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Abstract

Numerical techniques are used to study the receptivity to small-amplitude
thermal disturbances of the boundary layer flow of air which is induced by a
heated vertical flat plate. The fully elliptic nonlinear, time-dependent Navier-
Stokes and energy equations are first solved to determine the steady state
boundary-layer flow, while a linearised version of the same code is used to
determine the stability characteristics. In particular we investigate (i) the
ultimate fate of a localised thermal disturbance placed in the region near the
leading edge and (ii) the effect of small-scale surface temperature oscillations
as means of understanding the stability characteristics of the boundary layer.
We show that there is a favoured frequency of excitation for the time-periodic
disturbance which maximises the local response in terms of the local rate of
heat transfer. However the magnitude of the favoured frequency depends on
precisely how far from the leading edge the local response is measured. We
also find that the instability is advective in nature and that the response of
the boundary layer consists of a starting transient which eventually leaves the
computational domain, leaving behind the large-time time-periodic asymp-
totic state. Our detailed numerical results are compared with those obtained
using parallel flow theory.
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1 Introduction

The general problem of stability of free convective boundary layer flows is a combina-
tion of the problems of hydrodynamic instability and thermo-convective instability.
Thermo-convective instabilities arise in cases where less dense fluid lies under more
dense fluid. Examples of such situations include the classical Bénard convection
problem, and boundary layer flows over inclined heated surfaces. For the latter
example the primary mode of instability takes the form of longitudinal vortices in
the direction of the induced basic flow (see Haaland and Sparrow [1] and Chen
and Tzuoo [2]). On the other hand, for free convection boundary layer flow over
a vertical heated surface, buoyancy forces generate the basic flow, but the primary
instability is known to be hydrodynamic in origin. In this case, the primary mode
of instability takes the form of two-dimensional waves travelling in the streamwise
direction (see Nachtsheim [3] and Heiber and Gebhart [4]).

In studies of instabilities, a small disturbance is often imposed onto the basic
flow in order to assess the stability and transition processes inside the boundary
layer. The classical mechanism by which imposed disturbances are converted into
Tollmien-Schlichting (TS) type waves is known as the receptivity of the boundary
layer. The term ‘receptivity’ was first introduced by Morkovin [5] to evaluate the
transition process from laminar to turbulent flows.

The boundary layer flow stability problems with receptivity are usually classified
into two categories. One is the study of receptivity to external disturbances which
are naturally present in the ambient environment, e.g. acoustic and vortical pertur-
bations in the ambient fluid and surface roughness over which a fluid flow generates
disturbance waves into the flow. Some relevant published works to this category
are Goldstein [6; 7], Dietz [8], Wu [9; 10; 11], Tam [12], Haddad and Corke [13],
and the references therein. The second category concerns the study of receptivity to
spatially localised disturbances which are introduced within the boundary layer of a
flow, e.g. suction/blowing slots and temperature perturbations generate disturbance
waves inside boundary layer. Some relevant works to this category are Fasel and
Konzelmann [14], Brooker et al. [15], Herwig and You [16].

The receptivity process considered in the present study belongs to the second
category. We have considered a thermal receptivity process by which various external
temperature disturbances are introduced into the free convection boundary layer
flow near the leading edge of the vertical flat plate. The two-dimensional T'S waves
generated then grow or decay in accordance with an approximate linear stability
theory described in Paul et al. [17]. But once the flow has settled and transients
have travelled out of the computational domain, it is possible to determine how the
amplitude of the disturbance (as given, say, by the maximum heat transfer over one
period) varies with both streamwise direction z, and the disturbance frequency .
The resulting neutral curve may then be compared with the parallel flow theory.

Our understanding of the receptivity process and the crucial mechanisms re-
quired for the generation of instability waves have largely come from the papers by
Goldstein [6; 7]. His works have been focused on localised disturbances either from
the leading edge ([6]) or from changes in the wall geometry ([7]) which includes
local surface roughness. Goldstein [6] also recognised that three general classes of



receptivity regions might exist: (i) the leading-edge region where the basic bound-
ary layer is thinner and grows rapidly, and the motion is governed by the unsteady
boundary layer equation, (ii) regions which are much further downstream where the
boundary layer is forced to make a rapid adjustment, and the motion is governed
by the Orr-Sommerfield equation, and finally (iii) an overlap region where the TS
wave solutions of regions 1 and 2 match asymptotically.

