

Hu, X., Zhang, J., Chung, H.S., Li, Y., and Liu, O. (2010) SamACO:
variable sampling ant colony optimization algorithm for continuous
optimization. IEEE Transactions on Systems, Man, and Cybernetics,
Part B: Cybernetics, 40 (6). ISSN 1083-4419

Copyright © 2010 IEEE

A copy can be downloaded for personal non-commercial research or
study, without prior permission or charge

Content must not be changed in any way or reproduced in any format
or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/44802

Deposited on: 26 June 2013

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/44802
http://eprints.gla.ac.uk/
http://eprints.gla.ac.uk/

Title : SamACO: Variable Sampling Ant Colony Optimization Algorithm for

Continuous Optimization

Authors : Xiao-Min Hu*, Student Member, IEEE

 Jun Zhang*, Senior Member, IEEE (corresponding author)

 Henry S.-H. Chung+, Senior Member, IEEE

 Yun Li※, Member, IEEE

 Ou Liuo

Affiliation : * Sun Yat-Sen University, Key Laboratory of Digital Life（Sun Yat-sen

 University）, Ministry of Education

 + City University of Hong Kong

 ※University of Glasgow

 oHong Kong Polytechnic University, Kowloon, Hong Kong.

Address : Department of Computer Science,

 Sun Yat-Sen University,

 China

Email : junzhang@ieee.org

SamACO: Variable Sampling Ant Colony Optimization Algorithm for

Continuous Optimization

Xiao-Min Hu, Student Member, IEEE, Jun Zhang, Senior Member, IEEE, Henry S.-H. Chung,

Senior Member, IEEE, Yun Li, Member, IEEE, and Ou Liu

Abstract –An ant colony optimization (ACO) algorithm offers algorithmic techniques for

optimization by simulating the foraging behavior of a group of ants to perform incremental

solution constructions and to realize a pheromone laying-and-following mechanism.

Although ACO is first designed for solving discrete (combinatorial) optimization problems,

the ACO procedure is also applicable to continuous optimization. This paper presents a new

way of extending ACO to solving continuous optimization problems, by focusing on

continuous variable sampling as key to transforming ACO from discrete optimization to

continuous optimization. The proposed SamACO algorithm consists of three major steps, i.e.,

the generation of candidate variable values for selection, the ants’ solution construction, and

the pheromone update process. The distinct characteristics of SamACO are the cooperation of

a novel sampling method for discretizing the continuous search space and an efficient

incremental solution construction method based on the sampled values. The performance of

SamACO is tested using continuous numerical functions with unimodal and multimodal

features. Compared with some state-of-the-art algorithms, including traditional ant-based

algorithms and representative computational intelligence algorithms for continuous

optimization, the performance of SamACO is seen competitive and promising.

Index terms –Ant algorithm, ant colony optimization (ACO), ant colony system (ACS),

continuous optimization, function optimization, local search, numerical optimization

 1

I. Introduction

Simulating the foraging behavior of ants in nature, ant colony optimization (ACO)

algorithms [1][2] are a class of swarm intelligence algorithms originally developed to solve

discrete (combinatorial) optimization problems, such as traveling salesman problems (TSPs)

[3][4], multiple knapsack problems (MKPs) [5], network routing problems [6][7], scheduling

problems [8]-[10], and circuit design problems [11]. When solving these problems,

pheromones are deposited by ants on nodes or links connecting the nodes in a construction

graph [2]. Here, the ants in the algorithm represent stochastic constructive procedures for

building solutions. The pheromone, used as a metaphor for an odorous chemical substance

that real ants deposit and smell while walking, has similar effects on biasing the ants’

selection of nodes in the algorithm. Each node represents a candidate component value,

which belongs to a finite set of discrete decision variables. Based on the pheromone values,

the ants in the algorithm probabilistically select the component values to construct solutions.

For continuous optimization, however, decision variables are defined in the continuous

domain and hence the number of possible candidate values would be infinite for ACO.

Therefore, how to utilize pheromones in the continuous domain for guiding ants’ solution

construction is an important problem to solve in extending ACO to continuous optimization.

According to the uses of the pheromones, there are three types of ant-based algorithms for

solving continuous optimization problems in the literature.

The first type does not use pheromones but use other forms of implicit or explicit

cooperation. For example, API [12] simulates the foraging behavior of Pachycondyla apicalis

ants, which use visual landmarks but not pheromones to memorize the positions and search

the neighborhood of the hunting sites.

The second type of ant-based algorithms places pheromones on the points in the search

space. Each point is in effect a complete solution, indicating a region for the ants to perform

 2

local neighborhood search. This type of ant-based algorithms generally hybridizes with other

algorithms for maintaining diversity. The continuous ACO (CACO) [13]-[15] is a

combination of the ants’ pheromone mechanism and a genetic algorithm. The continuous

interacting ant colony (CIAC) algorithm proposed by Dréo and Siarry [16] uses both

pheromone information and the ants’ direct communications to accelerate the diffusion of

information. The continuous orthogonal ant colony (COAC) algorithm proposed by Hu et al.

[17] adopts an orthogonal design method and a global pheromone modulation strategy to

enhance the search accuracy and efficiency. Other methods such as hybridizing a Nelder-

Mead simplex algorithm [18] and using a discrete encoding [19] have also been proposed.

Since pheromones are associated with the entire solutions instead of components in this type

of algorithms, no incremental solution construction is performed during the optimization

process.

The third type of algorithms follows the ACO framework, i.e., the ants in the algorithms

construct solutions incrementally biased by pheromones on components. Socha [20] extended

the traditional ACO for solving both continuous and mixed discrete-continuous optimization

problems. Socha and Dorigo [21] later improved their algorithm and referred the resultant

algorithm to ACOR, where an archive was used to preserve the k best solutions found thus far.

Each solution variable value in the archive is considered as the center of a Gaussian

probability density function (PDF). Pheromones in ACOR are implicit in the generation of

Gaussian PDFs. When constructing a solution, a new variable value is generated according to

the Gaussian distribution with a selected center and a computed variance. The fundamental

idea of ACOR is the shift from using a discrete probability distribution to using a continuous

PDF. The sampling behavior of ACOR is a kind of probabilistic sampling, which samples a

PDF [21]. Similar realizations of this type are also reported in [22]-[28].

Different from sampling a PDF, the SamACO algorithm proposed in this paper is based

 3

on the idea of sampling candidate values for each variable and selecting the values to form

solutions. The motivation for this work is that a solution of a continuous optimization

problem is in effect a combination of feasible variable values, which can be regarded as a

solution ‘path’ walked by an ant. The traditional ACO is good at selecting promising

candidate component values to form high-quality solutions. Without loss of the advantage of

the traditional ACO, a means to sample promising variable values from the continuous

domain and to use pheromones on the candidate variable values to guide the ants’ solution

construction is developed in SamACO.

A distinctive characteristic of SamACO is a novel sampling method for discretizing the

continuous search space and an efficient method for incremental solution construction based

on the sampled variable values. In SamACO, the sampling method possesses the feature of

balancing memory, exploration, and exploitation. By preserving variable values from the best

solutions constructed by the previous ants, promising variable values are inherited from the

last iteration. Diversity of the variable values is maintained by exploring a small number of

random variable values. High solution accuracy is achieved by exploiting new variable values

surrounding the best-so-far solution by a dynamic exploitation process. If a high-quality

solution is constructed by the ants, the corresponding variable values will receive additional

pheromones, so that the latter ants can be attracted to select the values again.

Differences between the framework of ACO in solving discrete optimization problems

and the proposed SamACO in solving continuous optimization problems will be detailed in

the next section. The performance of SamACO in solving continuous optimization problems

will be validated by testing benchmark numerical functions with unimodal and multimodal

features. The results are not only compared with the aforementioned ant-based algorithms,

but also with some representative computational intelligence algorithms, e.g., CLPSO [29],

FEP [30], and CMA-ES [31].

