 1, 2, . . . , k1 . . . kn

}
,

so that In ⊂ In+1, for each n. Let I =
⋃∞

n=1 In — a dense set of rationals
in [0, 1]. For each t ∈ I, we will define a Tauer masa A(t) in R with respect
to the chain (Nn)∞n=n0(t), where n0(t) is the minimal n for which t ∈ In.
For each n ≥ n0(t), we denote the n-th approximate of A(t) by An(t), and
enumerate the minimal projections of An(t) as nfm(t) for 0 ≤ m < k1 . . . kn.

Construction 5.3. The process begins by defining A0(0) = A0(1/2) =
A0(1) = 1D(0) with the minimal projections 1fm(0) = 1fm(1/2) = 1fm(1) =
1e

(0)
m coinciding for m = 0, 1. For some n1, suppose that we have defined

An(t) and enumerated the minimal projections nfm(t), for all t ∈ In1 and
n0(t) ≤ n ≤ n1. For t ∈ In1 , the definition of An1+1(t) is split into two cases,
depending on whether n1 is even or odd.

1. n1 is even: Set

An1+1(t) =
k1...kn1−1⊕

m=0

n1fm(t)⊗ n1+1D(m). (5.1)
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Enumerate the minimal projections n1+1fm′(t) by dividing m′ by kn1+1

to obtain m′ = kn1+1m + l for some 0 ≤ l < kn1+1. Now take

n1+1fm′(t) = n1fm(t)⊗ n1+1e
(m)
l . (5.2)

2. n1 is odd : Here we take

An1+1(t) =
tk1...kn1−1⊕

m=0

n1fm(t)⊗ n1+1D(k1...kn1 )

⊕
k1...kn1−1⊕

m=tk1...kn1

n1fm(t)⊗ n1+1D(m). (5.3)

The enumeration of the minimal projections happens in the same way
as the even n1 case. Namely, given 0 ≤ m′ < k1 . . . kn1+1 write m′ =
mkn1+1 + l for some 0 ≤ l < kn1+1 and set

n1+1fm′(t) =

{
n1fm(t)⊗ n1+1e

(k1...kn1 )

l 0 ≤ m < tk1 . . . kn1

n1fm(t)⊗ n1+1e
(m)
l tk1 . . . kn1 ≤ m < k1 . . . kn1

.

(5.4)

It remains to define An1+1(t) when t ∈ In1+1 \ In1 . In this case this is
the first approximate of the Tauer masa A(t). Write m0 = btk1 . . . kn1c and
define the minimal projections of An1+1(t) by

n1+1fm(t) =
{

n1+1fm((m0 + 1)/k1 . . . kn1) 0 ≤ m < tk1 . . . kn1+1
n1+1fm(m0/k1 . . . kn1) tk1 . . . kn1+1 ≤ m < k1 . . . kn1+1

.

(5.5)

Theorem 4.1 of [14] shows that the Tauer masas constructed above have
Puk (A(t)) = {1}, which is condition (ii) of Theorem 5.1. We now check that
these masas satisfy conditions (iii) and (iv) of Theorem 5.1.

Lemma 5.4. The Tauer masas A(t) of Construction 5.3 are singular.

Proof. Fix t ∈ I and let n ≥ n0(t) be even. In the notation of (2.1), the even
stage of Construction 5.3 gives

A
(nfm(t))
n+1,n (t) = n+1D(m).

Take a unitary w ∈ n+1D(m) with tr(w) = 0. When m′ 6= m, the orthogo-
nality of n+1D(m) and n+1D(m′) gives En+1D(m′) (w) = 0. The singularity of
A(t) then follows from Proposition 2.1.
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The next Lemma verifies the hypothesis of Lemma 4.2, so the masas of
Construction 5.3 have Γ(A(t)) = t.

Lemma 5.5. Fix t ∈ I and write n0 for n0(t). Let

p =
tk1...kn0−1∑

m=0

n0fm(t), (5.6)

a projection in A(t). Then

1. A(t)p contains non-trivial centralising sequences for pRp;

2. A(t)(1− p) is totally non Γ in (1− p)R(1− p).

Proof of 1: Note that

p =
tk1...kn−1∑

m=0

nfm(t),

for all n ≥ n0. Fix n ≥ n0 odd and consider x1, . . . , xr ∈ Nn. Let v ∈
n+1D(k1...kn) be a unitary with tr(v) = 0. Examining the odd n form of
Construction 5.3, we see that

u =
tk1...kn−1∑

m=0

nfm(t)⊗ v = p⊗ v ∈ Nn ⊗Mn+1 = Nn+1

is a trace free unitary in An+1(t)p. It is then immediate that u commutes
with each pxip, and so A(t)p contains non-trivial centralising sequences for
pRp by the ‖.‖2-density of ∪∞n=1Nn in R.

