
 
 
 
 
 
 
Miller, T.J.E. and Popescu, M. and Cossar, C. and McGilp, M.I. and 
Olaru, M. and Davies, A. and Sturgess, J. and Sitzia, A. (2008) 
Embedded finite-element solver for computation of brushless permanent-
magnet motors. IEEE Transactions on Industry Applications 
44(4):pp. 1124-1133.

 
 
 
 
 
 
 
http://eprints.gla.ac.uk/4546/ 
 
12th August 2008 
 
 

Glasgow ePrints Service 
https://eprints.gla.ac.uk 



1124 IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. 44, NO. 4, JULY/AUGUST 2008

Embedded Finite-Element Solver for Computation
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Abstract—This paper describes the theory underlying the for-
mulation of a “minimum set” of finite-element solutions to be
used in the design and analysis of saturated brushless permanent-
magnet motors. The choice of finite-element solutions is described
in terms of key points on the flux–MMF diagram. When the
diagram has a regular shape, a huge reduction in finite-element
analysis is possible with no loss of accuracy. If the loop is irregular,
many more solutions are needed. This paper describes an efficient
technique in which a finite-element solver is associated with a
classical d–q-axis circuit model in such a way that the number
of finite-element solutions in one electrical half-cycle can be varied
between 1 and 360. The finite-element process is used to determine
not only the average torque but also the saturated inductances as
the rotor rotates.

Index Terms—Brushless permanent-magnet (PM) motors,
finite-element method, simulation, torque calculation.

NOMENCLATURE

i Instantaneous current (in amperes).
m Number of phases.
v Instantaneous voltage (in volts).
p Operator d/dt; or number of pole pairs.
ψ Instantaneous flux linkage (in volt seconds).
θ Rotor angular position (in radians).
R Phase resistance (in ohms).
T Electromagnetic torque (in newton meters).
W Energy conversion loop area per phase (in joules).
γ Phase-advance angle of the current relative to EMF (in

electrical degrees).
ω Speed (in electrical radians per second).
d, q (Subscripts) Direct and quadrature axes, respectively.
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I. INTRODUCTION

B RUSHLESS permanent-magnet (PM) motors are widely
used in a range of applications including electric and hy-

brid vehicles, servo motors, high-efficiency pumping applica-
tions, and many others, whereas new applications are emerging
as a result of the high efficiency, low noise, and controllability
of these machines [1], [2], [5]. Both sinewave and squarewave
drives are used, with a huge range of motor geometries, winding
configurations, and materials. In many cases, the motor is
driven to extremes of saturation and/or very high speed, so
that the waveforms of current and terminal voltage are often
nonsinusoidal. Even when ideal sinusoidal conditions prevail,
the parameters may vary widely from the no-load values.

The circuit and control conditions often cover a wide range of
operating points. For simulation purposes, a classical equivalent
circuit model of the machine is required, based on conventional
theory, even though the saturable parameters (inductances and
flux linkages) must be computed by the finite-element method,
for the sake of accuracy. The challenge is to make accurate
performance simulations with the minimum “overhead” of
finite-element calculation. Preferably also, the circuit parame-
ters should be made available in a form which shows their
dependence on current and even rotor position, so that lookup
tables or interpolating functions can be used in simulation and
control.

It is shown in this paper that the flux–MMF diagram or “i−ψ
loop” provides a completely general method for computation
of any synchronous machine, in which the key outputs are the
average electromagnetic torque and the saturated inductances
averaged over one cycle. “Completely general” means that
the method works equally well with any rotor geometry, any
winding distribution, and any current waveform. Moreover, the
shape of the i−ψ loop itself directly indicates whether it will be
possible to use a “reduced-order” model of the machine, such
as the d–q-axis model with fixed parameter values. When the
i−ψ loop is elliptical, the ellipse has several special properties
which are useful in design and simulation, which are brought
out in this paper.

In this special case, an accurate value of the average torque
can be obtained with only a single finite-element computation.
Moreover, the synchronous inductances in this case are inde-
pendent of rotor position, even though they may be heavily
saturated.