Although we have not performed an asymptotic analysis in the present paper,
we have found that the results obtained from the parallel flow approximation study
of Orr-Sommerfield type undertaken by Paul et al. [17] are in excellent agreement
with those of the present fully elliptic simulation at large streamwise distances from
the leading edge. On the other hand there is a poor agreement between the results
obtained from the two different methods at locations near to the leading edge. Thus
it is shown that the full elliptic system should be used, at least for this type of flow,
rather than the parallel flow approximation.

So the general aim of this paper is to perform a numerical investigation to study
the instability and receptivity of the thermal boundary layer flow over a vertical sur-
face by introducing two different types of thermal disturbance into the steady flow:
(1) an isolated internal disturbance, and (ii) time-periodic thermal disturbances. We
use air as the working fluid and set the Prandtl number to 0.7. The thermal dis-
turbances into the free convective flow are convectively unstable, as the generated
two-dimensional waves travel to the downstream leaving behind the undisturbed
solutions. The receptivity mechanism is a relevant issue for a convectively unstable
flow. But, in some situations absolute instability may arise, e.g. when a surface
temperature gradient is imposed (see Tao et al. [18]).

The literature is very limited on the study of the thermal receptivity and insta-
bility of a free convective boundary layer flow. To the authors’ knowledge, there
appears to be no full numerical investigation of such of the thermal boundary layer
flow over a vertical heated surface. When the vertical thermal boundary layer is
subject to harmonic disturbances in time, it is not clear how the strength of the
subsequent response depends on the frequency of the disturbance, whether there
appears to be a most dangerous frequency in terms of the strength of the overall
response which could maximise the boundary layer response, and how the frequency
of the thermal disturbance will vary with the boundary layer thickness.

Our principal motivation of this study is to search for answers to the above
hidden questions. Possible practical engineering applications fit within the range of
industrial applications where a sudden or periodic change in the surface temperature
can cause significant changes in the heat transfer process driven by the free convec-
tion. Moreover the thermal receptivity of the free convective boundary layer flows
is of particular interest to the Thermofluid communities because the presence of an
advectively unstable boundary layer means that the heat transfer may be increased
substantially by the simple expedient of introducing a small oscillatory disturbance.



2 Equations of motion and boundary conditions

2.1 Governing equations

We consider the two-dimensional free convective boundary layer flow from a vertical
semi-infinite heated plate. A schematic diagram of the flow domain showing the
coordinate directions, the transformed coordinates and the boundary conditions is
shown in Fig. 1. A Cartesian frame of reference is chosen, where the z-axis is aligned
vertically upwards with the heated surface. Convective flow is assumed to be gov-
erned by the equation of continuity, the incompressible Navier-Stokes equations and
the energy transport equation subject to the Oberbeck-Boussinesq approximation.
For unsteady two dimensional flow this system may be written in non-dimensional
streamfunction, vorticity and temperature form,

Vi) = w, (1)

wr = Vi + Yawy — Yywy + 0, (2)

0, = Pro'V?0 + 1,0, — 1,0, (3)

(Paul et al. [17]) where Pr = 0.7 is the Prandt]l number for air and the streamfunc-
tion is defined in the usual way according to u = v, v = —, where u and v are the

non-dimensional fluid velocity components along the non-dimensional coordinate
directions z and y respectively.

It is important to note that our scalings do not give rise to a Grashof number in
the governing nondimensional equations. That this is acceptable follows from the
fact that there is no externally defined length scale in the idealised configuration
being studied, and that the natural lengthscale d = (v%/gBAT)Y? is equivalent to
setting the usual Grashof number to unity; such a procedure has also been used
in studies of vortex disturbances in thermal boundary layer flows in porous media
undertaken by Rees ([19], [20]) where the governing Darcy-Rayleigh number was set
to unity in order to define a natural lengthscale.

2.2 Coordinate transformation

The usual boundary layer approximation to Eqgs. (1)-(3) is satisfied by the self-similar
solutions

w=a""f(n), 0=h(n), w=az""f"(n) (4)

(see Pohlhausen [21] and Ostrach [22]) where n = y/x/* is the similarity variable
and where the functions f and h satisfy the ordinary differential equations,

f///‘i‘%ff”_%f/f/‘i‘h:(), (5)
n' + %Pr fn' =0, (6)
subject to the boundary conditions

f(0)=f0)=h0)—1=0 and f,h—0 as 7n— oo. (7)



This form of the similarity variable motivates the use of the Schwartz-Christoffel
transformation

