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Momentum profits in alternative stock market structures 

 

 

Abstract 

The aim of this study is to examine the relationship between momentum 

profitability and the stock market trading mechanism and is motivated by recent 

changes to the trading systems that have taken place on the London Stock 

Exchange. Since 1975 the London stock market has employed three different 

trading systems: a floor based system, a computerized dealer system called SEAQ 

and the automated auction system SETS. Since each new trading system has 

reduced the level of execution costs, one might expect, a-priori, the magnitude of 

momentum profits to decline with each amendment to the trading system. However, 

the opposite empirical result is found showing that shares trading on the automated 

system generate higher momentum profits than those trading on the floor system 

and companies trading on the SETS system display greater momentum profitability 

than those trading on SEAQ. Our empirical results concur with the theoretical 

findings of the trader’s hesitation model of Du (2002) and the empirical findings of 

Arena et al. (2005). 

JEL classifications: G14; G15 
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Momentum profits in alternative stock market structures 

 

1. Introduction 

The momentum strategy describes the tendency for return performance to persist in 

the medium term. The pioneering work of Jegadeesh and Titman (1993) on the US 

market showed that by buying winners and selling short losers an abnormal monthly 

return of approximately 1 percent could be achieved. Extent evidence now exists in 

support of the momentum strategy for the US (e.g., Jegadeesh and Titman, 2001), 

the UK (e.g., Hon and Tonks, 2003), and a global range of stock markets (e.g., 

Griffin et al., 2003).   

A number of studies have examined whether the momentum strategy enjoys 

significant profitability after transaction costs. Lesmond et al. (2004) reported that 

the momentum returns found by Jegadeesh and Titman (1993, 2001) and Hong et al. 

(2000) disappear after adjusting for transaction costs, since both winner and loser 

portfolios tend to include high transaction cost shares, such as small capitalisation 

and illiquid shares. Chen and Stanzl (2002) and Korajzyk and Sadka (2004) 

examined the price impact cost of following the momentum strategy. Chen and 

Stanzl, for instance, reported that the maximal fund size possible to exploit the 

momentum strategy is $44.2 million when value-weighted portfolios were formed. 

A significant number of studies have also considered the potential reasons for 

momentum, but no clear consensus has emerged. Ang et al (2001) argued that the 

contents of the winner portfolio are characterized by more downside risk. The 

higher returns displayed by winners is compensation for this additional amount of 
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risk investors would be exposed to when falling market arise. The importance of 

risk as a potential explanation for momentum contrasts with the findings of Fama 

and French (1996) and Liu et al (1999). After controlling for the risk inherent in the 

three-factor model of Fama and French (1993), both papers showed that momentum 

profitability does not diminish.  

Behavioral models have suggested that momentum is caused by the underreaction 

of stock prices to new information. Barberis et al (1998) developed a model in 

which investors underreact to information about earnings. Du (2002) argued that 

investors can be characterized by high or low levels of confidence. Underreaction 

arises when investors with low confidence are slow to make decisions. Delays in 

acting upon information cause the effects of new information to persist inducing a 

continuation pattern in returns.  

Momentum profits have also been found to be influenced by firm level 

characteristics. Lee and Swaminathan (2000) showed that firms with high trading 

volume have higher momentum than firms with low trading volume. Moskowitz 

and Grinblatt (1999) found that momentum is related to a firm’s industry. 

Momentum also appears to be related to firm size (Hong et al., 2000) and to 

glamour features (Gregory et al., 2001).  

In this paper, we suggest that the size of UK momentum profits can be influenced 

by the stock market trading system. The London Stock Exchange (LSE) has 

employed three trading systems since 1975. Until the reforms of Big Bang in 1986 

the LSE employed a single capacity floor based trading system. From 1986 onwards 

the London exchange adopted a computerized dealing system called SEAQ. Since 
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1997 equities with the highest turnover on the LSE have been able to trade on an 

automated trading system that has been operating in parallel to SEAQ.  

