

Hall, C. V. and O'Donnell, J.T. (2009) Bowing Models for String Players.
In: International Conference on Music and Computers, August 2009,
Montreal.

http://eprints.gla.ac.uk/43724/

Deposited on: 10 November 2010

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/43724/

BOWING MODELS FOR STRING PLAYERS

Cordelia V. Hall, John T. O’Donnell, Bill Findlay

University of Glasgow
Department of Computing Science, Glasgow, UK

jtod@dcs.gla.ac.uk

ABSTRACT

A bowing is a sequence of bow motions that enable a piece
of music to be played on a string instrument with an appro-
priate interpretation and sound. Traditional notation shows
only the bow direction for a few notes. We propose a bowing
model, which contains information about the bowings of all
the notes, and we show how the bowing model can be rep-
resented in software and describe how algorithms can use it
to perform several tasks that help the performer. The model,
and the algorithms, are suitable both for offline editing of
music and for presentation on an electronic display during
performance. In particular, software can show or hide bow-
ings on various notes, according to the performer’s needs; it
can calculate a full bowing; it can modify a bowing based
on preferences indicated by the performer; and it can allow
bowings to be archived and searched. This approach is not
prescriptive: the performer is in full control of all artistic
decisions, while the software carries out repetitive tasks.

1. INTRODUCTION

Bowing is one of the most difficult aspects of playing a
string instrument, such as the violin, viola, cello, and dou-
ble bass. In addition to the physical difficulties of control-
ling the bow, the player must work out a practical sequence
of bow motions that enables a piece to be played and that
leads to the right kind of sound. Such a sequence is called
a bowing. A bowing specifies at least the direction the bow
is moving for each note, and may also specify they type of
bow stroke, how long the stroke is, which part of the bow is
to be used, and the distance between the bow and the bridge.

There are two aspects of a bowing: the choice of a suit-
able set of bow motions while satisfying a set of constraints,
and notations in the printed music that help the player to
remember the bowing. Normally the printed notations in-
dicate only a small part of the bowing explicitly, because
excessive notation makes the music harder to read.

The problem of bowing is complicated because it com-
bines musical interpretation, calculation, notations for record-
ing decisions, communication, and negotiation with other
players. String players often work out bowings by trial and
error informed by experience. Some of the bowings are then

written into the music, because they are often hard to re-
member. Furthermore, there may be external constraints. In
many orchestras all the members of a string section are sup-
posed to use the same bowing, and in chamber music the
different parts should use compatible bowings.

Planning how to use the bow is important, and string
players give it a lot of thought. Unfortunately, they seldom
write those plans down, so other players cannot benefit from
what they have learned.

Our hypothesis is that computers can help benefit string
players by assisting them in solving practical bowing prob-
lems. To achieve this, we introduce a bowing model as a
complete description of a bowing, which can be represented
as a data structure in a computer program, along with algo-
rithms that manipulate the bowing data structure. The re-
maining sections of this paper define what a bowing model
is, present heuristics for calculating a bowing, describe an
algorithm that implements the heuristics, and discuss the re-
sults of applying the software to several pieces of music.

2. BOWING MODELS

String players often use occasional annotations, such as up-
bow or down-bow symbols, to remember how to play certain
crucial notes. The bow directions for other notes can be
worked out on-the-fly, based on experience. However, there
are several useful tasks a computer can carry out to assist the
performer, which require the computer to know how every
note will be bowed.

Therefore we require a complete description of bow mo-
tions, including the direction the bow moves for every note,
the part of the bow being used, and any other relevant in-
formation. We call this description a bowing model. Al-
though the model defines the bow direction for every note,
it would clutter the printed music to include bowing anno-
tations for every note. Therefore only a small portion of a
bowing model is presented to the performer, and it is use-
ful to distinguish between a bowing model (represented as a
data structure in a computer program) and its presentation in
the printed music (indicated by annotations such as up and
down bow symbols).

A bowing model must at least specify the bow direction
for each note. It may also contain additional information,

mailto:jtod@dcs.gla.ac.uk

such as the position of the bow between the tip and frog,
the location of the contact point (near the bridge or near the
fingerboard), the bow speed, etc. In this paper, we discuss
bowing models that specify bow direction and bow position,
but not bow speed.