 4

The rest of the paper is organized as follows. Section II firstly presents the traditional

ACO framework for discrete optimization. The SamACO framework is then introduced in a

more general way. Section III describes the implementation of the proposed SamACO

algorithm for continuous optimization. Parameter analysis of the proposed algorithm is made

in Section IV. Numerical experimental results are presented in Section V for analyzing the

performance of the proposed algorithm. Conclusions are drawn in Section VI.

II. ACO Framework for Discrete and Continuous Optimization

A. Traditional ACO Framework for Discrete Optimization

Before introducing the traditional ACO framework, a discrete minimization problem is

firstly defined as in [2][21].

Definition 1: A discrete minimization problem Π is denoted as),,(ΩfS , where

 S is the search space defined over a finite set of discrete decision variables (solution

components) Xi with values },...,,{ |)(|)2()1()(i
iiii

j
i xxxx DD =∈ , ni ,...,2,1= , n being the

number of decision variables.

 ℜ→Sf : is the objective function. Each candidate solution S∈x has an objective

function value)(xf . The minimization problem is to search for a solution S∈*x

that satisfies)(*)(xx ff ≤ , S∈∀x .

 Ω is the set of constraints that the solutions in S must satisfy.

The most significant characteristic of ACO is the use of pheromones and the incremental

solution construction [2]. The basic framework of the traditional ACO for discrete

optimization is shown in Fig. 1. Besides the initialization step, the traditional ACO comprises

the ant’s solution construction, an optional local search, and the pheromone update. The three

processes iterate until the termination condition is satisfied.

When solving discrete optimization problems, solution component values or the links

 5

between the values are associated with pheromones. If component values are associated with

pheromones, a component-pheromone matrix M can be generated. The pheromone value

)(j
iτ reflects the desirability for adding the component value)(j

ix to the solution,

ni ,...,2,1= , ||,...,2,1 ij D= .

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

},{},{},{

},{},{},{
},{},{},{

|)(||)(||)(|
2

|)(|
2

|)(|
1

|)(|
1

)2()2()2(
2

)2(
2

)2(
1

)2(
1

)1()1()1(
2

)1(
2

)1(
1

)1(
1

2211 nn
nn

nn

nn

xxx

xxx
xxx

DDDDDD

M

τττ

τττ
τττ

L

MOMM

L

L

 (1)

If the links between the values are associated with pheromones, each ><)()(, l
u

j
i xx

tuple will be assigned a pheromone value),(
,

lj
uiτ , ||,...,2,1 ij D= , ||,...,2,1 ul D= ,

nui ,...,2,1, = , ui ≠ . Since the treatment of placing pheromones on links or components is

similar, the rest of this paper will focus on the case where pheromones are on components.

As the number of component values is finite in discrete optimization problems,

pheromone update can be applied directly to the)(j
iτ in (1) for increasing or reducing the

attractions of the corresponding component values to the ants. The realization of the

pheromone update process is the main distinction among different ACO variants in the

literature, such as ant system (AS) [3], rank-based ant system (ASrank) [32], Max-Min ant

system (MMAS) [33], and ant colony system (ACS) [4].

B. Extended ACO Framework for Continuous Optimization

 Different from discrete optimization problems, a continuous optimization problem is

defined as follows [2][21].

Definition 2: A continuous minimization problem Π is denoted as),,(ΩfS , where

 S is the search space defined over a finite set of continuous decision variables (solution

components) Xi, ni ,...,2,1= , with values],[iii ulx ∈ , li and ui representing the lower

 6

and upper bounds of the decision variable Xi respectively.

 The definitions of f and Ω are the same as in Definition 1.

The difference from the discrete optimization problem is that in continuous optimization

for ACO the decision variables are defined in the continuous domain. Therefore, the

traditional ACO framework needs to be duly modified.

In the literature, researchers such as Socha and Dorigo [21] proposed a method termed

ACOR to shift the discrete probability distribution in discrete optimization to a continuous

probability distribution for solving the continuous optimization problem, using probabilistic

sampling. When an ant in ACOR constructs a solution, a Gram-Schmidt process is used for

each variable to handle variable correlation. However, the calculation of the Gram-Schmidt

process for each variable leads to a significantly higher computational demand. When the

dimension of the objective function increases, the time used by ACOR also increases rapidly.

Moreover, although the correlation between different decision variables is handled, the

algorithm may still converge to local optima, particularly when the values in the archive are

very close to each other.

However, if a finite number of variable values are sampled from the continuous domain,

the traditional ACO algorithms for discrete optimization can be used. This forms the basic

idea of the SamACO framework proposed in this paper. The key for successful optimization

now becomes how to sample promising variable values and use them to construct

high-quality solutions.

III. The Proposed SamACO Algorithm for Continuous Optimization

This section presents the detailed implementation of the proposed SamACO algorithm

for continuous optimization. The success of SamACO in solving continuous optimization

problems depends on an effective variable sampling method and an efficient solution

 7

construction process. The variable sampling method in SamACO maintains promising

variable values for the ants to select, including variable values selected by the previous ants,

diverse variable values for avoiding trapping, and variable values with high-accuracy. The

ants’ construction process selects promising variable values to form high-quality solutions by

taking advantage of the traditional ACO method in selecting discrete components.

The SamACO framework for continuous optimization is shown in Fig. 2. Each decision

variable Xi has ki sampled values)()2()1(,...,, ik
iii xxx from the continuous domain],[ii ul ,

i=1,2,…,n. The sampled discrete variable values are then used for optimization by a

traditional ACO process as in solving discrete optimization problems (DOPs). Fig. 3

illustrates the flowchart of the algorithm. The overall pseudocode of the proposed SamACO

is shown in the Appendix I.

A. Generation of the Candidate Variable Values

The generation processes of the candidate variable values in the initialization step and in

the optimization iterations are different. Initially, the candidate variable values are randomly

sampled in the feasible domain as

)1()()(j
i

ii
i

j
i randj

m
lu

lx +−
+
−

+=
ϑ

 (2)

where)(ϑ+m is the initial number of candidate values for each variable i,)(j
irand is a

uniform random number in [0,1], ni ,...,2,1= , ϑ+= mj ,...,2,1 .

During the optimization iterations, candidate variable values have four sources, i.e., the

variable values selected by ants in the previous iteration, a dynamic exploitation, a random

exploration, and a best-so-far solution. In each iteration, m ants construct m solutions,

resulting in m candidate values for each variable for the next iteration. The best-so-far

solution is then updated, representing the best solution that has ever been found. The dynamic

 8

exploitation is applied to the best-so-far solution, resulting in gi new candidate variable

values near the corresponding variable values of the best-so-far solution for each variable Xi.

Furthermore, a random exploration process generates Θ new values for each variable by

discarding the worst Θ solutions that are constructed by the ants in the previous iterations.

Suppose the worst Θ solutions are denoted by)()2()1(,...,, mmm xxx +Θ−+Θ− . The new

variable values for the solution)(jx are randomly generated as

)()()(j
iiii

j
i randlulx ⋅−+= (3)

where ni ,...,2,1= , mmj ,...,1+Θ−= . New values thus can be imported in the value group.

To summarize, the composition of the candidate variable values for the ants to select is

illustrated in Fig. 4. There are totally)1(++ igm candidate values for each variable Xi.

B. Dynamic Exploitation Process

The dynamic exploitation proposed in this paper is effective for introducing fine-tuned

variable values into the variable value group. We use a radius ri to confine the neighborhood

exploitation of the variable value xi, ni ,...,2,1= .

The dynamic exploitation is applied to the best-so-far solution),...,,()0()0(
2

)0(
1

)0(
nxxx=x ,

aiming at searching the vicinity of the variable value)0(
ix in the interval

],[)0()0(
iiii rxrx +− , ni ,...,2,1= . The values of the variables in the best-so-far solution are

randomly selected to be increased, unchanged, or reduced as

⎪
⎩

⎪
⎨

⎧

<≤⋅−
<≤

<≤⋅+
=

13/2),,max(
3/23/1,

3/10),,min(
ˆ

)0(

)0(

)0(

qlrx
qx

qurx
x

iiii

i

iiii

i

σ

σ
 (4)

where]1,0(∈iσ and)1,0[∈q are uniform random values, ni ,...,2,1= . Then the resulting

solution)ˆ,...,ˆ,ˆ(ˆ 21 nxxx=x is evaluated. If the new solution is no worse than the recorded

 9

best-so-far solution, we replace the best-so-far solution with the new solution. The above

exploitation repeats for ϑ times. The new variable values that are generated by increasing

or reducing a random step length are recorded as)(j
ix , igmmmj +++= ,...,2,1 ,

ni ,...,2,1= , where ig counts the number of new variable values in the dynamic exploitation

process.