K . \3
2 +in)] = (@+iy) (8)
which we use because it guarantees an orthogonal grid and thereby optimises the
iterative numerical solution of Poisson equations such as (1). In polar coordinates,
the transformation may be written in the form,

£ = %r3/4 Ccos %qﬁ, n= %7’3/4 sin %qﬁ, (9)

where r is the nondimensional radial distance from the origin and ¢ is the angle
from the upward vertical. In terms of £ and 1, Eqs. (1) to (3) become

Vee + Yy = Aw, (10)
Aw; = Wee + Wy + wﬁwn - wnwf + A2 (95 sin igb + 977 cos igb) ’ (11)
Aﬁt = Pr_l (9§§ + 97777) + wﬁen - ¢179§7 (12)

where the function, A, is given by

2/3 1/3
Algm = (37 (E+) (13)
We note that it is not possible to write these equations solely in terms of £ and 7,
but the ¢-dependent terms in (11) may be computed easily using the definitions of
¢ and n in Eq. (9).
2.3 Boundary conditions

The corresponding boundary conditions to be used to solve the Egs. (10)-(12) are

w:wnzoa =1 on 77:77mm:0> (14)
Yy =0, w=0, 0=0 as 7= "Nnaea- (16)

The conditions on ¥ on n = Ny, and € = &, correspond to the no-slip con-
dition, while the conditions on 1 and w given in (16) correspond to the conditions
satisfied by the self-similar boundary layer solution and therefore 7),,,, must be
sufficiently large to contain the developing disturbances. The thermal boundary
conditions correspond to a unit temperature heated surface at n = 7,,in, a zero
ambient temperature and an insulated surface at & = &,in-

In our computations we take &,,;, = 20; this means that the corresponding
curved surface is nearly horizontal, as displayed in Fig. 1. Given the form of A in
Eq. (13) and its presence multiplying the left hand sides of (11) and (12), the value
of &,in chosen allows us to use the DuFort-Frankel method to march the solution
forward in time. If £,,;, had been chosen to be 0, which corresponds to a second
plane surface located at an angle of 27 /3 from the z-axis, then a more difficult and
computationally much slower fully implicit method, such as that used by Rees and
Bassom [23], would need to be adopted. Although this is a device which simplifies
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the computational code development, the fact that the flow is advectively unstable,
rather than absolutely unstable, suggests that the effect of this slight change in the
computational domain is minimal in terms of the results obtained.

As a result of taking &,,.;, = 20 as the leading edge, the origin of the coordinate
system is outside of the fluid domain. In Cartesian coordinates the leading edge is
at y = 0 and x = 36.993, and therefore, for convenience of presentation later, we
define the Cartesian variable

2* =z — 36.993 (17)

to denote distance from the leading edge of the heated surface.
The boundary conditions at outflow at £ = &, are discussed at length and
given in §3.

2.4 Boundary layer approximation

The steady state boundary layer approximation may also be derived from Egs. (10)-
(12) in the following forms

'l/)rm = (%5)2/3“}7 (18)
o + ey — e + (26)7 8, = 0, (19)
Pr10,, + ¥e0, — 1,0 = 0, (20)

for which the solution in the new coordinate system is

b 3ef) we (37 ). 6~ ). (21)
where f and h satisfy Egs. (5) and (6).

2.5 Linear disturbance equations

We consider a small disturbance in the steady flow by setting

Y mt) = P(Em) + 0 mt), (& n,t) =0(&m) +60(E,m,t),  (22)

where ¢ is asymptotically small, so that powers of  may be neglected. Here, overbars
denote the basic flow variables and hats denote the perturbation variables.

Substituting (22) into Egs. (10)-(12) and dropping terms which are nonlinear
in 0 leads to two sets of equations: one for the steady flow and the other for the
perturbation flow. The perturbation equations are given by

thee + tmy = A, (23)
Ay = g + Dy + Vedy + Dythe — e — Dby + AV (Desin Lo+ 0, cos 1), (24)
Ay = Pr" (Oee + Oy ) + el + Optbe — U — Oty (25)

and the boundary conditions are
b=1,=0, =0 on =0, =0, (26)



'(2}:’(2}520’ éfzo on gzgmina (27)
Up=0, &=0, =0 as 7= 1Tma (28)

The general procedure for the solving the perturbation equations is as follows.
First, we compute the steady state basic flow satisfying the nonlinear Egs. (10)-(12).
The reason for needing this is that the solution of the boundary layer equations
depart quite markedly from the solution of the steady elliptic equations near £ =
Emin- Then we solve the linearised disturbance Eqs. (23)-(25) for various initial and
boundary conditions in order to study the stability characteristics of the boundary
layer flow.