In all other cases, when the i−ψ loop is not elliptical, the
number of finite-element computations required for accurate
torque calculation is greater than one, and the number required
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Fig. 1. Current and flux-linkage waveforms and i−ψ loop: Squarewave drive.

depends on the regularity of the diagram: In particular, the
number of solutions depends on the number of points on the
boundary of the loop, which are necessary to define its area
precisely.

An important feature of this paper is that the finite-element
method is used only for magnetostatic calculations. In other
words, the differential circuit equations (terminal voltage equa-
tions) should be solved with a circuit simulator, whereas
the finite-element analysis remains magnetostatic and current
driven. Although it is possible to solve the differential voltage
equations by incorporating them in the schema of a finite-
element program, such a solution will be slow and difficult to
relate to a theoretical model of the control [10].

II. THEORY

A. Three-Phase Brushless PM Motor With Squarewave Drive

Fig. 1 shows the current and flux-linkage waveforms in one
phase of a three-phase brushless PM motor with squarewave
drive, operating at low speed when the current can be accurately
regulated to follow the ideal 120E rectangular waveform. The
current waveform is phase advanced by 15E relative to the flux-
linkage waveform. The phase EMF (not shown) is the derivative
of the flux-linkage dψ/dt, and the i−ψ diagram is shown at the
bottom. This diagram is simply the “x−y plot” or Lissajous
figure obtained by plotting ψ versus i. The average electromag-
netic torque T is given by

T = mp
W

2π
. (1)

The i−ψ loop has a remarkably regular shape, such that the area
W can be estimated as twice the area of parallelogram ABCD
[2], and

W = 2ipk(ψC − ψB). (2)

It appears that only two electromagnetic field evaluations are
required (at B and C) to determine this area. If the phase-
advance angle is zero, the offset between the two parallel-
ograms ABCD and FGHI disappears, such that D = F and
A = I, and in this case, only one field evaluation is required
(because ψB = −ψC). If the field evaluations are to be done
by the finite-element method, the i−ψ loop diagram indicates
which finite-element solutions are required, and it gives a very
good indication of how many solutions are required. No such
guidance is available in the time waveforms in the upper part
of Fig. 1. In terms of these waveforms, the average electromag-
netic torque can be expressed as

T =
mp

2π

2π∫

0

ψ
∂i

∂θ
dθ (3)

which is equivalent to (1) but is more difficult to evaluate
because it does not take advantage of the simplicity of the shape
of the loop or any of its particular features. It also requires many
more evaluations of ψ and i.

B. Other Useful Deductions From the i−ψ Loop

In Fig. 1, neither the current nor the flux linkage is sinusoidal.
Therefore, phasors cannot be used, even though both quantities
are “alternating.” The effect of “armature reaction,” i.e., the
additional flux linkage due to the current, can be seen in Fig. 1
as a kind of dislocated segment of the flux-linkage waveform in
each half-cycle.

The effect of armature reaction is clearly not constant over
the cycle. For example, at the beginning of the segment BC, the
armature reaction is demagnetizing (i.e., opposing the magnet
flux), whereas at the end, it is magnetizing. This means that
the leading edge of the magnet is subject to demagnetization,
whereas the trailing edge is subject to remagnetization, as the
rotor passes the axis of the phase winding.

In the example shown in Fig. 1, the peak flux linkage occurs
at E in the positive sense and at J in the negative sense. The
peak occurs during an interval when the corresponding phase
current is zero. However, this is not an open-circuit condition
because the current is flowing through phases 2 and 3 during
this interval. For the magnet pole in question, the armature
reaction is then largely cross-magnetizing. In heavily saturated
motors, this cross-magnetization can influence the apparent
“open-circuit” flux at points E and J.