In each iteration, the radiuses adaptively change based on the exploitation result. If the

best exploitation solution is no worse than the original best-so-far solution (Case 1), the

radiuses will be extended. Otherwise (Case 2), the radiuses will be reduced.

⎩
⎨
⎧

⋅
⋅

←
2 Case,
 1 Case,

r

e

vr
vr

r
i

i
i (5)

where ev (1e ≥v) is the radius extension rate, rv (10 r ≤< v) is the radius reduction rate.

The initial radius value is set as)2/()(mlur iii −= , ni ,...,2,1= . The extension of the

radiuses can import values in a distance further away from the original value, whereas the

reduction of the radiuses can generate values with high accuracy near to the original value.

The extension and reduction of radiuses aim at introducing values with different accuracy

levels according to the optimization situation.

C. Ants’ Solution Construction

After the candidate variable values are determined, m ants are dispatched to construct

solutions. Each candidate variable value is associated with pheromones, which bias the ants’

selection for solution construction. The index)(k
il of the variable value selected by ant k for

the ith variable is

⎩
⎨
⎧ <

=
otherwise,
if},,...,,max{arg

)(
0

)()2()1(
)(

k
i

m
iiik

i L
qql τττ (6)

where q is a uniform random value in [0,1), ni ,...,2,1= , mk ,...,2,1= . The parameter

 10

)1,0[0 ∈q controls whether an ant will choose the variable value with the highest pheromone

from the m solutions generated in the previous iteration, or randomly choose an index

},...,1,0{)(
i

k
i gmL +∈ according to the probability distribution given in (7).

∑ +

=

=
igm

u
u

i

j
ij

ip
0

)(

)(
)(

τ

τ
, igmj += ,...,1,0 (7)

The constructed solution of ant k is denoted),...,,()()(
2

)(
1

)()()(
2

)(
1

k
n

kk l
n

llk xxx=x . An illustration of

two ants constructing solutions is shown in Fig. 5. The variable values that are selected by

each ant form a solution ‘path’. Pheromones will then be adjusted according to the quality of

these solution paths.

D. Pheromone Update

Initially, each candidate variable value is assigned an initial pheromone value T0. After

evaluating the m solutions constructed by ants, the solutions are sorted by their objective

function values in an order from the best to the worst. Suppose the sorted solutions are

arranged as)()2()1(,...,, mxxx . The pheromones on the selected variable values are

evaporated as

min
)()()1(Tj

i
j

i ⋅+⋅−← ρτρτ (8)

where 10 << ρ is the pheromone evaporation rate, and minT is the predefined minimum

pheromone value, ni ,...,2,1= , mj ,...,2,1= .

The variable values in the best Ψ solutions have their pheromones reinforced as

max
)()()1(Tj

i
j

i ⋅+⋅−← ατατ (9)

where 10 <<α is the pheromone reinforcement rate, and maxT is the predefined maximum

pheromone value, ni ,...,2,1= , Ψ= ,...,2,1j , Ψ being the number of the high-quality

 11

solutions which receive additional pheromones on the variable values. The pheromones on

the variable values that are generated by the exploration process and the dynamic exploitation

process are assigned as T0. In each iteration, pheromone values on the variable values of the

best-so-far solution are assigned equal to the pheromone values on the iteration best solution.

IV. Parameter Study of SamACO

It can be seen that the proposed SamACO involves several parameters. In this section,

we will investigate the effects of these parameters on the proposed algorithm.

A. Effects of the Parameters in SamACO

1) Discarding Number Θ

The discarding number 1≥Θ is used for maintaining diversity in the candidate variable

values. In each iteration, the random exploration process replaces the Θ worst solutions

constructed by ants. The more solutions are replaced, the higher diversity in the candidate

variable values is. Diversity is important for avoiding stagnation, but a high discarding rate

can slow down the convergence speed.

2) Elitist Number Ψ

Different from the discarding number Θ , the elitist number Ψ determines the best

solutions constructed by ants to receive additional pheromones. The variable values with

extra pheromone deposits have higher chances to be selected by ants. Therefore, the elitist

number Ψ helps preserve promising variable values and accelerate the convergence speed.

Both of the parameters Θ and Ψ cannot be set too large. In fact, a small discarding

number and a small elitist number are sufficient, because their effects accumulate in

iterations.

3) Traditional Parameters in ACO

Similar to the ACS [4], parameters of SamACO to simulate the ants’ construction

 12

behavior include the number of ants m, parameter q0, pheromone evaporation rate ρ ,

pheromone reinforcement rate α , initial pheromone value 0T , and lower and upper limits of

pheromone values minT and maxT . In the literature, a great deal of work has been carried out

on the parametric study for ACO, such as [4][34]-[37]. In the next subsection, we will use

experiments to find suitable settings for these parameters.

4) Parameters in Dynamic Exploitation

The parameters in the dynamic exploitation includes the exploitation frequency ϑ , the

radius reduction and extension rates rv and ev . The exploitation frequency ϑ controls the

number of values to be sampled in the neighborhood of the best-so-far solution per iteration.

Since each candidate variable value group is mainly composed of m variable values that are

selected by the previous ants and the variable values from the local exploitation, the value of

ϑ influences the selection probabilities of the m variable values. Furthermore, a large ϑ

provides more candidate variable values surrounding the neighborhood of the best-so-far

solution, but it may induce premature convergence. On the contrary, a small ϑ may not

sample enough local variable values and thus the speed to approach the local optimum is slow.

On the other hand, the radius reduction and extension rates rv and ev adapt the

exploitation neighborhood range according to the solution quality. Because the radius

extension is a reversal operation of the radius reduction, we set re /1 vv = in this paper.

B. Numerical Analysis on Parameter Settings

Some of the SamACO parameters have their default settings. They are set as

1.00min == TT , 0.1max =T , 1=Θ , and 1=Ψ . There is generally no need to change these

values. However, the performance of the proposed algorithm is more sensitive to other

parameters.

 13

According to our prior experiments on a set of unimodal and multimodal functions (listed

in Appendix II) with n=30, the parameters 20=m , 20=ϑ , 5.0=ρ , 3.0=α , 1.00 =q ,

7.0r =v are used for comparing the performance of SamACO with other algorithms. In the

remainder of this section, we undertake a numerical experiment on f6 (the shifted Schwefel’s

problem 1.2) for discussing the influence of these parameters. The algorithm terminates when

the number of function evaluations (FEs) reaches 300000. Each parameter setting is tested for

25 times independently.

1) Correlations Between Ant Number m and Exploitation Frequency ϑ

The correlations between m=1,4,8,12,…,40 and ϑ =0,1,2,3,4,8,12,…,40 have been tested

by fixing the values of the other parameters. Fig. 6 shows a contour graph representing the

average number of FEs used for achieving an accuracy level smaller than

1)()(* =−= xx ffε , where)(xf and)(*xf denote the solution value and the optimal

solution value respectively. The smaller the number of FEs used, the better the performance

of the proposed algorithm. It can be observed in Fig. 6 that SamACO is more sensitive in m

than in ϑ . When the value of ϑ is fixed, a larger m consumes more FEs. Furthermore,

when ϑ =0 and 1 (not shown in Fig. 6), SamACO cannot achieve any satisfactory results

within the maximum number of FEs (300000) using any value of m. Therefore, sufficient

amount of dynamic exploitation is crucial to achieving solutions with high accuracy.