3 Numerical method

Finite difference techniques are used to solve the system of nonlinear Eqs. (10)-(12)
and the system of linear Eqgs. (23)-(25). The time-dependent equations are discre-
tised using second-order accurate central differences in ¢ and 7, and the DuFort-
Frankel method for the time-derivative and diffusion terms. Although the DuFort-
Frankel scheme is not of second order accuracy, timestep checks indicate that our
solutions are essentially independent of the timestep we used. The Jacobian terms
are approximated using the Arakawa [24] formulation which was designed to be par-
ticularly suitable for flows which are unstable. Derivative boundary conditions are
approximated using a standard fictitious point approach, for although a straightfor-
ward first order approximation at a boundary does not destroy overall second order
accuracy, the fictitious point method has a smaller absolute error.

The Poisson equation satisfied by the streamfunction was solved using the multi-
grid Correction Scheme algorithm to accelerate iterative convergence. It incorpo-
rates a V-cycling algorithm involving the line Gauss-Seidel relaxation procedure.
The method is based on the pointwise method described in Briggs [25], but adopts
two line relaxations per coordinate direction on each multigrid level in order to
maximise iterative convergence speed.

The conditions to be applied on the outflow boundary follow the methodology
introduced by Kloker [26]. The naive imposition of boundary conditions involving
either the first or second derivatives of dependent variables result in the progressive
upstream propagation of spatially pointwise oscillations which eventually degrade
the evolving solution. Kloker et al. [27] discuss at length six different strategies for
dealing with outflow conditions and conclude that, for the Blasius boundary layer
at least, a very satisfactory method is to use an absorbing buffer region. Such a
region is used to damp out disturbances to the basic flow and is sometimes called a
relaminarisation region. The method has also been used very satisfactorily in other
flows; see Stemmer et al. [28] and Bake et al. [29] for example. For the present
problem the concept of a buffer region translates into setting

Xprsr = F(§) x X%C}ST (29)

at each timestep. Here Y represents either the vorticity or temperature, y°¢ is
the computed value of y obtained using the DuFort Frankel method subject to the



boundary condition dx/0¢ = 0 at & = &pnaz, and X" is the value of x which is
used to compute y at subsequent timesteps. The buffer function, F'(§), takes the
value, 1, in most of the computational domain, and is a 5* order polynomial in &
which decreases from 1 at the start of the buffer region to 0 at outflow. At both the
beginning (£ = &) and the end (£ = &) of the buffer region the function has zero
first and second derivatives. In more detail, the buffer function used was

F(E) =1 § <&n
F(&) =1 =107+ 159" —6° Ep1 <& <o (30)
F(§)=0 £ > &po
where §—&n
v = m (31)

For nonlinear problems, such as those involving the computation of the basic
steady flow, the outflow formula, (29), translates into the following form which is
suitable for solving for the true variables, rather than for disturbances,

X' = F(E) x x4 [1 = F(€)] x (32)
where x"*% represents the basic boundary layer solutions of the corresponding
variable (vorticity or temperature) which is obtained from the steady solutions of
Egs. (10)-(12).

In the computation we took &4 = 620, &nin = 20, Nmae = 12 and 19, = 0, with
a regular grid of 480 points in the & direction and 48 points in the n direction. We
have 06 = 5dn which yields a cell aspect ratio of 5, and therefore a line relaxation
method is essential. We were able to take 5 multigrid levels and each V-cycle was
comprised of 2 relaxation sweeps in each coordinate direction for each grid. The
buffer region extended from the 400" to the 480" point in the ¢ direction. At each
timestep the vorticity and temperature fields are updated for the new time level,
followed by the solution of the Poisson equation for the streamfunction and finally
the boundary vorticity is computed using the fictitious point approximation.