One may expect, a priori, that the level of momentum profits declines with each 

amendment to the trading system. With the introduction of each new system, a 

reduction of the transaction costs was occurred (e.g, Naik and Yadav, 1999; Tonks 

and Webb, 1991). A move to the computerized system SEAQ and then to SETS 

would have therefore made momentum trading progressively more attractive after 

the microstructure changes made by the LSE. Furthermore, the increased 

transparency and ease of trading associated with the new systems would have made 

momentum trading more attractive to non-institutional traders.  

However, when we measure momentum profits in the period prior to and 

subsequent to the introduction of SEAQ, it is found that share trading in the post-

Big Bang period generates higher continuation profits than trading in the pre-

deregulation floor period. This is robust to the employment of a sub-sample of firms 

and to a range of adjustment tests. We also examine the momentum profits 

generated from trading on SETS and find that shares trading on the SETS system 

provide higher continuation profits than those trading on SEAQ. The difference in 

momentum profits between the two structures widens significantly after considering 

share market values. Our empirical results concur with the theoretical findings of 

the trader’s hesitation model of Du (2002) and the empirical findings of Arena et al. 

(2005). 

The remainder of this paper is set out as follows. Section 2 describes the trading 

systems. Section 3 explains the data and how it has been utilized. Section 4 
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measures momentum in different market structures and Section 5 concludes the 

paper. 

2. Trading systems  

Prior to Big Bang in 1986 the LSE utilized a floor based trading system that 

employed jobbers and brokers with single capacity. In response to dissatisfaction 

with the ability of floor based trading to encourage competition, cope with rising 

trade sizes and an increasing trend towards the internationalization of capital 

markets (Thomas, 1989), a major overhaul of the LSE trading system took place on 

27th of October 1986. These changes saw the introduction of a dual capacity 

electronic dealer system called SEAQ. 

In response to competition from order driven systems on other exchanges that offer 

lower trading costs, the LSE introduced SETS on 20th of October 1997. All 

FTSE100 stocks and since March 1998 some additional companies from the 

FTSE250 index, have been traded in an auction system. In contrast to SEAQ, SETS 

is a fully automated order driven system. SETS opens with a batch auction and 

allows continuous trading until the market closes.  

Our examination of the link between momentum and trading activity is motivated 

by a range of studies that have shown that the trading mechanism can exert a strong 

influence on stock returns. In particular, a number of studies have reported a link 

between stock market structures and volatility. Chelley-Steeley (2005), for example, 

showed that both the opening and closing returns of FTSE100 shares experienced a 

significant increase in volatility since the introduction of the SETS mechanism. 

Tonks and Webb (1991) documented a substantial increase of volatility in UK 

shares in the post-automation period. Arena et al. (2005), Balsara and Zheng (2006) 
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and Fang et al. (2003) argued that there exists a strong positive association between 

different measures of volatility and magnitude of momentum returns. Since shares 

displayed higher volatility when traded on the post-Big Bang period and on the 

SETS system, and higher volatility appears to imply stronger momentum returns, 

we predict that shares trading on the automated and the SETS systems generate 

higher momentum profits than those trading on the floor and dealer systems 

respectively. These predictions are in line with our empirical findings. 

Trading systems also influence the relative trading activities of institutional and 

small investors. Institutions seem to prefer to use floor rather than automated 

systems, since on the floor of a stock market large investors can observe the 

investment strategies followed by traders who have inside information. Institutional 

traders also tend to prefer dealer systems that provide better liquidity for large 

trades, while retail investors tend to prefer auction mechanisms that are associated 

with lower transaction costs (e.g., de Jong et al., 1995). Du (2002) argued that 

investor behavior contributes to the scale of momentum profits, since the level of 

investor confidence influences the decision making speed of investors. This 

suggests that trading mechanisms more favorable to a particular investor type will 

encourage either fast decisions about equity (little momentum) or slow decisions 

(high momentum). Since large (small) investors appear to prefer floor and dealer 

(automated and auction) systems, the Du (2002) model, to some extent, predicts that 

shares trading on the automated and the SETS systems generate higher momentum 

profits than those trading on the floor and dealer systems respectively. Once more 

these predictions correspond with our empirical results.   
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3. Data and methodology  