In the example in Fig. 1, the peak flux linkage does not co-
incide with the peak current, but the current could be increased
to a level such that ψC > ψE. It thus appears that peak flux
densities will be associated with points E or C, and it would be
reasonable to use these points as “test points” for finite-element
analysis to determine these flux densities.
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TABLE I
FINITE-ELEMENT SOLUTIONS REQUIRED FOR SQUAREWAVE DRIVE

Fig. 2. (Left) Surface-magnet and (right) interior-magnet rotors.

Likewise, it appears that the maximum demagnetization will
occur at points B and G, and again, one of these points could be
used as a test point for finite-element analysis.

The phase inductance is also equal to the slope of the line
DC, and the short-circuit current is equal to ψE divided by this
inductance. The average open-circuit EMF is given by ψE/π
multiplied by the speed in electrical radians per second.

These interpretations can be summarized in the form of
a table indicating the most useful finite-element computation
problems to solve during the design phase, as shown in Table I.

With any programmable finite-element software, it therefore
makes sense to prepare a “GoFER”—an automatic process
that “Goes to Finite-Elements and Returns” a useful set of
results—for a predetermined sequence of points on the i−ψ
diagram. For squarewave motors, as discussed earlier, the most
useful points in the GoFER would be B, C, D, and E.

A simple GoFER comprising only four points is adequate
for surface-magnet motors operating with squarewave drive
current waveforms, when the level of saturation is low. Finite-
element analysis is still desirable, even in these apparently
simple cases, because the geometrical detail is often difficult to
calculate accurately by classical methods such as the magnetic
equivalent circuit method. Indeed, the geometric complexity is
not the only reason: The winding configuration may also be
complex and not amenable to the computation of flux linkage
and EMF by traditional methods. In the case of axial-flux
machines where 3-D finite-element analysis is required, the
computational efficiency of the GoFER process is even more
valuable.

C. Three-Phase Brushless PM Motor With Sinewave Drive

While the surface-magnet rotor (Fig. 2) can be used with
either squarewave or sinewave drive, the interior-magnet rotor
is better adapted to sinewave drive because of its saliency
and its strongly nonlinear characteristics. With sinewave drive,
the current waveform is ideally sinusoidal, and ideally, the

flux-linkage waveform in each phase is also sinusoidal. Under
these conditions, current, flux linkage, and EMF can all be
represented as phasors, and the i−ψ loop is a pure ellipse, as
shown in Fig. 3.

In many cases, the steady-state performance of a motor with
sinewave drive can be computed using values of the synchro-
nous inductances Ld and Lq , and of the magnet flux linkage
ΨMd1, which are strongly affected by saturation but which
remain independent of rotor position. Indeed, many of the
published analyses of saturated brushless PM and synchronous
reluctance motors are based on this precept. There are many
documented cases of interior-magnet motors in which Lq can
vary by as much as 5 : 1 between no load and full load, whereas
the q-axis flux can saturate the pole pieces and the stator teeth
to such an extent that the effective magnet flux linkage ΨMd1 is
also affected.

Such cases are ideally characterized by constant values of
id, iq, ψd, and ψq throughout the electrical cycle, consistent
with the elliptical energy-conversion loop in each phase (see
Fig. 3). If Ld, Lq, and the magnet flux linkage ΨMd1 also
remain constant throughout the cycle, it suffices to calculate
these parameters at only one instant during the cycle.

The objective is to determine suitable “saturated” values of
Ld, Lq, and ΨMd1 to be used in the flux-linkage equations

ψd = ΨMd1 + Ldid (4a)

ψq =Lqiq. (4b)

Ld and Lq are both affected by saturation, with Lq being
mainly a function of iq and with Ld being mainly a function of
id. To some extent, Ld is a function of iq , and Lq is a function
of id, because of “cross-saturation.” ΨMd1 is also affected by
saturation, notably by the saturation caused by iq when id = 0.