We prove part 2 of Lemma 5.5 in two stages. We first establish an
orthogonality condition which suffices to establish that no Ae can contain
centralising sequences for eRe, when e ≤ 1 − p is a minimal projection of
some An(t). A density argument, which contains the proof of an observation
of Popa ([9, Remark 5.4.2], also found in [1, Lemma 2.1]), then completes
the proof of Lemma 5.5.

Lemma 5.6. Fix t ∈ I, n ≥ n0(t) and m,m′ with tk1 . . . kn ≤ m <
m′ < k1 . . . kn. Let v be a partial isometry in Nn with vv∗ = nfm(t) and
v∗v = nfm′(t). Then v(A(t) nfm′(t))v∗ is orthogonal to A(t) nfm(t) in
nfm(t)R nfm(t).
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Proof. Fix n ≥ n0 and regard R as Nn ⊗ R1, where R1 is generated as
the infinite von Neumann tensor product (

⊗∞
r=n+1 Mr)′′ with respect to the

unique normalised trace. Using the notation of (2.1), for n1 > n we have

An1(t) =
k1...kn−1⊕

m=0

nfm(t)⊗A(nfm(t))
n1,n (t),

for masas A
(nfm(t))
n1,n (t) in

⊗n1
r=n+1 Mr. In this way we obtain Tauer masas

A(nfm(t))
∞,n (t) =

( ∞⋃
n1=n+1

A(nfm(t))
n1,n (t)

)′′
in R1, so that

A(t) =
k1...kn−1⊕

m=0

nfm(t)⊗A(nfm(t))
∞,n (t).

Now take m,m′ and v as in the statement, and note that

vA(t)nfm′(t)v∗ = nfm(t)⊗A
(nfm′ (t))
∞,n (t),

so that it suffices to show that A
(nfm(t))
∞,n (t) and A

(nfm′ (t))
∞,n (t) are orthogonal

masas in R1. We shall show that A
(nfm(t))
n1,n (t) and A

(nfm′ (t))
n1,n (t) are orthogonal

in
⊗n1

r=n+1 Mr, for all n1 > n, from which the result immediately follows by
density.

To this end, note that Construction 5.3 gives A
(nfm(t))
n+1,n (t) = n+1D(m) and

A
(nfm′ (t))
n+1,n (t) = n+1D(m′), from (5.1) when n is even and from (5.3) when n

is odd. In the latter case, we use the hypothesis that tk1 . . . kn ≤ m < m′.
As D(m) and D(m′) are orthogonal masas in Mn+1, the claim holds when
n1 = n + 1.

Suppose inductively that the claim holds for some n1 > n. Write

A
(nfm(t))
n1+1,n (t) =

⊕
g∈Pmin

“
A

(nfm(t))
n1,n (t)

” g ⊗B(g,m),

and
A

(nfm′ (t))
n1+1,n (t) =

⊕
h∈Pmin

 
A
(nfm′ (t))
n1,n (t)

!h⊗B(h,m′),

12



for masas B(g,m) and B(h,m′) in Mn1+1. Again, Construction 5.3 ensures that
all these masas are pairwise orthogonal. This is immediate from (5.1) for
even n1; when n1 is odd we again use the hypothesis tk1 . . . kn ≤ m < m′ in
our examination of (5.3). The orthogonality of A

(nfm(t))
n1+1,n (t) and A

(nfm′ (t))
n1+1,n (t)

follows immediately, yielding the result.

Proof of part 2 of Lemma 5.5: Take t ∈ I and fix some projection 0 6= e ≤
1−p in A(t). For each n ∈ N, find ln ≥ n0(t) and a family Pn ⊂ Pmin(Aln(t))
of minimal projections in Aln(t) lying under 1 − p, such that upon writing
qn =

∑
q∈Pn

q, we have
‖qn − e‖2

2 < 1/n.

For each n, take a permutation σn of Pn with no fixed points. Take partial
isometries vσn(q),q in Nln with vσn(q),qvσn(q),q

∗ = σn(q) and vσn(q),q
∗vσn(q),q =

q. Define
xn =

∑
q∈Pn

vσn(q),q + (1− qn),

a unitary in Nln which has xnqx∗n = σn(q), for every q ∈ Pn. Observe that

xn(Aqn)x∗n =
⊕
q∈Pn

xn(Aq)x∗n =
⊕
q∈Pn

vσn(q),q(Aq)vσn(q),q
∗ =

⊕
q∈Pn

vσn(q),qAvσn(q),q
∗

is orthogonal to
⊕

q∈Pn
Aσn(q) = Aqn in qnRqn by Lemma 5.6.