2) Radius Reduction Rate rv

The values of rv =0,0.1,0.2,…,1 have been tested, with the other parameter values fixed.

Fig. 7(a) illustrates a curve representing the average number of FEs used with different values

of rv on f6. The curve shows a significant decreasing trend when rv increases from 0 to 1.

When rv =0.7, the average number of FEs used is minimized. With a larger value of rv , the

reduction speed of radiuses is slower so that promising variable values is not so easy to be

 14

omitted when exploiting the neighborhood. When rv =0 (0e =v), the neighborhood radius is

0. When 1er == vv , the neighborhood radius is fixed as the initial value, which is too large

to obtain solutions within the predefined accuracy level. In the above two cases SamACO

cannot find satisfactory solutions.

3) Traditional ACO Parameters αρ ,,0q

The values of 0, 0.1, 0.2,…, 1 have been assigned to αρ ,,0q respectively for

analyzing their influence to SamACO. The curves showing the average number of FEs used

with different values of αρ ,,0q are given in Figs. 7(b)-(d). It can be observed in Fig. 7(b)

that an inclination for selecting the variable value having the largest pheromone from the m

variable values (as in (6)) is beneficial, because SamACO uses smaller numbers of FEs when

0q =0.2 and 0.1 than that of 0q =0. However, the value of q0 cannot be too large. Otherwise,

the algorithm traps in local optima and needs a long time to jump out. From Figs. 7(c) and

7(d), the curves of ρ and α show similar trends. The algorithm has unsatisfactory

performance when 0=ρ or 0=α , in which case local or global pheromone update does

not take any effect. Therefore, pheromone updates are quite useful for the optimization

process. To facilitate practical applications of SamACO to various problems, Table I lists the

domains and default settings (denoted by DS) of the parameters (P) and concludes the

sensitivity of SamACO based on the default settings.

V. Numerical Experiments

A. Experimental Setup

Sixteen benchmark numerical functions have been tested in this paper to validate the

performance of the proposed SamACO. Appendix II lists these functions chosen from the

literature [30][40]. Among them, functions f1 to f9 are unimodal, whereas f10 to f16 are

 15

multimodal.

Three types of algorithms are used for comparing the performance of SamACO. The first

type includes the ant-based algorithms such as CACO [15], COAC [17], and ACOR [21]. The

second type consists of the other well-known swarm intelligence algorithm as ACO, that is,

particle swarm optimization (PSO) [29][38][39]. Different from ACO, PSO was originally

developed for continuous optimization. An improved variant of PSO – the comprehensive

learning particle swarm optimization (CLPSO) [29] is applied. The third type consists of

representative algorithms that use an explicit probability-learning notion. In general, most

computational intelligence algorithms have implicit or explicit probabilistic models that guide

the optimization process. ACO uses pheromones as explicit guidance. Besides, algorithms

such as evolutionary programming and evolution strategy also learn from explicit

probabilistic models for generating new solutions. Here we use the fast evolutionary

programming (FEP) [30] and the evolution strategy with covariance matrix adaptation

(CMA-ES) [31] as representatives of the probability-learning algorithms.

Except for CMA-ES, algorithms in comparison with SamACO are programmed in C,

according to the source code provided by the authors and the descriptions given in the

references. The CMA-ES is programmed in MATLAB1. Parameters of the algorithms are set

as the recommended values according to the references. Notice that all of the algorithms

terminate when the number of FEs reaches 300000. Each function is tested for 25 times

independently.

B. Results and Comparisons

1) Comparison With Other Ant-Based Algorithms

Table II tabulates the mean error values)()(*xx ff − and the corresponding standard

1 The MATLAB code used, cmaes.m, Version 2.35, is available at
http://www.bionik.tu-berlin.de/user/niko/formersoftwareversions.html

 16

deviations (St. dev) on f1 - f16 for SamACO, CACO, COAC, and ACOR when n=30. A t-test is

made based on the error values of 25 independent runs for showing whether SamACO is

significantly better or worse than the other algorithms. If the same zero error values are

obtained for the compared algorithms (i.e., f1), the numbers of FEs that are required for

achieving the zero error values are used by the t-test. A score 1, 0, or -1 is added when

SamACO is significantly better than (b†), indifferent to (i), or significantly worse than (w‡)

the compared algorithm for each function. In the table, the total scores corresponding to the

other ant-based algorithms are all positive, meaning that the performance of SamACO is

generally better than those algorithms.

Table III shows the average number of FEs that are required to achieve accuracy levels

smaller than 11 =ε and 6
2 10−=ε . The symbol × denotes that the results cannot reach the

predefined accuracy level ε within maximum 300000 FEs, whereas ‘%ok’ stands for the

successful percentage over 25 independent runs. Only are successful runs used for calculating

the average number of FEs and only are the functions that can be successfully solved by

SamACO presented in the Table. It can be observed that the proposed SamACO performs the

best among the four algorithms. SamACO not only has higher successful percentages than the

other ant-based algorithms, but also uses a relatively small number of FEs to achieve

solutions within the predefined accuracy levels. For example, when solving f2 (the shifted

Schwefel’s P2.21), SamACO can find solutions within accuracy levels 1 and 10-6 in all runs.

However, CACO, COAC, and ACOR can only obtain solutions within the accuracy level 1 or

10-6 successfully in some runs.

2) Comparison With CLPSO and Probability-Learning Algorithms

The scores in Table II show that SamACO generally performs better than CLPSO on the

test functions. According to Table III, the average numbers of FEs used by SamACO are

 17

much smaller than those by CLPSO. Furthermore, SamACO can find satisfactory solutions in

more test functions than CLPSO.

On the other hand, CMA-ES achieves the smallest t-test total scores among the

compared algorithms presented in Table II. However, CMA-ES has unsatisfactory

performance on functions such as f10, f11, f15, f16. The second place is SamACO, because the

other algorithms have positive total scores, meaning that they are not better than SamACO.

Table III shows that FEP generally needs more FEs to obtain satisfactory results. CMA-ES

can obtain high-quality solutions very fast for most of the test functions.

Fig. 8 illustrates the convergence curves of SamACO and the compared algorithms. It

can be seen that SamACO finds solutions with high accuracy very fast for the functions.

3) Analysis on the Computational Complexity of Algorithms

Following the methods in [40], the computational complexity of the algorithms

discussed in this paper is computed as in Table IV. Computations of T0, T1, and 2T̂ can be

referred in [40]. The values of T1 and 2T̂ are obtain on f7 at n = 30 after 200000 FEs. All of

the time values are measured in CPU seconds. The results of SamACO, CACO, COAC,

ACOR, CLPSO, and FEP are obtained on a PC with CPU DualCore 2.0 GHz, RAM 1G,

Platform: Visual C++ 6.0. The results of CMA-ES are obtained on CPU Dual 2.0 GHz, RAM

1G, Platform: MATLAB 7.1.0.

By using the Gram-Schmidt process, which is a computationally-heavy operation, the

computational complexity of ACOR is much larger than the other algorithms. In addition,

algorithms that use complex distribution models (such as FEP and CMA-ES) generally

require a longer computation time. The computational complexity of SamACO is modest,

with a complexity value smaller than 3.

 18

VI. Conclusion

An algorithm termed SamACO has been proposed for solving continuous optimization

problems in this paper. It demonstrates that after determining candidate variable values, the

optimization procedure of ACO in solving discrete optimization problems is in effect a

sub-process in solving continuous optimization problems. Therefore, a way to sample

promising variable values in the continuous domain and to use pheromones to guide ants’

construction behavior has been developed in SamACO to extend ACO to continuous

optimization. It is shown that SamACO can also be applied to both discrete optimization

problems and mixed discrete-continuous optimization problems. The novelties and

characteristics of SamACO are:

1) A new framework for ACO: The SamACO framework extends ACO to continuous

optimization, using an effective sampling method to discretize the continuous space, so

that the traditional ACO operations for selecting discrete components can be used

compatibly.

2) A new sampling method for discretizing the continuous search space: The sampling

method aims at balancing memory of previous ants, exploration for new variable values,

and exploitation for variable values with high accuracy.