For any set of values of id and iq , the flux linkages ψd and ψq

can be computed by finite-element analysis, and then, Ld and
Lq can be deduced from (4a) and (4b) as

Ld =
ψd − ΨMd1

id
(5a)

Lq =
ψq

iq
. (5b)

A unique value of Lq can be deduced from (5b), with iq being
equal to the value defined by the load point. However, in order
to deduce Ld, we also need a value for the “open-circuit” flux
linkage ΨMd1. The obvious choice is to set ΨMd1 equal to the
true open-circuit value, which can be computed with id = 0 and
iq = 0. However, (4) suggests an alternative in which ΨMd1 is
computed with id = 0, whereas iq retains the load-point value
as used in (5b). In this case, ΨMd1 is computed with the full
effect of cross-saturation in the q-axis, which tends to decrease
its value. Thereafter, the additional term Ldid can be interpreted
as the flux linkage of armature reaction in the d-axis, in the
presence of the cross-magnetizing current iq.

This interpretation is “heuristic,” and not mathematically
rigorous, because it tacitly relies on the notion of superposition.
However, the process is systematic and reproducible and makes
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Fig. 3. Elliptical i−ψ diagram with sinusoidal current and flux linkage.

sense in engineering terms because it somehow separates the
effect of Ld and id from the effect of iq. It also avoids the
need to account for cross-saturation by introducing an artificial
mutual inductance Ldq with an additional term in (4a) and
(4b). This term would itself be saturable. There is, in fact, an
infinite number of possible values of ΨMd1 and Ld that will
satisfy (4a). The reason is that the superposition implied by the
addition in this equation is not valid under saturated conditions.

If ΨMd1 is evaluated with id = 0 and iq = 0, there is a
possibility for the numerator (ψd − ΨMd1) to become nonzero
when iq is restored to the normal load-point value, even when
id = 0. Equation (5a) would then produce an indefinite result
for Ld if it was used at (or near) such a load point where id = 0
and where iq was nonzero, which is quite a normal condition.
This problem is avoided if, as suggested, ΨMd1 is calculated
with id = 0 and the load-point value of iq.

D. Properties of the Elliptical Energy-Conversion
Loop (i−ψ Diagram)

Two elliptical i−ψ loops are shown in Fig. 3 for two operat-
ing conditions: one at high current and one at low current. The
general form of the phasor diagram is also shown, together with
the space phasor diagram of flux linkages, in which ΨMd1 is
the notional “open-circuit” flux linkage due to the magnet. LdId

and LqIq are the flux linkages of armature reaction in the d- and
q-axes, respectively. The rotating fluxes associated with these
flux linkages generate the respective induced voltages in the
phasor diagram; thus, ΨMd1 generates jωq1, LdId generates
jωLdId, LqIq generates jωLqIq, and the resultant Ψ generates
the “air-gap voltage” V. Resistance is omitted.

For the high-current loop, the current reaches its maximum
positive value at M and passes through a negative-going zero
at Q. The flux linkage ψa reaches its maximum value at N.
Because the loop is traversed counterclockwise, M precedes N.
This is consistent with the fact that I leads Ψ.

The phasor diagram tells us that the angle of rotation between
M and N is β, which is the phase angle in electrical degrees
between the current phasor I and the flux-linkage phasor Ψ. If
we take the “open-circuit” flux linkage ΨMd1 as reference, we

can use the phasor diagram to write the following equations for
the instantaneous currents, with θ = ωt:

ia = ipk cos(π/2 + γ + θ) = −ipk sin(γ + θ)

ib = − ipk sin(γ + θ − 2π/3)

ib = − ipk sin(γ + θ + 2π/3). (6)

Note that ipk is the abscissa at point M. If these equations are
substituted in the forward dq transformation, we get

Id = −ipk sin γ Iq = +ipk cos γ (7)

in which Id and Iq are constant. The corresponding equations
for the instantaneous flux linkages are

ψa =ψpk cos(π/2 + γ − β + θ) = −ψpk sin(γ − β + θ)

ψb = −ψpk sin(γ − β + θ − 2π/3)

ψb = −ψpk sin(γ − β + θ + 2π/3). (8)

Note that ψpk is the ordinate at point N. Again, from the dq
transformation, we get

ψd = −ψpk sin(γ − β) = ψpk cos α

ψq = +ψpk cos(γ − β) = ψpk sin α. (9)

Like Id and Iq, these are constant values; they do not appear
in Fig. 3.