When the boundary layer solution as given in Eq. (21) on all grid points is used as
the initial condition, the flow evolves rapidly near the leading edge which induces a
large thermal wave to form and to propagate downstream. This wave becomes highly
nonlinear quite rapidly and very thin internal shear layers develop which are resolved
very poorly by the grid we use. Consequently the method becomes numerically
unstable and quickly yields temperatures which are outside of the range 0 to 1.
Therefore we adopted an ad hoc strategy of removing highly nonlinear disturbances
by interpolating both the 6 and w profiles from either side of the nonlinear wave. As
the wave had by this time already propagated downstream of the leading edge region
in which the wave had been initiated, the resulting modified flow, when integrated
forward in time, eventually produces a highly nonlinear wave some distance further
downstream. This procedure was continued as often as was necessary to “clean” the
boundary layer of unsteady components in order to obtain the steady-state solution
of the full equations. The procedure works only because the flow is convectively



(or, perhaps less confusingly in the free convection context, advectively) unstable as
opposed to being absolutely unstable.

In our numerical computations we discuss two different types of localised dis-
turbance placed near the leading edge. The next section considers the evolution of
a disturbance placed within the boundary layer at one point in time. Thereafter
attention is focused on unsteady local variations in the boundary temperature in
order to determine the detailed effect of different disturbance frequencies.

4 Evolution of an initial disturbance

A disturbance was introduced by setting § = 1 at the point (£,7) = (45,1.5), i.e.
at (z,n) ~ (110, 1.5), which is fairly close to the leading edge, and 7000 timesteps
of length 6t = 0.1 were used. Although such a point disturbance introduces a
checkerboard pattern in the temperature profile at subsequent timesteps, the effect
does not last long since the timestep is quite small.

As time progresses the disturbance diffuses outwards from its point of introduc-
tion and travels along the boundary layer due to the overall upwards movement of
the fluid. The perturbation temperature field in the x-y plane has been recorded at
different times from ¢ = 25 to ¢ = 300 and these are displayed in Fig. 2 — it is very
important to note that the depicted aspect ratios of the cells are very different from
what would be observed in practice since in this Fig. ., =~ 3500 and 9,4, =~ 60.
From these contours, both the diffusion and advection of the evolving disturbance
are seen clearly with well-defined advancing and trailing edges. The cells at t = 250
show a distinctive “boomerang” shape; such a shape arises because the maximum
velocity of the basic flow occurs away from the surface. The final frame (¢ = 300)
corresponds to a point in time just before the advancing front encounters the buffer
region.

Fig. 2 clearly shows the spatial extent of the wavepacket, but also shows how
the wavelength of the cells increases with distance from the leading edge. This is
consistent with the fact that the basic flow accelerates in the streamwise direction.
We note that the train of cells is not spatially periodic.

The variation in the perturbation surface rate of heat transfer, defined by,

a0

Q(ZL’, t) = 8_77‘77:0

(33)
is displayed as a contour plot in Fig. 3. The contours shown correspond to plus and
minus various powers of 10. The lower boundary of the contours in Fig. 3 shows how
quickly the advancing front of the disturbance propagates downstream and, given
the decreasing slope, is seen to accelerate. This is consistent with the fact the basic
boundary layer flow also accelerates since u o< x'/2. The upper boundary of the
contours corresponds to the trailing edge of the wave packet, which also accelerates,
and therefore the instability is confirmed as being advective in nature. On the right
hand side the buffer region corresponds to = > 3000 and is seen to dampen the
disturbances. Although this region appears to have a significant effect on the flow,
and indeed this is the intention, it has an almost negligible influence on the region
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upstream of it. This was tested by using a larger buffer region and comparison of
the profiles outside of this larger region showed almost no difference between the
two simulations.

The disturbance depicted in Fig. 3 grows rapidly as it travels downstream as
evidenced by the fact that the contours at x ~ 2800 and ¢ ~ 400 correspond to a
perturbation which is 10° stronger than at the depicted trailing edge of the distur-
bance. It is also interesting to note that there seems to be a distinctive timescale
associated with the evolving disturbance; the interval between successive zeros in the
perturbation heat transfer may be guaged by the vertical distance between isotherms
in Fig. 3.

We have also investigated the effect of changing the location and spatial extent
of the initiating disturbance, but the overall qualitative nature of the response of the
boundary layer is the same and therefore we have not presented further results — this
behaviour was also noted by Janssen and Armfield [30] in their study of convective
instabilities in a differentially heated cavity. However, this section provides the
context into which may be set certain aspects of the response of the boundary layer
to time-periodic disturbances and which are discussed in §5.

5 The response to time-periodic disturbances

A time-periodic thermal disturbance was introduced on the heated surface in the
region near the leading edge and which is given by

0 = %) gin(\t) at n =0, (34)

where A is the temporal frequency, and &, is the centre of the disturbance. In
addition, a = 0.1 is the chosen scaling factor which ensures that the disturbance is
well-resolved on the computational grid but also does not get close to the neutral
distance.