3) Efficient incremental solution construction based on the sampled variable values: Each

ant in SamACO constructs solutions incrementally by selecting values from the sampled

variable values.

Some state-of-the-art algorithms have been used for comparing the performance with the

SamACO algorithm. They include ant-based algorithms for continuous optimization, swarm

intelligence algorithms, and representative probability-learning algorithms. The experimental

results show that the SamACO algorithm can deliver good performance for both unimodal

and multimodal problems.

 19

Appendix I

The SamACO Algorithm

1) /* Initialization */

Initialize parameter values as in Table I.

For i := 1 to n do /* For each variable */

)2/()(: mlur iii −= /* Set the initial radius value */

 ϑ+= mgi : /* Set the number of candidate variable value for selection */

 For j := 1 to)(ϑ+m do

 Randomly sample variable values according to (2)

 0
)(: Tj

i =τ /* Assign the initial pheromone value */

 End-for

End-for

For j := 1 to)(ϑ+m do

 Evaluate the jth solution according to the objective function

End-for

Sort the m solutions from the best to the worst

Record the best-so-far solution },...,,{)0()0(
2

)0(
1 nxxx and assign each variable i 0

)0(: Ti =τ

Perform ant’s solution construction as the following Step 3)

Perform pheromone update as the following Step 4)

2) /* Generation of the candidate variable values */

/* Perform a dynamic exploitation process to the best-so-far solution */

For i := 1 to n do 1:=ig End-for

flag := False /* Indicate whether exploitation can find a better solution */

For k := 1 to ϑ do /* Repeat for ϑ times */

 For i := 1 to n do /* For each variable */

 Generate a value ix̂ according to (4)

 If (13/2or3/10 <≤<≤ qq)

 i
gm

i xx i ˆ:)(=+ /* Record the new variable value */

 0
)(: Tigm

i =+τ /* Assign the initial pheromone value */

 1: += ii gg /* Counter adds 1 */

 End-if

 End-for

 Evaluate the solution }ˆ,...,ˆ,ˆ{ 21 nxxx according to the objective function

 If the resulting solution is no worse than the best-so-far solution

 20

 For i := 1 to n do ii xx ˆ:)0(= End-for /* Update the best-so-far solution */

 flag := True

 End-if

End-for

If flag = True

 For i := 1 to n do e: vrr ii ⋅= End-for

Else

 For i := 1 to n do r: vrr ii ⋅= End-for

End-if

/* Perform a random exploration process to the worst solutions*/

For j := 1+Θ−m to m do

 For i := 1 to n do

)()()(: j
iiii

j
i randlulx ⋅−+=

 0
)(: Tj

i =τ

 End-for

End-for

3) /* Ants’ solution construction */

For i := 1 to n do

 For k := 1 to m do

 Ant k selects the index)(k
il according to (6) and (7)

)()()(

:~ k
il

i
k

i xx = /* Record the selected variable value */

)()()(

:~ k
il

i
k

i ττ = /* Record the corresponding pheromone value */

 End-for

End-for

For k := 1 to m do

 For i := 1 to n do

)()(~: k
i

k
i xx = /* Update the constructed solutions */

)()(~: k
i

k
i ττ =

 End-for

 Evaluate the kth solution according to the objective function

End-for

4) /* Pheromone update */

Sort the m solutions from the best to the worst

Update the best-so-far solution

 21

Perform pheromone evaporation to the m solutions according to (8)

Perform pheromone reinforcement to the best Ψ solutions according to (9)

For i := 1 to n do)1()0(: ii ττ = End-for

5) If (Termination_condition = True)

 Output the best solution

Else goto Step 2)

End-if

Appendix II

Benchmark Functions

The test functions used for experiments include the first ten functions for CEC 2005

Special Session on real-parameter optimization [40], as f5 - f9 and f12 - f16 in this paper, and

functions from [30] by adding a shifted offset o = (0,1,2,…,n-1), as f1 - f4 and f10 - f11. The

shifted variable vectors and bounds for f1 - f4 and f10 - f11 are defined as xnew = x - o, lnew = l +

o, unew = u + o, where x, l, u are variable vectors, lower bound, and upper bound defined in

[30], xnew, lnew, unew are the corresponding shifted vectors. The test functions are as follows.

f1: Shifted Step

f2: Shifted Schwefel’s P2.21

f3: Shifted Schwefel’s P2.22

f4: Shifted Quartic with Noise

f5: Shifted Sphere

f6: Shifted Schwefel’s P1.2

f7: Shifted Rotated High Conditioned Elliptic

f8: Shifted Schwefel’s P1.2 with Noise

f9: Schwefel’s P2.6 with Global Optimum on Bounds

f10: Shifted Schwefel’s P2.26

f11: Shifted Ackley

f12: Shifted Rosenbrock

f13: Shifted Rotated Griewank’s without Bounds

f14: Shifted Rotated Ackley’s Function with Global Optimum on Bounds

f15: Shifted Rastrigin

f16: Shifted Rotated Rastrigin

 22

Acknowledgment

The authors would like to thank Dr. M. Dorigo, Dr. K. Socha, Dr. P. N. Suganthan, Dr. X.

Yao, and Dr. N. Hansen for letting us use their source codes for the benchmark functions. The

authors would also like to thank the anonymous associate editor and the referees for their

valuable comments to improve the quality of this paper. Jun Zhang is the corresponding

author and can be contacted at: junzhang@ieee.org.

References

[1] M. Dorigo, G. D. Caro, and L. M. Gambardella, “Ant algorithms for discrete

optimization,” Artificial Life, vol. 5, no. 2, pp. 137-172, 1999.

[2] M. Dorigo and T. Stützle, Ant Colony Optimization. Cambridge, MA: MIT Press, 2004.

[3] M. Dorigo, V. Maniezzo, and A. Colorni, “Ant system: optimization by a colony of

cooperating agents,” IEEE Trans. Syst. Man Cybern. B, Cybern., vol. 26, no. 1, pp. 29-41,

Feb. 1996.

[4] M. Dorigo and L. M. Gambardella, “Ant colony system: a cooperative learning approach

to the traveling salesman problem,” IEEE Trans. Evol. Comput., vol. 1, no. 1, pp. 53-66,

April 1997.

[5] G. Leguizamón and Z. Michalewicz, “A new version of ant system for subset problems,”

In Proc. of IEEE Congress on Evolutionary Computation (CEC’99), pp. 1459-1464,

Piscataway, 1999.

[6] K. M. Sim and W. H. Sun, “Ant colony optimization for routing and load-balancing:

survey and new directions,” Trans. Syst. Man Cybern. A., Syst. Humans, vol. 33, pp.

560-572, Sept. 2003.

[7] S. S. Iyengar, H.-C. Wu, N. Balakrishnan, and S. Y. Chang, “Biologically inspired

cooperative routing for wireless mobile sensor networks,” IEEE Syst. J., vol. 1, no.1, pp.

 23

29-37, Sept. 2007.

[8] W.-N. Chen and J. Zhang, “An ant colony optimization approach to a grid workflow

scheduling problem with various QoS requirements,” IEEE Trans. Syst. Man Cybern. C,

Appl. Rev., vol. 39, no. 1, pp. 29-43, Jan. 2009.

[9] D. Merkle, M. Middendorf, and H. Schmeck, “Ant colony optimization for

resource-constrained project scheduling,” IEEE Trans. Evol. Comput., vol. 6, no.4, pp.

333-346, Aug. 2002.

[10] G. Wang, W. Gong, B. DeRenzi, and R. Kastner, “Ant colony optimizations for resource-

and timing-constrained operation scheduling,” IEEE Trans. Comput.-Aided Des. Integr.

Circuits Syst., vol. 26, no. 6, pp. 1010-1029, June 2007.

[11] J. Zhang, H. S.-H. Chung, A. W.-L. Lo, and T. Huang, “Extended ant colony optimization

algorithm for power electronic circuit design,” IEEE Trans. Power Electron., vol. 24, no.

1, pp. 147-162, Jan. 2009.