When ia = 0, we have ib = −(
√

3/2)ipk and ic =
+(

√
3/2)ipk, and this represents a negative-going zero of ia

at the instant Q defined by γ + 2 = 0, or ωt = −γ. The value
of ψa at this point (Q) is given by

ψa = ψpk sin β = ψQ. (10)

Thus, when ia = 0, the flux linkage ψa in phase a at point
Q is not simply the open-circuit value but depends on the
inductances Ld and Lq and the phase angle β. In fact, the true
open-circuit flux linkage is not observable in Fig. 3, unless the
i−ψ loop is drawn for zero current. When this is done, the loop
degenerates into a vertical straight line, and the maximum value
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of ψa is equal to the peak open-circuit flux linkage
√

2ΨMd1.
The low-current loop in Fig. 3 shows this point very nearly at
Z. There is no simple relationship between Z and Q. However,
note that the ψ values at Q and N are in the ratio sin β.

When γ = 0, the current is in the q-axis, and ψQ is then
equal to the peak value of “magnet flux linkage” in phase a
because β = π/2 − α and ψ cos α = ψ sinβΨMd1. If the mag-
netic circuit is linear, this is equal to the open-circuit value
of the magnet flux linkage in phase a because, although ib
and ic are not zero at point Q, they produce a transverse flux
which does not link phase a. In that case, points Q and Z are
coincident. However, if Iq is sufficient to cause appreciable
saturation of the magnetic circuit, then sin β and ψQ can both
be affected. In that case, point Q deviates from point Z.

Another point of interest on the ellipse diagram is M, where
ia = ipk. At this point, sin (γ + θ) = −1, so θ = γ + π/2, and
if this is substituted in (8), we get

ψa = ψpk cos β = ψM. (11)

Note the ratio

ψQ

ψM
= tanβ. (12)

However, β can be written as π/2 − ϕ, where ϕ is the “internal
power-factor angle,” i.e., the phase angle between the “internal”
or “air-gap” voltage V and the current I. Then,

tan ϕ =
ψM

ψQ
(13)

from which the internal power factor cos ϕ can easily be
determined. When cos β = 0, β = π/2, and the current I is
in quadrature with the flux linkage ψ. In this case, M lies on
the horizontal axis, and the ellipse is not tilted; the internal
power factor is then one. Although this condition represents the
maximum possible internal power factor, it does not necessarily
indicate the maximum torque per ampere, unless Ld = Lq. The
greater the tilt angle, the lower the internal power factor.

The average electromagnetic torque can be calculated using
d, q values for flux linkage and current in the well-known
equation

T = mp(ΨdIq − ΨqId). (14)

The d, q values can be determined from instantaneous values
using the following:

Ψd =
1√
2
ψpk cos α Ψq =

1√
2
ψpk sin α

Id = − 1√
2
ipk sin γ Iq =

1√
2
ipk cos γ. (15)

Substituting in (14)

T = mp
1
2
ψpkipk(cos α cos γ + sin α sin γ)

= mp
1
2
ψpkipk cos(α − γ). (16)

TABLE II
FINITE-ELEMENT SOLUTIONS REQUIRED FOR SINEWAVE DRIVE

TABLE III
FINITE-ELEMENT SOLUTIONS REQUIRED WHEN

THE i−ψ LOOP IS IRREGULAR

However, from Fig. 3, α − γ = π/2 − β, so

T = mp
ψpkipk

2
cos

(π

2
− β

)
= mp

ψpkipk

2
sinβ. (17)

If ψpk sin β is now substituted from (10), we get

T =
mp

2
ipkψQ. (18)

Equation (18) shows that the average electromagnetic torque
can be computed from a single finite-element computation in
which ψQ is computed. It also shows that ψQ is a direct measure
of the torque per ampere. If γ = 0 and the current is in the
q-axis, Id = 0 and LdId = 0, and the phasor diagram then
shows that if the magnetic circuit is linear, point Q is indepen-
dent of the current, and the torque per ampere is also constant.
However, if Iq is sufficient to saturate the magnetic circuit,
point Q moves downward, and the torque per ampere decreases.
This is often termed “kT roll-off”, with kT being the torque
per ampere. If γ is nonzero, the effect of saturation is more
complicated because, although (18) remains valid, ψQ varies in
a more complex manner as a function of both the current and
the phase angle γ.