We used 10000 timesteps of length 6t = 0.1 in all the computations. In all cases
considered this length of time is more than sufficient for transient effects to decay,
and for a time-periodic response to be established. We also note that the solutions we
present are graphically identical to those obtained using smaller timesteps. Although
we are unaware of experimental work which has used time-periodic disturbances to
determine the receptivity of external thermal boundary layers in a free convective
flow over a vertical heated surface, Liepmann et al. [31] used localised time-periodic
heating to generate TS waves into the boundary layer of flow on a horizontal flat
plate.

As in the last section, variations in the location, &;, where the disturbance is
centred leads to no significant change in the boundary-layer response. We therefore
concentrate on those cases for which & = &,,;, = 20. In similar fashion, only slight
quantitative differences are found when different values of the scaling factor, a, are
used, and therefore we concentrate solely on variations in the frequency, .

For the frequency, A = 0.1, the variation with time of the perturbation surface
rate of heat transfer, Q(z, t), is plotted in Fig. 4. The contours in this and subsequent
figures of the same type are scaled with respect to the maximum and minimum
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values of () in each frame, and successive contour levels are the maximum value
of |@| multiplied by plus and minus successive negative integer powers of 10. The
intention is obtain a qualitative feel for the boundary layer response. Although the
computations are undertaken in the (£, 7) coordinate system we present these results
in terms of the nondimensional Cartesian coordinate, x.

This figure shows that there are two very different timescales present: (i) a
relatively long one which is associated with the forcing timescale and which is most
evident at later times, and (ii) a relatively short one which is effectively the starting
transient. Near the point (z,t) ~ (300, 100) the transient first becomes evident and
the contour bands associated with the starting transient are very similar indeed to
those of the initial disturbance case which is plotted in Fig. 3.

Once the transient has left the computational domain, the flow after ¢t ~ 650 is
essentially time-periodic. The contour spacing for x > 1000 does not vary greatly
and therefore we may conclude from this evidence that the disturbance is essentially
neutral for this value of \. However the contours indicate that there is clearly
fairly strong decay in the region x < 100, which is the region where one expects all
disturbances to decay since it lies below the neutral stability curve first computed
by Nachtsheim [3].

Fig. 5 shows the response when A = 0.4. This frequency is roughly the same as
that of the transient, and therefore the eventual time-periodic response grows very
substantially as it propagates downstream. The magnification in amplitude between
x = 600 and z = 2400 is approximately 10°, suggesting that we have what could
be interpreted as a resonance between the forcing and the boundary-layer response
since this frequency is close to the frequency of the fastest growing mode. This
aspect will be dealt with in more quantitative detail below.

The final case we present corresponds to the frequency, A = 0.55, and the re-
sponse returns to the situation where there are two different timescales observed
(see Fig. 6). The transient frequency is now smaller than that of the forcing fre-
quency. The region over which the periodic response decays has now increased quite
markedly in size, and does so increasingly as \ increases further, although the overall
growth which occurs within the computational domain is still substantial. Neutral-
ity appears to be located near x = 700. Later we will discuss how this feature is
connected with the neutral curve obtained by Paul et al. [17] using the parallel flow
approximation. But again we note that the range over which decay takes place in-
creases as A increases; see Paul [32] for details, which contains further contour plots
for different values of A > 0.55.

6 Overview of the response to time-periodic dis-
turbances

Fig. 7 summarises Figs. 4-6 in terms of the variation with = of the spatial wavelength
of the periodic response. This variation is also shown for many other different values
of A. These results correspond to the final timestep, i.e. for ¢ = 1000, as the
flow is periodic after ¢ = 800. The horizontal coordinate of each circle represents
the position, x, of either a maximum or a minimum surface rate of heat transfer,
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while the vertical coordinate gives the distance between the nearest positions of
zero surface heat transfer, i.e. half a “wavelength”, L/2. For all values of A\ the
curves rise with increasing = suggesting that an increasing wavelength with distance
is indeed a global feature of the this accelerating boundary layer flow. We also note
that the spatial wavelength decreases monotonically with increasing values of the
temporal frequency A. In this regard, slightly anomalous behaviour occurs when
A > 0.55; this may be traced to the fact that there is an adjustment in the shape
of the disturbance near to the point where the heat transfer is smallest, as seen in
Fig. 6. This feature persists for higher values of A (see Paul [32]).