[12] N. Monmarché, G. Venturini, and M. Slimane, “On how pachycondyla apicalis ants

suggest a new search algorithm,” Future Generation Computer Systems, vol. 16, pp.

937-946, 2000.

[13] G. Bilchev, and I. C. Parmee, “The ant colony metaphor for searching continuous design

spaces,” In Proc. of AISB Workshop on Evolutionary Computation, LNCS 933, University

of Sheffield, UK, Springer-Verlag, Berlin, Germany, pp.25-39, 1995.

[14] M. Wodrich and G. Bilchev, “Cooperative distributed search: the ant’s way,” Control and

Cybernetics, vol. 3, pp. 413-446, 1997.

[15] M. Mathur, S. B. Karale, S. Priye, V. K. Jayaraman, and B. D. Kulkarni, “Ant colony

approach to continuous function optimization,” Ind. Eng. Chem. Res., vol. 39, pp.

3814-3822, 2000.

[16] J. Dréo and P. Siarry, “Continuous interacting ant colony algorithm based on dense

 24

heterarchy,” Future Generation Computer Systems, vol. 20, pp. 841-856, 2004.

[17] X.-M. Hu, J. Zhang, and Y. Li, “Orthogonal methods based ant colony search for solving

continuous optimization problems,” Journal of Computer Science and Technology, vol.

23, no. 1, pp. 2-18, Jan. 2008.

[18] J. Dréo and P. Siarry, “An ant colony algorithm aimed at dynamic continuous

optimization,” Applied Mathematics and Computation, vol. 181, pp. 457-467, 2006.

[19] H. Huang and Z. Hao, “ACO for continuous optimization based on discrete encoding,”

M. Dorigo et al. (Eds.), ANTS 2006, LNCS 4150, Springer, Berlin, pp. 504-505, 2006.

[20] K. Socha, “ACO for continuous and mixed-variable optimization,” M. Dorigo et al.

(Eds.), ANTS 2004, LNCS 3172, Springer, Berlin, pp. 25-36, 2004.

[21] K. Socha and M. Dorigo, “Ant colony optimization for continuous domains,” European

Journal of Operational Research, vol. 185, pp. 1155-1173, 2008.

[22] P. Korošec and J. Šilc, “High-dimensional real-parameter optimization using the

differential ant-stigmergy algorithm,” International Journal of Intelligent Computing and

Cybernetics, vol. 2, no. 1, pp. 34-51, 2009.

[23] M. Kong and P. Tian, “A direct application of ant colony optimization to function

optimization problem in continuous Domain,” M. Dorigo et al. (Eds.), ANTS 2006, LNCS

4150, Springer, Berlin, pp. 324-331, 2006.

[24] P. Korošec, J. Šilc, K. Oblak, and F. Kosel, “The differential ant-stigmergy algorithm: an

experimental evaluation and a real-world application,” In Proc. of IEEE Congress on

Evolutionary Computation (CEC’07), Singapore, pp. 157-164, 2007.

[25] P. Korošec and J. Šilc, “The differential ant-stigmergy algorithm for large scale

real-parameter optimization,” M. Dorigo et al. (Eds.), ANTS 2008, LNCS 5217, Springer,

Berlin, pp. 413-414, 2008.

[26] S. Tsutsui, “An enhanced aggregation pheromone system for real-parameter optimization

 25

in the ACO metaphor,” M. Dorigo et al. (Eds.), ANTS 2006, LNCS 4150, Springer, Berlin,

pp. 60-71, 2006.

[27] F. O. de França, G. P. Coelho, F. J. V. Zuben, and R. R. de F. Attux, “Multivariate ant

colony optimization in continuous search spaces,” In Proc. of GECCO’08, Atlanta,

Georgia, USA, pp. 9-16, 2008.

[28] S. H. Pourtakdoust and H. Nobahari, “An extension of ant colony system to continuous

optimization problems,” M. Dorigo et al. (Eds.), ANTS 2004, LNCS 3172, Springer,

Berlin, pp. 294-301, 2004.

[29] J. J. Liang, A. K. Qin, P. N. Suganthan, and S. Baskar, “Comprehensive learning particle

swarm optimizer for global optimization of multimodal functions,” IEEE Trans. Evol.

Comput., vol. 10, no. 3, pp. 281-295, June 2006.

[30] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE Trans. Evol.

Comput., vol. 3, no. 2, pp. 82-102, July 1999.

[31] A. Auger and N. Hansen, “Performance evaluation of an advanced local search

evolutionary algorithm,” In Proc. of IEEE Congress on Evolutionary Computation

(CEC’05), vol. 2, pp. 1777-1784, 2005.

[32] B. Bullnheimer, R. F. Hartl, and C. Strauss, “A new rank based version of the ant system

-- a computational study,” Central European Journal for Operations Research and

Economics, vol. 7, no. 1, pp. 25-38, 1997.

[33] T. Stützle and H. H. Hoos, “MAX-MIN ant system,” Future Generation Computer

Systems, vol. 16, no. 8, pp. 889-914, 2000.

[34] A. C. Zecchin, A. R. Simpson, H. R. Maier, and J. B. Nixon, “Parametric study for an ant

algorithm applied to water distribution system optimization,” IEEE Trans. Evol. Comput.,

vol. 9, no. 2, pp. 175-191, April 2005.

[35] M. Guntsch and M. Middendorf, “Pheromone modification strategies for ant algorithms

 26

applied to dynamic TSP,” E.J.W Boers et al. (Eds.), EvoWorkshop 2001, LNCS 2037, pp.

213-222, 2001.

[36] P. Pellegrini, D. Favaretto, and E. Moretti, “On MAX-MIN ant system’s parameters,” M.

Dorigo et al. (Eds.), ANTS 2006, LNCS 4150, Springer, Berlin, pp. 203-214, 2006.

[37] M. L. Pilat and T. White, “Using genetic algorithms to optimize ACS-TSP,” M. Dorigo et

al. (Eds.), ANTS 2002, LNCS 2463, Springer, Berlin, pp. 282-283, 2002.

[38] J. Kennedy, R. C. Eberhart, and Y. Shi, Swarm Intelligence, Morgan Kaufmann, San

Mateo, CA, 2001.

[39] M. Clerc and J. Kennedy, “The particle swarm – explosion, stability, and convergence in

a multidimensional complex space,” IEEE Trans. Evol. Comput., vol. 6, no. 1, pp. 58-73,

Feb. 2002.

[40] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A. Auger, and S. Tiwari,

“Problem Definitions and Evaluation Criteria for the CEC 2005 Special Session on

Real-Parameter Optimization,” Nanyang Technol. Univ., Singapore, IIT Kanpur, India,

KanGAL Rep. 2005005, May 2005.

 27

Footnote

Manuscript received ... This work was supported in part by the National Natural Science

Foundation of China Joint Fund with Guangdong under Key Project U0835002, by the

National High-Technology Research and Development Program (“863” Program) of China

No. 2009AA01Z208, by the National Science Foundation of China under Project 60975080,

by the Sun Yat-Sen Innovative Talents Cultivation Program for Excellent Tutors No.

35000-3126202, and by the Cultivation Fund of the Key Scientific and Technical Innovation

Project of the Ministry of Education of China under Grant 706045.

*X.-M. Hu and J. Zhang are with the Department of Computer Science, Sun Yat-Sen

University, Guangzhou, 510275, China and also with the Key Laboratory of Digital Life (Sun

Yat-sen University), Ministry of Education (Jun Zhang is corresponding author, e-mail:

junzhang@ieee.org).

+H. S.-H. Chung is with the Department of Electronic Engineering, City University of Hong

Kong, Kowloon, Hong Kong.

※Y. Li is with the Department of Electronics and Electrical Engineering, University of

Glasgow, Glasgow G12 8LT, Scotland, U.K.

Footnote on Page 15

1 The MATLAB code used, cmaes.m, Version 2.35, is available at

http://www.bionik.tu-berlin.de/user/niko/formersoftwareversions.html

 28

Figure Captions

Fig. 1 Framework of the traditional ACO for discrete optimization.