The basic set of finite-element solutions required in the
“GoFER” is summarized in Table II, the points being those
denoted in Fig. 3.

E. Drives With Irregular i−Ψ Loops: Time-Averaged Ld

and Lq

Fig. 16 shows the i−Ψ loop of a highly saturated three-phase
IPM motor with six-step drive [1]. Because of the irregular
shape of the loop, it is clear that many finite-element compu-
tations may be needed to get an accurate value for the area
W and the electromagnetic torque. In that case, the GoFER
can be specified for all requirements as in Table III. A loop
that is as irregular in shape as the one for a six-step drive
can arise even when the windings are sine distributed. The
shape is irregular because both the current and terminal voltage
have nonsinusoidal time waveforms. However, nonsinusoidal
time waveforms are perfectly admissible in dq theory, and
if the motor windings are sine-distributed ΨMd1, Ld and Lq

will remain independent of rotor position even under saturated
conditions. This implies that, even in a loop that is as irregular
as Fig. 16, there are constant values of ΨMd1, Ld, and Lq
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Fig. 4. Cross section with flux lines under load for the tested IPM motor.

that could be used to characterize the machine at this operating
point.

In (5), we have a means of extracting the values of ΨMd1, Ld,
and Lq at any operating point—any rotor position—computed
by the finite-element method. If we do this at a series of points
a, b, c, d . . . around the i−ψ loop, we can calculate average
values for ΨMd1, Ld, and Lq over one cycle. These average
values can be combined in (4) with the time-averaged values
of id and iq to produce the time-averaged values of ψd and ψq,
from which the torque can be computed using (14).

If the i−ψ loop is computed again with the time-averaged
values and phasor values of the currents Id = id/

√
2 and Iq =

iq/
√

2, it will be an ellipse with the same area W as the actual
loop. This suggests that the torque in an operating condition
such as that of nonsinusoidal current can be computed using
the phasor values of the (fundamental components of) voltage,
current, and flux linkage, provided that the correct saturated
values of ΨMd1, Ld, and Lq are used. These values correspond
to certain values of id and iq (or Id and Iq), which means that
lookup tables can be used in a torque estimator implemented
in a control scheme. Numerical and experimental tests of this
hypothesis are presented in the following section.

It should be observed that computing the i−ψ loop with a
reduced number of finite-element field evaluations does nothing
to improve the estimation of iron loss, which depends on
detailed flux-density waveforms at a large number of sites in
the cross section and therefore seems to require a very much
larger diet of finite-element analysis.

III. TEST AND COMPUTATION RESULTS

The numerical and experimental validation of the theoretical
aspects from Section II is performed on a two-pole brushless
IPM motor (Figs. 4–6). Each magnet pole comprises three
separate NdFeB magnets. The three-phase winding is wye
connected and approximately sine distributed. There is no

Fig. 5. Experimental current and flux-linkage waveforms for squarewave
drive.

Fig. 6. Calculated current and flux-linkage waveforms for squarewave drive.

Fig. 7. Experimental and computed i−ψ loop diagrams for squarewave drive.

skew. The finite-element flux plot shows a complex pattern of
saturation. The noncircular shape of the stator causes imbal-
ance between the phase flux linkages even for identical phase
currents. However, this does not invalidate the use of the i−ψ
diagram, provided that all three phases are treated separately.