Fig. 8 shows the maximum absolute surface rate of heat transfer over the whole
of the heated surface (37 < x < 3600). This quantity is defined by

(&)
an =0

and is a function of the forcing frequency A. The curve (a) corresponds to the overall
maximum response of the boundary layer, including the transient stage, and in this
case M is maximised over 0 < ¢ < 800. The curve (b) represents the maximum over
one period of the final periodic state. The curves shown in Fig. 8 were obtained by
running our simulations for almost 100 different values of A.

In many cases there is a substantial difference between the maximum transient
response and the maximum asymptotic response. This is especially so near A =
0.3 and A = 0.6. Indeed, for A < 0.3 and A > 0.6 the maximum asymptotic
response is very small compared with those values near to A = 0.4. When A ~ 0.411
both maxima take the same value M ~ 7981, which is the the strongest response
obtainable by this boundary layer and therefore this value of A\ constitutes the most
dangerous disturbance frequency within the computational domain used. There is
also a small range of values of A near to 0.411 where the maximum transient and
asymptotic responses are identical.

However, care must be taken over making absolute statements regarding which
excitation frequency is the most dangerous since the computational domain is nec-
essarily finite. That this is so may be gleaned from Fig. 9 which shows how the
local maximum asymptotic response of the boundary layer varies with x for various
values of A. Specifically we plot the variation of K against x where

(5)
MmJ),_o|

In other words K (x,\) corresponds to the maximum absolute rate of heat transfer
over one period at any chosen value of = after transients have died out.

In all cases K decreases rapidly as x increases from x ~ 37, since the leading
edge of the heated surface is in a stable region, and therefore all disturbances decay.
For the larger values of A this decay lasts for a considerable distance and the decay is
over many orders of magnitude. When A > 0.45 the K-curves display a sudden dip
just before they begin to increase; this is related to the change in the shape of the cell
referred to above, and this figure shows that it is a fairly ubiquitous phenomenon.
However, when A takes relatively small values such as 0.05, the disturbance is seen

M()\) = max

35
(1) (35)

K(z,2) = 8005121000 log1 (36)
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to decay slowly. Our previous comment regarding the near neutrality of the A = 0.1
case is borne out by the fact that K hardly varies with x once x > 1000.

At intermediate values of A, such as 0.3, 0.35 and 0.4, we see that the maximum
asymptotic response depends on where in the boundary layer one needs the infor-
mation. For example, at x ~ 500, the most dangerous frequency of excitation, in
the sense of yielding the largest response, corresponds roughly to A = 0.3. Similarly
A = 0.35 is the most dangerous frequency when considering the response of the
boundary layer at x ~ 1300, whereas A = 0.4 corresponds to x ~ 2500. Given the
behaviour of the A\ = 0.45 curve we have no reason but expect that it will, in its
turn, take over as the most dangerous excitation frequency at a still larger value of
x, one which is outside of the present computational domain.

Thus we can depict the upper envelope of the curves shown in Fig. 9 using a
sufficiently large number of simulations for different values of A\ within the range
0.2 < A < 045 to summarise the overall boundary layer growth in streamwise
direction. The values of A used to get the upper envelope are shown in Fig. 10
and are denoted by \,,. Here we see quite clearly how the value of A, increases
with distance from the leading edge. The minimum value of the envelope occurs at
x* ~105.5 (or x ~ 142.5) which is somewhat less than the value x* ~ 147.2 which is
the minimum value of x* as given by a straightforward linear stability analysis using
the parallel flow approximation (PFA). We shouldn’t expect an elliptic analysis and
a PFA analysis to yield identical results, and it seems that the stability criterion
offered by a PFA is very conservative. However, the corresponding values of A
are very close: here we find that A, ~ 0.252 while the value obtained from the
imaginary part of the exponential growth rate in a PFA analysis at x* = 147.2 is
A =0.264.

Finally, we compare in more detail the present results, and those obtained using
the standard linear stability theory based upon the PFA. Such a comparison is
shown in Fig. 11 for five different values of the excitation frequency. This figure
shows (i) the neutral curve for the onset of convection using the PFA as computed
by Paul et al. [17]; (ii) curves which correspond to the above values of A obtained
by assuming the PFA, and (iii) the variation with the local wavenumber of the z
values at which the local perturbation heat transfer is zero at a representative point
in time. In this third case the local wavenumber is defined as k = 27 /L, where the
local wavelength L is as depicted in Fig. 7.