Fig. 2 Framework of the proposed SamACO for continuous optimization.

Fig. 3 Flowchart of the SamACO algorithm for continuous optimization.

Fig. 4 Composition of the candidate variable values for the ants to select.

Fig. 5 Illustration of two solutions constructed by ant a and ant b.

Fig. 6 Contour illustration of using different values of m and ϑ on f6. The contour

represents the average number of FEs used for achieving an accuracy level smaller

than 1=ε , with the other parameters set as default.

Fig. 7 Illustration of using different values of αρ ,,, 0r qv on f6. The y-axis represents the

average number of FEs used for achieving an accuracy level smaller than 1=ε ,

with the other parameters set as default.

Fig. 8 Convergence graphs of the algorithms. The vertical axis is the average error value,

and the horizontal axis is the number of FEs. (a) f5 (b) f10 (c) f14 (d) f15

Table Captions

TABLE I SUMMARY OF PARAMETER SETTINGS IN SAMACO

TABLE II AVERAGE ERROR VALUES AT n =30, AFTER 300000 FES BY SAMACO, CACO,

COAC, ACOR, CLPSO, FEP, AND CMA-ES

TABLE III AVERAGE NUMBER OF FES REQUIRED TO ACHIEVE ACCURACY LEVELS SMALLER

THAN 11 =ε , 6
2 10−=ε WHEN n =30 FOR SAMACO, CACO, COAC, ACOR,

CLPSO, FEP, AND CMA-ES

TABLE IV COMPUTATIONAL COMPLEXITY OF ALGORITHMS

 29

Start

Initialize

Apply local search (optional)

Update pheromones

Finished?

End

no

yes

Construct ants' solutions

Fig. 1 Framework of the traditional ACO for discrete optimization.

Start

Initialize

End

no

yes

 Sample ki variable values for each decision
 variable Xi from the continuous domain

nikj
ulxxxxX

ulxxxxX

ulxxxxX

i

nn
j

n
k

nnnn

jk

jk

n

,...,2,1,,...,2,1
],[,...,,:For

],[,...,,:For

],[,...,,:For

)()()2()1(

22
)(

2
)(

2
)2(

2
)1(

22

11
)(

1
)(

1
)2(

1
)1(

11

2

1

==
∈

∈

∈

MMM

Finished?

Traditional ACO process for solving DOPs

Fig. 2 Framework of the proposed SamACO for continuous optimization.

 30

Initialize parameters

Initially generate m+
values for each variable

Initialization

Ants' Solution Construction

Perform dynamic exploitation
to the best-so-far solution

Perform random exploration
to replace the worst solutions

Pheromone Update

Finished?

Pheromone Update

Generation
of the

candidate
variable
values
Ants'

solution
construction

Pheromone
Update

End

Start

yes

no

ϑ

Ants' Solution Construction

Fig. 3 Flowchart of the SamACO algorithm for continuous optimization.

For each variable, variable values from the
random exploration

Θ

)()(
2

)(
1

)1()1(
2

)1(
1

)()(
2

)(
1

)1()1(
2

)1(
1

)()(
2

)(
1

)2()2(
2

)2(
1

)1()1(
2

)1(
1

)0()0(
2

)0(
1

21 ngm
n

gmgm

m
n

mm

m
n

mm

m
n

mm

m
n

mm

n

n

n

xxx

xxx

xxx

xxx

xxx

xxx
xxx

xxx

+++

+++

+Θ−+Θ−+Θ−

Θ−Θ−Θ−

L

MOMM

L

L

MOMM

L

L
MOMM

L

L

L

For each variable, gi variable values for each
variable Xi from the dynamic exploitation

The best solutions constructed by ants)(Θ−m

The best-so-far solution

Fig. 4 Composition of the candidate variable values for the ants to select.

 31

X1 X2 X3 X4 Xn-1 Xn

Ant a

Ant b

A new solution constructed by ant a
A new solution constructed by ant b

Fig. 5 Illustration of two solutions constructed by ant a and ant b.

4 8 12 16 20 24 28 32 36 40
0

5

10

15

20

25

30

35

40

2.0E5

1.0E4

1.5E4

4.0E4
3.5E4
3.0E4

2.5E4

2.0E4

m

ϑ 1.5E4

Fig. 6 Contour illustration of using different values of m and ϑ on f6. The contour represents

the average number of FEs used for achieving an accuracy level smaller than 1=ε , with the

other parameters set as default.

 32

0.0 0.2 0.4 0.6 0.8 1.0
19000

23000

27000

31000

FE
s

vr

0.0 0.2 0.4 0.6 0.8 1.0
18750

20000

21250

22500

FE
s

q0
(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0
18750

20000

21250

22500

FE
s

ρ
0.0 0.2 0.4 0.6 0.8 1.0

18750

20000

21250

22500

FE
s

α
 (c) (d)

Fig. 7 Illustration of using different values of αρ ,,, 0r qv on f6. The y-axis represents the

average number of FEs used for achieving an accuracy level smaller than 1=ε , with the

other parameters set as default.

 33

0 100000 200000 300000
1E-14

1E-8

0.01

10000

A
ve

ra
ge

 E
rr

or
 V

al
ue

s

FEs
0 100000 200000 300000

0.01

1

100

10000

A
ve

ra
ge

 E
rr

or
 V

al
ue

s

FEs

 SamACO
 CACO
 COAC
 ACOR

 CLPSO
 FEP
 CMA-ES

(a) f5 (b) f10

0 100000 200000 300000

20.0

20.5

21.0

21.5

22.0

A
ve

ra
ge

 E
rr

or
 V

al
ue

s

FEs

0 100000 200000 300000
0.01

1

100

10000
A

ve
ra

ge
 E

rr
or

 V
al

ue
s

FEs

 SamACO
 CACO
 COAC
 ACOR

 CLPSO
 FEP
 CMA-ES

(c) f14 (d) f15

Fig. 8 Convergence graphs of the algorithms. The vertical axis is the average error value, and

the horizontal axis is the number of FEs. (a) f5 (b) f10 (c) f14 (d) f15

 34

TABLE I
SUMMARY OF PARAMETER SETTINGS IN SAMACO

P Domain DS Summary of Sensitivity Based on DS

m 1.. +∞ 20
More ants slow down the convergence,
whereas fewer ants reduce the reliability for
achieving high-quality solutions

ϑ 1.. +∞ 20
Exploitation frequency should be big
enough but a too large frequency may
induce early convergence

rv (0, 1] 0.7
A large radius reduction rate (>0.5) helps
better exploit the neighborhood, whereas a
small rate (<0.5) may miss promising values

ev [1, +∞) 1/ rv A reversal operation of the radius reduction

0q [0, 1) 0.1
The probability q0 is better to be small
enough for maintaining diversity and
avoiding stagnation

ρ (0, 1) 0.5
The pheromone evaporation rate is better to
be big enough for reducing the attraction of
undesirable variable values

α (0, 1) 0.3

The pheromone reinforcement rate is better
to be moderate for increasing the attraction
of high-quality variable values and avoiding
stagnation

Θ 1..m 1 A small discarding number is enough for
introducing diversity to the values

Ψ 1..)(Θ−m 1 A small elitist number is enough for
preserving promising values

Tmax (0, +∞) 1.0
Tmin (0,Tmax) 0.1
T0 (0,Tmax) Tmin

The upper and lower limits of pheromone
values should be distinguishable with each
other

 35

TABLE II

AVERAGE ERROR VALUES AT n =30, AFTER 300000 FES BY SAMACO, CACO, COAC,
ACOR, CLPSO, FEP, AND CMA-ES

 F SamACO CACO [15] COAC [17] ACOR [21] CLPSO [29] FEP [30] CMA-ES[31]

Mean 0 0†* 0†* 0†* 0†* 0†* 0†* f1 St. dev 0 0 0 0 0 0 0
Mean 3.55 × 10-15 1.48† 8.68† 9.97 × 10-7† 4.80† 1.12 × 10-1† 1.22 × 10-12†f2 St. dev 0 6.30 × 10-1 9.09 4.63 × 10-6 6.63 × 10-1 1.54 × 10-1 1.54 × 10-13