Monthly return information for all UK companies listed on the Master Index File of 

the London Share Price Database (LSPD) between October 1975 and October 2001 

were utilized in this study. The sample period focused in the post-1975 period 

because LSPD includes all British companies listed on the LSE after 1975. This 

provided information on over 6,000 firms. This constituted our main sample. Our 

second sample was the accounting sub-sample. This was drawn from the main 

sample but required from each firm accounting information on annual market value 

and book-to-market. This information was available from Datastream for over 2,000 

of the companies. Our SETS sample reflected the 150 stocks that according to the 

LSE have traded on SETS. This sample extended from October 1997 to October 

2001.  

To calculate momentum profitability, each company was ranked on the basis of its 

stock market performance over the previous six months. We then placed each 

security into one of ten equally sized portfolios. The winner portfolio (W) contained 

the best performing decile of securities and the loser portfolio (L) contained the 

worst performing decile of securities1. One month was skipped to avoid potential 

market frictions identified by Jegadeesh (1990) and in the following six-month 

period, the returns of each of the equal weighted portfolios were calculated. This 

procedure was repeated for each non-overlapping six-month period. The difference 

                                                 

1 Tables 1 and 7 and Fig. 1 use additional definitions of winner and loser portfolios as a robustness 

test. When using three portfolios, winners and losers each comprised 30 percent of the sample and 

when using five portfolios, winners and losers each included 20 percent of the sample. 
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between winner and loser portfolio returns (W-L) showed the profitability of the 

momentum strategy.  

This study then investigated whether bull and bear markets can account for our 

empirical results. Market states have differed during the pre- and post-Big Bang 

periods and Cooper et al. (2004), using US data, and Siganos and Chelley-Steeley 

(2006), using UK data, reported that momentum profitability varies significantly 

following bull and bear markets. Two states were separated. The bull state was 

when the average market return (FTSE-All Share) was non-negative six months 

before the test period, and the bear state was when the average market return was 

negative six months before the test period. Since 1975 the UK stock market has 

experienced a strong upward trend and therefore a much larger number of periods 

were bull. In particular, 76 percent of the periods identified as bull during the floor 

sub-period and 68 percent during the automated sub-period. 

The importance of controlling for firm size was highlighted by Zarowin (1990) in a 

study of long term overreaction as matching winners and losers on the basis of firm 

size caused evidence of overreaction to disappear. We applied a matching process 

similar to Daniel and Titman (1997) that was found to explain overreaction by 

Nagel (2001). Securities were first sorted into three groups based on their market 

capitalization. Companies in each size-sorted group were further divided into three 

additional groups based on their book-to-market. All this provided nine portfolios. 

The returns of these nine size-book-to-market portfolios were calculated over the 

test period as:  

CH
tit

CH
it RRR −=                                                     (1) 
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where is the characteristic-adjusted return on security i in month ,  is the 

return on security i in month t , and is the return on a size-book-to-market 

matched portfolio in month t . To undertake this procedure, book and market values 

were required. Since LSPD does not provide book values, our smaller accounting 

sub-sample was utilized for this analysis.  