When A\ = 0.55 the agreement between the present simulations and the PFA
results, shown in Fig. 11 are very good when x > 750. Such an agreement is to
be expected since PFA data often agree well with data obtained from nonparallel
studies when the local wavenumber (kz'/4, in this case) is large. At smaller values of
x the poor comparison is assumed to be caused partly by the change in the shape of
the cells, a phenomenon which is unlikely to occur in the PFA computations which
are strictly local, and by the nonparallel and elliptical nature of the flow. As A
decreases from 0.55 the comparison is decreasingly good even at large values of z
suggesting that the elliptic effects are so strong that the PFA is no longer a suitable
assumption to make. Indeed, this clearly must be the case for relatively small values
of x (i.e. those close to the base of the neutral curve) since the spatial wavelength
of the resulting cells become comparable to the magnitude as the neutral distance.
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Fig. 12 shows a direct comparison between the PFA neutral curve and the in-
terpolated values of z* and k where neutrality occurs for the present simulations.
In this figure we see that the fully elliptic theory yields a stability criterion which
is a little more severe than for the PFA. That this is so is not surprising for the
PFA imposes restrictions on the disturbance, while the present simulation allows
disturbances to evolve freely in both time and space.

7 Conclusions

In this paper we have sought to understand how the classical thermal boundary
layer from a heated vertical surface responds to two different types of disturbance,
by solving the unsteady, fully elliptic equations of motion, rather than to use approx-
imate methods. Thus the flow has been able to evolve freely in space without having
its wavelength prescribed (as with the PFA), or neglecting streamwise diffusion (as
with parabolic methods).

We have confirmed numerically that the present boundary layer is advectively,
rather than absolutely, unstable, at least within the present computational domain.
Given that the basic flow accelerates as it travels upwards, this may possibly imply
that absolute instability does not arise. However, we have seen that the upward
acceleration does result naturally in a progressive stretching of the individual dis-
turbance cells.

When the boundary layer is subject to harmonic disturbances in time, the
strength of the subsequent response depends very highly on the frequency of the
disturbance and there appears to be a most dangerous frequency in terms of the
strength of the overall response. However, our chief conclusion is that it is not
possible to determine a most dangerous disturbance frequency as a global criterion.
Rather, each streamwise location in the boundary layer has associated with it its
own most dangerous frequency, at least in terms of the heat transfer response to oth-
erwise identical disturbances. We have also seen that this frequency increases with
increasing distance, which is the opposite to the conclusion of Brooker et al. [15]
who state that the frequency decreases. However, there are significant differences
between the two respective studies: the present paper deals with the external flow
of air in a uniformly cold environment, while Brooker et al. consider water in a
differentially heated square cavity where the core temperature field is stratified.

Finally, although much is known from experimental work about the destabil-
isation of vortices on inclined surfaces, we are unaware of any published work,
except that of Szewczyk [33], which deals with secondary instabilities for verti-
cal free convective flows. Szewczyk found one mechanism for the destabilisation of
two-dimensional nonlinear waves which takes the form of a counter-rotating pair
of streamwise vortices. The presence of such vortices is unlikely to be connected
to those found on inclined surfaces since the latter are thermo-convective in origin,
whereas the former take place in the presence of strongly nonlinear waves. A natu-
ral extension of this work would be to investigate such three-dimensional secondary
instabilities.
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Figure 1: (a) A schematic diagram of the flow configuration showing the coordi-
nate directions and boundary conditions, (b) Computational mesh. Note that the
horizontal coordinate has been stretched greatly in this diagram.
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Figure 2: Contours of 0 depicting the response to a point disturbance at (x,7n) ~
(110,1.5), and are scaled to lie within the respective extrema in each frame.
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Figure 3: Variation of Q(z,t) after the introducing the point disturbance.
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Figure 7: The variation in the spatial wavelength, L, with distance downstream.
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Figure 8: Variation of the maximum responce, M, of the disturbance: (a) the
transient response; (b) the periodic response.
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Figure 9: The variation of K(\,z) with x for various values of the disturbance
frequency, A.
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Figure 10: The values of A corresponding to the upper envelope of Fig. 9.
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Figure 11: Comparison between the present elliptic linear stability results and those
obtained by assuming the parallel flow approximation. The continuous lines denote
the neutral stability curve and dashed lines represent lines of constant frequency.
The symbols correspond to fully elliptic results.
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Figure 12: Comparison between the neutral curves obtained from the parallel flow
approximation (solid curve) and the present elliptic linear stability results (circles).
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