3. COMPUTER SUPPORT FOR STRING PLAYERS

A computer can support a performer by providing a flexi-
ble presentation of the music, including the bowing model.
As the player becomes more familiar with a piece, a smaller
number of notes may need bowing marks. In a chamber mu-
sic rehearsal, it is often useful to indicate the bow direction
at unusual places (for example, at the beginning of each line)
to make it easier for the group to start playing at an arbitrary
point. Using either a computer with printer, or a flat-screen
display on the music stand, the system can update the pre-
sentation of the music quickly and easily.

Another area where the computer can help is in calculat-
ing the details of a bowing, given some constraints. The aim
of this approach is to leave the artistic decisions to the string
player, leaving the computer to carry out the mundane and
repetitive tasks. For example, a bowing might specify that
a note is to be played upbow while it also causes the bow
to be at the frog—an impossible situation. An algorithm
can detect problems like this, and either highlight them for
the player’s attention, or reject the bowing and calculate an
alternative one. However, the player should be in control.
If he or she dislikes a bowing proposed by the computer,
the player can add a constraint (for example, by specify-
ing a bow direction for a particular note), and the algorithm
should then recalculate the bowing subject to that constraint.

We have developed an algorithm that calculates a bow-
ing model, given some constraints on particular notes. The
algorithm embodies a variety of techniques that string play-
ers know. These heuristics are described in the next section,
and the following section discusses the software.

4. HEURISTICS FOR CHOOSING A BOWING

Stressed notes tend to be played using a downbow, since it
is easier to pull down than up, and also because the frog of
the bow is heavier than the tip. For example, in 4/4 time,
the first and third beats are played with a downbow, pickup
notes are played with an upbow, and the first and last notes
of the piece are usually played with a downbow.

Many passages contain a mixture of long and short notes.
Naturally, a longer note generally takes more bow than a
shorter one. Consequently, it is possible that after taking a
long bow, the player may be positioned awkwardly for the
next note, and the bowing needs to provide a solution. Fur-
thermore, the common notation does not indicate where the
bow will be, so it does not indicate where such problems
will occur.

For example, suppose that the player is starting to play
a minim (on a downbow), three semi-quavers and then an-
other minim. The player plays the minim and ends up at the
tip of the bow. After playing the three semi-quavers at the
tip, starting with an upbow, the second minim starts with a
downbow. However, the bow is already at the tip, and so the
player runs out of bow. Standard bowing notation does not
warn a player of this problem, and the player is likely to be
taken by surprise while sightreading, or playing a piece that
is not familiar. In this situation, one solution is to play two
notes on the same bow stroke; this is notated by introduc-
ing a slur connecting the first minim and semi-quaver, and
causes the second minim to occur on an upbow.

Examples like these show that bowings have constraints.
If the player provides a bowing for a passage in the middle
of a line of music without considering the requirements of
the lines before and after, the bowing will often be wrong
(especially if there are no rests delimiting these sections of
music).

Constraints require calculation. Players sometimes can
be seen to mime playing their instrument while staring at the
music—this is because they are calculating the context for a
passage by ‘playing’ the section before it. This calculation
can also be done by computer.

Satisfying constraints can be done by standard techniques
(but may require clever and unconventional solutions). For
example, the player may have to move to a part of the bow
while playing notes that are equal in duration. One common
way to do this is to ‘save’ bow, by using strokes that are
longer in one direction than the other. If the player is at the
tip of the bow and needs to end up at the middle, then the
upbows must be longer than the downbows for a few notes.
Or suppose the player must remain in one part of the bow
(the frog or the tip) because there is a long note coming up
that will take the whole bow. The player must then be aware
that whatever the durations of the notes in the given passage,
the strokes used to play them must be short, so that they do
not cause movement away from that part of the bow.

5. RESEARCH CONTEXT

Spohr (19th cent.) and Flesch (early 20th cent.) each wrote
about significant bowing problems. In a modern context, the
need for a study of bowing has been mentioned as a miss-
ing piece of research by a project led by Diana Young [6],
where she states that ’A thorough study of different bow
strokes and musical performances should follow.’ However,
while there has been some research on new kinds of bows
instrumented with accelerometers and other sensors [4], and
also some work on gestures made by the bow arm in playing
[3] and a database of bowstrokes [7], calculating bowings
from a music text appears to be a new line of research. It is
interesting to note that annotations made during orchestral
rehearsals have been found to be a valuable resource [5],

suggesting that musical and bowing context is not always as
easily understood as string playing tradition would suggest.