A. Squarewave Drive

The first analyzed case is when the test motor is controlled
through a squarewave drive at 340 r/min, with 2-A peak current.
Fig. 7 shows the superimposed measured and calculated i−ψ
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TABLE IV
TORQUE VALUES FOR SQUAREWAVE DRIVE

Fig. 8. Experimental i−ψ loops for sinewave drive (current varies and
γ = 0).

Fig. 9. Calculated i−ψ loops for sinewave drive (peak current varies and
γ = 0).

loops for squarewave drive. Table IV shows the measured
and calculated torques. Note, in particular, the accurate result
obtained with two-point finite-element calculation. Of course,
this is possible only with an i−ψ loop of such a regular shape.

B. Sinewave Drive

Test and computed data are shown for the sinewave drive in
Figs. 8–11. All the results for this configuration are obtained
at 400 r/min. Tables V and VI show the comparison between
measured and calculated torque values for different methods.
As the analyzed motor saturates at a low current level, the
intersection point Q of each i−ψ loop with the flux-linkage
axis does not change its position when the control angle γ is
kept constant (see Figs. 8 and 9).

When γ varies, and the current is constant, point Q changes
its position and reflects the variation of the average electromag-

Fig. 10. Experimental i−ψ loops for sinewave drive (γ varies and constant
peak current).

Fig. 11. Calculated i−ψ loops for sinewave drive (γ varies and constant peak
current).

TABLE V
TORQUE VALUES FOR SINEWAVE-DRIVE, CONSTANT γ = 0

VARIABLE CURRENT

TABLE VI
TORQUE VALUES FOR SINEWAVE-DRIVE, CONSTANT I = 2 A

VARIABLE γ

netic torque in accordance with (18) (see Figs. 10 and 11). The
location of the points M and Q on the i−ψ loops is further used
to estimate Ld and Lq using (5).

Fig. 12 shows the computed results for Ld and Lq as com-
pared to the static measurement obtained with Jones’ bridge [6],
[8]. Fig. 13 shows the estimated back EMF under load from the
flux linkage ψQ as a function of Iq.
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Fig. 12. Measured and computed inductances in the d–q axis.

Fig. 13. Estimated back EMF under load conditions.

Fig. 14. Experimental and calculated current waveforms for six-step drive.

C. Six-Step Drive

The case of the six-step drive provides a good example of an
irregular current waveform. Tests are performed at a speed of
540 r/min and 80-V dc-link voltage. Figs. 14–16 show the ex-
perimental and computed waveforms. Table VII gives the
torque values for different methods, including the usage of the
current fundamental harmonic (amplitude and phase angle).

Because this motor has approximately sine-distributed wind-
ings, the torque calculated by (14) agrees closely with the test
value, provided that “saturated” values are used for Ld, Lq , and
ΨMd1.

Fig. 15. Experimental and calculated flux-linkage waveforms for six-step
drive.

Fig. 16. Experimental and calculated i−ψ loops for six-step drive.

TABLE VII
TORQUE VALUES FOR SIX-STEP DRIVE

IV. CONCLUSION

The flux–MMF diagram or “i−ψ loop” is used to interpret
several key features of the performance of brushless PM ma-
chines operating with both squarewave and sinewave drives. It
is shown that important economies can be made in the applica-
tion of the finite-element method to the accurate calculation of
the average electromagnetic torque. This paper develops an im-
proved understanding of the extent to which classical analysis
and phasors can be used legitimately in extreme operating con-
ditions such as six-stepping. In view of the deductions which
can be made from the i−ψ loop, it is surprising that it is not
more widely used. By means of simple geometric deductions,
it bypasses (or at least illustrates) the complex mathematics
of the dq transformation. It also provides a means of testing
the rigor of various common assumptions about the motor—for
example, whether the synchronous inductances vary with rotor
position or whether the phasor diagram can be used when the
current waveform is not sinusoidal. The graphical presentation
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of the i−ψ loop complements and illustrates a number of the
recent works on saturated brushless machines (particularly the
IPM motor) by several different authors and for several different
applications.
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