Suppose that Ae contains non-trivial centralising sequences for eRe. Find
a sequence of unitaries un ∈ A, with tr(une) = 0 for each n, and such that

‖eunexne− exneune‖2 < ‖e− qn‖2 . (5.7)

We have the following simple estimate, showing that unqn asymptotically
commutes with the qnxnqn:

‖qnunqnxnqn − qnxnqnunqn‖2

≤‖(qn − e)unqnxnqn‖2 + ‖eun(qn − e)xnqn‖2 + ‖eunexn(qn − e)‖2

+ ‖eunexne− exneune‖2 + ‖exneun(e− qn)‖2 + ‖exn(e− qn)unqnm‖2

+ ‖(e− qn)xnqnunqn‖2

≤ 7 ‖e− qn‖2 → 0.

13



On the other hand, using xnqn = qnxn we have

‖qnxnqnunqn − qnunqnxnqn‖2
2

= ‖qnxnunqnx∗nqn − unqn‖2
2

= ‖qnxnunqnx∗nqn‖2
2 + ‖unqn‖2

2 − 2<tr(xnunqnx∗nunqn)

= 2 ‖qn‖2
2 − 2<tr(xnunqnx∗n)tr(unqn)/tr(qn) → 2 ‖e‖2

2 6= 0,

where the last line comes from the orthogonality of xn(Aqn)x∗n and Aqn in
qnRqn — the quotient of tr(qn) appearing as a normalisation constant. The
convergence is a simple calculation, as

|tr(unqn)| ≤ |tr(une)|+ |tr(un(qn − e))| ≤ 0 + ‖un‖2 ‖qn − e‖2 → 0.

This contradiction completes the proof.

For t in the dense subset I of [0, 1], we have singular Tauer masas A(t)
with Γ(A(t)) = t. We wish to use completeness to define A(t) for t ∈ [0, 1]\I
and so we need to control the distance between the A(t)’s we have already
defined. It is here that the form of An0(t)(t) specified in Construction 5.3
becomes relevant.

Lemma 5.7. Fix s, t ∈ I with s < t. Let n0 be the maximum of n0(s) and
n0(t) and take

q =
sk1...kn0−1∑

m=0

n0fm(s) +
k1...kn0−1∑

m=tk1...kn0

n0fm(s)

a projection of trace 1−(t−s). This q lies in A(s)∩A(t) and A(s)q = A(t)q.

Proof. We shall demonstrate that Construction 5.3 ensures that whenever
we have s, t ∈ In, then

nfm(s) = nfm(t), (5.8)

for all m with

0 ≤ m < sk1 . . . kn or tk1 . . . kn ≤ m < k1 . . . kn. (5.9)

This will immediately show that q lies in A(t), as well as A(s). Furthermore,
as A(s)q and A(t)q are generated by all nfm(s) and nfm(t) respectively,
with n ≥ max{n0(s), n0(t)} and m satisfying (5.9), the claim also implies
that A(s)q = A(t)q, as required.
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We proceed by induction on n. When n = 1, the result is certainly true,
as Construction 5.3 began by defining 1fm(0) = 1fm(1/2) = 1fm(1) for
m = 0, 1. Suppose that we have established the claim for all n ≤ n1. We
investigate the n1 + 1 situation, starting with the case when s and t both lie
in In1 .

Take s, t ∈ In1 with s < t. Take m′ with either 0 ≤ m′ < sk1 . . . kn1+1

or tk1 . . . kn1+1 ≤ m′ < k1 . . . kn1+1, and divide by kn1+1 to obtain m′ =
mkn1+1 + l with 0 ≤ l < kn1+1. This m must have 0 ≤ m < sk1 . . . kn1

in the first case or tk1 . . . kn1 ≤ m < k1 . . . kn1 in the second. In any
event, the inductive hypothesis ensures that n1fm(s) = n1fm(t). When n1

is even, the definition (5.2) of n1+1fm′(s) and n1+1fm′(t) immediately gives
(n1+1)fm′(s) = n1+1fm′(t). When n1 is odd, this is also true, as we have ex-
cluded the possibility that sk1 . . . kn1 ≤ m < tk1 . . . kn1 , so both these mini-
mal projections must come from the same case of equation (5.4). Therefore,
the minimal projections n1+1fm′(s) and n1+1fm′(t) coincide whenever they
are required to do so.