6. THE ALGORITHM

We have implemented an algorithm [2] that calculates a bow-
ing model for a piece, using the heuristics given earlier. This
algorithm keeps track of the bow direction, and it also has a
quantitative representation of the point on the bow hair that
contacts the string at the beginning and end of each note.
This detailed information allows the algorithm to determine
where a bow stroke can be shortened and lengthened to get
around problem areas, according to the heuristics.

The algorithm partitions the music into two kinds of
blocks: a simple block is composed of notes with the same
duration, while a complex block contains only notes of mixed
durations or very long notes.

For simple blocks, the algorithm exploits the fact that the
player can make adjustments in the location of the bow. It
makes the upbows longer, if the bow position is too close to
the tip, and the downbows longer, if the bow position is too
close to the frog. This means that the algorithm can work its
way out of awkward positions and move back to the middle
of the bow, just as the player would.

Complex blocks require some care because they are dif-
ficult to bow properly. The algorithm originally handled
such a block by backtracking (trying all possibilities). If
the first pass failed, then the note being bowed was made
shorter, and if that failed, then it was made longer. If all of
these failed, then the algorithm backed up to the previous
note and tried a new alternative. Backtracking was effective
at improving the end of a complex block, but the solutions
found were not particularly good, and the task of assessing
the value of a solution was incompatible with a backtracking
algorithm.

We then implemented an improved algorithm, which cal-
culates all possible bowings through a complex block, and
then applies several functions which assess the value of the
bowing from a variety of angles. The three different scoring
functions, Average, Successive, and Extremes, produce a
value from 1 to 100, where 100 is the worst and 1 the best,
and the composite score assigned a bowing is the average
scores of the three.

Any path which runs out of bow is given 100 without
further assessment. The first function, Average, takes the
average bow position, returning a good score if the average
is close to the middle of the bow, and a worse score if it is
closer to the tip or frog. While a useful indicator of the value
of a bowing, the average may be misleading if there is a se-
quence of notes at one end followed by another sequence at
the other end. For this reason, the second algorithm checks
for successive strokes closes to either the frog or the tip. If
there are more than 4 strokes at the tip, or more than 2 at
the frog, then a worse score is returned. Finally, bowings

that require the player to be at an end of the bow make it
more likely that the algorithm will run out of bow some-
where along the line, so the third algorithm assigns these
worse scores.

7. EXPERIMENTAL RESULTS

We applied the algorithm to six pieces: the first, second and
third movements of the Bach double violin concerto in D
minor (solo violin 1), and three movements from Handel’s
sonatas for violin and figured bass (the first movement of
the sonata in A major, the third movement of the sonata in
D major, and the fourth movement of Handel’s sonata in
E major). All were assigned viable bowings; none of the
solutions run out of bow at some point during the analysis.

Each of these movements had some interesting problems
for our algorithm to address. The algorithm assigned bow-
ing annotations without stopping for direction by the mu-
sician (unlike our previous work). The musician provided
music that was marked with dynamics and wrote in any slurs
required for known technical reasons (e. g. the player would
run out of bow here otherwise) or musical reasons.

bar old new user factor dur
10.44 0.49 0.54 Mb 1.00 0.25
10.50 0.54 0.17 Tb 0.67 2.50
11.13 0.17 0.28 Tb 1.00 0.25
11.19 0.28 0.22 Tb 1.00 0.25
11.25 0.22 0.33 Mb 1.00 0.25
11.31 0.33 0.27 Tb 1.00 0.25
11.38 0.27 0.38 Mb 1.00 0.25
11.44 0.38 0.32 Mb 1.00 0.25
11.50 0.32 0.69 Mb 0.67 2.50

Figure 1. This edited output from the program shows the
bar numbers (fractions indicate position of a note within the
bar), the old bow position that was current for the previ-
ous note, the new bow position, the information provided to
the musician (Tb means upper part of the bow, Mb means
middle of the bow), and the factor used by the analysis of a
complex block to control the length of the stroke(.67 means
shorten the stroke, while 1.00 means leave it as it comes).
The final column is the note duration as a fraction of the
value receiving one beat (so .25 is a sixteenth note (semi-
quaver) because the time signature is 4 4).