Mean 4.74 × 10-3 8.91 × 10-15‡ 4.84† 3.31† 5.04 × 10-13‡ 5.85 × 10-2† 1.30 × 10-12‡f3 St. dev 5.80 × 10-3 1.65 × 10-14 2.73 2.09 1.31 × 10-13 4.01 × 10-3 1.10 × 10-12

Mean 1.30 × 10-2 1.10 × 10-3‡ 1.18 × 10-1† 7.93 × 10-3‡ 4.12 × 10-3‡ 7.43 × 10-3‡ 5.99 × 10-2†f4 St. dev 8.57 × 10-3 5.37 × 10-4 3.79 × 10-2 3.98 × 10-3 9.13 × 10-4 1.73 × 10-3 1.83 × 10-2
Mean 4.32 × 10-14 0‡ 5.68 × 10-14† 0‡ 5.46 × 10-14† 2.06 × 10-4† 4.55 × 10-15‡f5 St. dev 2.48 × 10-14 0 0 0 1.14 × 10-14 2.83 × 10-5 1.57 × 10-14

Mean 5.68 × 10-14 676† 3.96 × 10-13† 0‡ 910† 7.99† 4.32 × 10-14‡f6 St. dev 0 115 6.33 × 10-13 0 208 7.19 2.48 × 10-14

Mean 1.84 × 105 7.34 × 106† 1.40 × 106† 5.95 × 104‡ 1.53 × 107† 3.48 × 106† 3.64 × 10-14‡f7 St. dev 4.82 × 104 2.11 × 106 6.15 × 105 3.24 × 104 3.22 × 106 1.52 × 106 2.78 × 10-14

Mean 1.45 × 104 5.95 × 103‡ 8.71 × 103‡ 1.39 × 10-10‡ 7.23 × 103‡ 9.17 × 103‡ 2.94 × 104 f8 St. dev 4.49 × 103 1.25 × 103 4.06 × 103 5.65 × 10-10 1.06 × 103 5.74 × 103 4.31 × 104

Mean 7.04 × 103 5.35 × 103‡ 4.98 × 103‡ 2.25 × 103‡ 4.20 × 103‡ 6.68 × 103 1.02 × 10-10‡

U
ni

m
od

al

f9 St. dev 1.66 × 103 5.83 × 102 1.11 × 103 8.20 × 102 520 1.66 × 103 2.53 × 10-11

Mean 1.34 × 10-2 1.41 × 102† 2.00 × 103† 4.13 × 103† 1.34 × 10-2† 1.51 × 103† 3.13 × 103†f10 St. dev 0 1.35 × 102 2.05 × 102 7.83 × 102 7.93 × 10-13 410 2.82 × 102
Mean 5.14 × 10-15 4.72 × 10-13† 3.36† 3.09† 4.55 × 10-11† 1.06 × 10-2† 13.6† f11 St. dev 1.92 × 10-15 3.61 × 10-13 7.15 × 10-1 7.39 × 10-1 1.20 × 10-11 7.05 × 10-4 8.68
Mean 126 1.04 × 103† 1.70 × 103† 389† 3.81‡ 96.5 5.00 × 10-14‡f12 St. dev 294 1.69 × 103 3.26 × 103 18.2 5.00 236 1.89 × 10-14

Mean 1.67 × 10-2 2.96† 1.52 × 10-2 2.03 × 10-2 1.05† 1.21 × 10-1† 1.36 × 10-14‡f13 St. dev 1.46 × 10-2 3.00 × 10-1 1.50 × 10-2 1.78 × 10-2 5.00 × 10-2 1.52 × 10-1 1.45 × 10-14

Mean 20.0 20.8† 20.1† 21.0† 20.9† 20.9† 20.0‡ f14 St. dev 4.30 × 10-3 6.13 × 10-2 2.79 × 10-2 4.09 × 10-2 3.48 × 10-2 5.05 × 10-2 8.24 × 10-15

Mean 1.59 × 10-14 6.21† 65.2† 61.2† 1.77 × 10-13† 6.49 × 10-2† 266† f15 St. dev 2.60 × 10-14 2.06 16.4 14.9 8.09 × 10-14 1.86 × 10-2 34.7
Mean 270 44.0‡ 142‡ 76.0‡ 101‡ 99.7‡ 587†

M
ul

tim
od

al

f16 St. dev 86.9 9.44 27.3 22.0 13.0 23.4 204
b† i w‡ b† i w‡ b† i w‡ b† i w‡ b† i w‡ b† i w‡No. of SamACO significantly

better, indifferent, or worse 10 0 6 12 1 3 8 1 7 10 0 6 11 2 3 7 1 8
Total Scores 4 9 1 4 8 -1

* The t-test is made based on the numbers of FEs that are required for achieving an error value 0.

 36

TABLE III

AVERAGE NUMBER OF FES REQUIRED TO ACHIEVE ACCURACY LEVELS SMALLER THAN 11 =ε ,
6

2 10−=ε WHEN n =30 FOR SAMACO, CACO, COAC, ACOR, CLPSO, FEP, AND CMA-ES

SamACO CACO [15] COAC [17] ACOR [21] CLPSO[29] FEP [30] CMA-ES[31] F ε
FEs %ok FEs %ok FEs %ok FEs %ok FEs %ok FEs %ok FEs %ok

1 1959 100 10512 100 26861 100 4362 100 69399 100 60104 100 2809 100f1 10-6 1959 100 10512 100 26861 100 4362 100 69399 100 60104 100 2809 100
1 3425 100 64550 32 50574 12 18224 100 × 0 228000 100 3567 100f2 10-6 32388 100 × 0 × 0 157212 96 × 0 × 0 12896 100
1 1809 100 8792 100 25059 4 33930 12 61517 100 50860 100 27084 100f3 10-6 102278 8 224088 100 × 0 × 0 189904 100 × 0 53550 100
1 40 100 2636 100 7574 100 755 100 20945 100 29252 100 878 100f4 10-6 × 0 × 0 × 0 × 0 × 0 × 0 × 0
1 4481 100 21060 100 39354 100 4055 100 77345 100 64240 100 2393 100f5 10-6 10317 100 157464 100 76093 100 9272 100 153155 100 × 0 4742 100
1 19394 100 × 0 89542 100 15659 100 × 0 293466 100 8874 100

U
ni

m
od

al

f6 10-6 47260 100 × 0 190344 100 37585 100 × 0 × 0 13651 100
1 2782 100 23990 40 × 0 × 0 94518 100 × 0 × 0 f10 10-6 × 0 × 0 × 0 × 0 × 0 × 0 × 0
1 21108 100 10684 100 178373 4 × 0 77043 100 65168 100 37613 28 f11 10-6 42315 100 222992 100 178373 4 × 0 211499 100 × 0 38974 28
1 158947 4 × 0 × 0 × 0 28462 20 × 0 66292 100f12 10-6 × 0 × 0 × 0 × 0 × 0 × 0 73727 100
1 7395 100 × 0 57781 100 12735 100 289920 20 229324 100 3681 100f13 10-6 26806 20 × 0 198101 28 38918 12 × 0 × 0 9012 100
1 49753 100 × 0 × 0 × 0 165744 100 202920 100 × 0

M
ul

tim
od

al

f15 10-6 71286 100 × 0 × 0 × 0 230700 100 × 0 × 0

TABLE IV COMPUTATIONAL COMPLEXITY OF ALGORITHMS

Algorithm 0T 1T 2T̂ 0/)12ˆ(TTT −
SamACO 0.421 2.5 3.434 2.22
CACO [15] 0.421 2.5 4.984 5.90
COAC [17] 0.421 2.5 2.919 0.99
ACOR [21] 0.421 2.5 845.7 2002.90

CLPSO[29] 0.421 2.5 3.032 1.26
FEP [30] 0.421 2.5 7.897 12.82

CMA-ES[31] 0.406 16.86 21.67 11.85