We now examine what happens when precisely one of s and t lies in
In1+1 \ In1 . Take s in In1 and t ∈ In1+1 \ In1 with s < t. As in the definition
of An1+1(t), we write m0 = btk1 . . . knc so that s ≤ m0/k1 . . . kn1 . For
0 ≤ m < sk1 . . . kn1+1, we have

n1+1fm(s) = n1+1fm((m0 + 1)/k1 . . . kn1) = n1+1fm(t),

where the second equality is the definition, (5.5), of n1+1fm(t), and the
first follows as the m-th minimal projections for An1+1(s) and An1+1((m0 +
1)k1 . . . kn1) coincide by the case we analysed in the previous paragraph.
When tk1 . . . kn1+1 ≤ m < k1 . . . kn1+1, we have

n1+1fm(t) = n1+1fm(m0/k1 . . . kn1) = n1+1fm(s),

the first equality being (5.5) – the definition of n1+1fm(t), and the sec-
ond equality is (5.8) for appropriate minimal projections of An1+1(s) and
An1+1(m0/k1 . . . kn1), as m ≥ m0kn1+1. These last two algebras may turn
out to be the same, but then the minimal projections will certainly coincide.
Interchanging the roles of s and t above ensures that the claim holds for
n1 + 1 whenever either s or t lies in In1 .

We complete the proof by examining the situation when s, t ∈ In1+1 \
In1 . Take s < t with s, t ∈ In1+1 \ In1 . Suppose first that bsk1 . . . kn1c =
btk1 . . . kn1c = m0. In this instance the definition, (5.5), of the minimal
projections n1+1fm(s) and n1+1fm(t) ensures that these projections conincide
for all m with 0 ≤ m < sk1 . . . kn1+1 or tk1 . . . kn1+1 ≤ m < k1 . . . kn1+1.
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Finally, suppose that bsk1 . . . kn1c = m0 < m1 = btk1 . . . kn1c. Given m
with 0 ≤ m < sk1 . . . kn1+1, (5.5) ensures that n1+1fm(s) = n1+1fm(m0 +1)
and n1+1fm(t) = n1+1fm(m1). Since m < sk1 . . . kn1+1 < (m0+1)k1 . . . kn1+1,
the case when s, t ∈ In (with s = m0 + 1 and t = m1) ensures that
n1+1fm(m0+1) = n1+1fm(m1). In conclusion, we have n1+1fm(s) = n1+1fm(t)
as required. The case when tk1 . . . kn1+1 ≤ m < k1 . . . kn1+1 is similar, and
this completes the proof.

Corollary 5.8. For s, t ∈ I we have∥∥EA(s) − EA(t)

∥∥
∞,2

≤ 2
√
|s− t|

Proof. We may assume that s < t. Let n0 be the maximum of n0(s) and
n0(t). Let q be the projection of Proposition 5.7, so that A(s)q = A(t)q.
The simple estimate ∥∥EA(s) − EA(t)

∥∥
∞,2

≤ 2 ‖1− q‖2 ,

can be found in part (i) of Theorem 6.5 in [10]. As tr(1− q) = t− s, this is
exactly what was claimed.

We can now combine the results of this section to esablish Theorem 5.1.

Proof of Theorem 5.1. For t ∈ I we take A(t) to be the Tauer masa produced
in Construction 5.3. When t ∈ [0, 1] \ I, we define A(t) by taking a sequence
tn → t with each tn in the dense set of rationals I. The resulting sequence of
masas (A(tn))∞n=1 is then d∞,2-Cauchy by Corollary 5.8, and so converges to
a masa A(t) in R. Recall that the set of all von Neumann subalgebras of R
is a d∞,2-complete metric space, and the subset of masas is closed, [2]. This
masa is well defined, in that A(t) is independent of the choice of sequence tn
in I converging to t. An approximation argument extends Corollary 5.8 to
show that d∞,2(As, At) → 0 whenever |s− t| → 0.

Furthermore each A(t) is singular, as this holds for t ∈ I (Lemma 5.4)
and the set of all singular masas is closed; again this can be found in [2].
All the A(t) have Pukánszky invariant {1}; for t ∈ I this is Theorem 4.1 of
[14] and Corollary 3.3 then gives the result for general t. That Γ(A(t)) = t
for every t ∈ [0, 1] follows first by observing that Lemma 5.5 combines with
Lemma 4.2 to give the result for t ∈ I. Continuity gives the result for all t,
this time in the form of Lemma 4.3.
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