The first movement of the Bach double violin concerto
was relatively straightforward (Figure 2). It has lots of blocks
of sixteenth or eighth notes (semiquavers or quavers) which
allowed the algorithm to maintain the desired average bow
position (the middle of the bow). In our example, a note ap-
peared which was so long that it had to be handled in one
of two ways. Either the bow had to be at the frog when it
started, or the stroke had to be shortened. The algorithm

shortened the duration of that stroke. The notes between the
two half notes (minims) were few enough that the second
half note was reached before the algorithm moved back to
the middle of the bow.

The second movement of the Bach concerto was inter-
esting because it contained a passage which could not be
played without shortening the long notes.

The first movement of the first Handel sonata in A major
contained lots of tricky sections, where sequences of four or
five strokes were twice separated by longer notes that moved
in the same direction. This was handled well by the algo-
rithm, but might have been more of a problem if there had
been a longer sequence like this.

7 ��� ��
Violin I ���� � �� ��

� � � � �
Sb

8

� � � �� � � � � � ���� � �

� � � � Tb�� �
Sb

�10

� � � �� �Tb� �� � �� �Tb

� ��� �12

� � ��Mb� �� � � � �� � �

��
13 �

�Fb�
�� �

Mb��	
Fb��

Music engraving by LilyPond 2.10.33—www.lilypond.

Figure 2. Part of the edited first solo violin part of the Bach
double violin concerto in D minor [1], annotated with the
results of the algorithm. The annotation Sb means that the
stroke should be shortened, Fb means the lower part of the
bow, Mb the middle, and Tb the upper part of the bow. No-
tice that on the last line, the annotations indicate that the
player may be getting close to the frog.

The third movement of the Handel sonata in D major
was challenging because the tempo was so slow that long
notes tended to require a whole bow, leaving little margin
for adaptation. The algorithm shortened these.

The fourth movement of the Handel sonata in E major
was straightforward, even for uneven sequences.

The third movement of the Bach double violin concerto
had one tricky type of passage, in which two sets of four
sixteenth notes are played, the last three in each slurred to-
gether, and then two slurred triplets. The algorithm marked
most strokes in the last bar with an F because they occurred
in a mixture of simple and complex blocks which forced the
algorithm to have a local and not a global view of the situa-
tion.

8. CONCLUSIONS

Professional musicians might find this work interesting, but
they are already capable of finding good bowings. Students
are the most likely group to benefit from algorithms like
this. We also are interested in applying this work to other
problems such as building editors for string players where
the user can query the editor for information about awk-
ward bowings that may be implied by unedited, or carelessly
edited music. One application of the algorithm presented
here would be as a checker that determines when an edition
has failed to identify a problem that would cause an unwary
musician to run out of bow, as in the unedited version of the
first solo violin part of the Bach double violin concerto in
D minor. Eventually, even orchestral players might benefit
from inclusion of such algorithms in digital music stands.

9. REFERENCES

[1] J. S. Bach, Konzert in d-Moll fur zwei Violinen, Stre-
icher und Basso continuo. Barenreiter - Verlag Kassel
und Deutscher Verlag fur Musik Leipzig, 1986.

[2] C. Hall and B. Findlay, “Simulation of bowing decisions
on a string instrument,” in Journees d’Informatique Mu-
sicale, Lyon, France, 1997.

[3] N. Rasamimanana, E. Flety, and F. Bevilacqua, “Ges-
ture analysis of violin bow strokes,” in 6th International
Gesture Workshop, 2005, pp. 145–155.

[4] S. Serafin and D. Young, “Bowed string physical model
validation through use of a bow controller and exami-
nation of bow strokes,” in Proceedings of the Stockholm
Music Acoustics Conference, August 6-9, 2003.

[5] M. Winget, “Heroic frogs save the bow: Perform-
ing musician’s annotation and interaction behavior with
written music,” in 7th International Conference on Mu-
sic Information Retrieval, 2006.

[6] D. Young, “Wireless sensor system for measurement of
violin bowing parameters,” in Proceedings of the Stock-
holm Music Acoustics Conference, August 6-9, 2003.

[7] D. Young and A. Deshmane, “Bowstroke database:
A web-accessible archive of violin bowing data,” in
NIME, 2007.

	1 Introduction
	2 Bowing models
	3 Computer support for string players
	4 Heuristics for choosing a bowing
	5 Research context
	6 The algorithm
	7 Experimental results
	8 Conclusions
	9 References
	coversheet.pdf
	http://eprints.gla.ac.uk/43724/