CH
itR t itR

CH
tR

This study also controlled for risk based on the Capital Asset Pricing Model. We 

calculated the aggregate coefficient betas of Dimson (1979) to overcome the 

problem of infrequent trading that conventional betas exhibit. We estimated 

regressions of portfolio returns against lagging, contemporaneous and leading 

market returns. The aggregate coefficient betas were determined by the number of 

leads and lags that are statistically significant. 

titkftkm

n

nk
pptftp eRRaRR ,,,,,,, )( +−+=− ∑

−=

β                        (2) 

where  is the return of portfolio tpR , p in month t ,  is the one-month Treasury 

Bill rate in month t , and  is the return of the proxy market (FTSE All-Share) in 

month . The aggregate coefficient beta was the sum of betas with different leads 

and lags. Four lags and two leads were analyzed for the loser portfolio and four lags 

and four leads for the winner portfolio. 

tfR ,

tmR ,

t

We further defined risk based on the three-factor model (Fama and French, 1993). 

Liu et al. (1999) reported that after controlling for the three-factor model, 

momentum profits are lower than when only beta adjustments are made. This 

suggests that the three-factor model captures the momentum gains better than 

CAPM. We estimated the following regression: 
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where  is the return of portfolio tpR , p in month t ,  is the one-month Treasury 

Bill rate in month t , and  is the return of the proxy market (FTSE All-Share) in 

month . We generated nine portfolios; shares were sorted into three groups based 

on the market value and then, each size-sorted portfolio was divided further into 

three portfolios based on the book-to-market ratios.  (Small Minus Big) shows 

the portfolio that buys the three small size portfolios and sells short the three big 

size portfolios.  (High Minus Low) shows the portfolio that buys the three 

high book-to-market portfolios and sells short the three low book-to-market 

portfolios. 

tfR ,

tmR ,

t

tSMB

tHML

4. Empirical findings  

4.1. Momentum profits in floor and automated systems 

Preliminary analysis yields the first evidence that there is a tendency for stronger 

momentum returns during the automated sub-period. Fig. 1 plots the continuation 

gains generated on the LSE. The interruption of the lines in 1987 arises because we 

miss one test period at the time of the Big Bang. Fig. 2 shows the structure of 

momentum returns in floor and automated sub-periods. It is found that winners 

outperform the losers by more than 2 percent per month in 39 percent of 

observations during the automated sub-period and only in 19 percent of 

observations during the floor sub-period. The momentum strategy generates losses 

only in 18 percent of observations during the automated sub-period, but in 33 

percent of observations during the floor sub-period.  
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Table 1 shows that in the period before Big Bang monthly momentum profits are 

0.41 percent when three portfolios are studied (Panel A), 0.50 percent when five 

portfolios are employed (Panel B) and 0.73 percent when ten portfolios are 

examined (Panel C). These returns are largely attributable to the performance of the 

winner portfolio. Post-Big Bang, monthly continuation payoffs are 1.38 (three 

portfolios), 1.69 (five portfolios) and 2.14 percent (ten portfolios). Automated share 

trading appears to generate significantly larger momentum returns than shares 

trading on the floor based system. The difference in monthly momentum profits 

between automated and floor based trading is 0.97 (t-statistic=2.42) percent using 

three portfolios, 1.19 (t-statistic=2.50) percent examining five portfolios and 1.41 (t-

statistic=2.38) percent studying ten portfolios. In unreported results, we also find 

that the momentum portfolio achieves a Sharpe ratio equal to 0.44 (0.85) before 

(after) Big Bang and the Mann-Whitney non-parametric test provides identical 

findings to those generated when a parametric test is employed.  

Panel A of Table 2 shows that when the accounting sub-sample is employed, 

findings are rather identical to those reported for the full sample. The correlation on 

momentum profits between the full sample and the accounting sub-sample is strong 

with a Pearson correlation equal to 0.63. During the automated period, market 

values tended to rise and book-to-market ratios fall. However, changes in size and 

book-to-market cannot explain differences in momentum across the two periods. 

The winner portfolio is characterized by higher market values in all samples. The 

arbitrage portfolio in the post-Big Bang period includes larger capitalization 

companies than its counterpart arbitrage portfolio in the pre-Big Bang period. In 

addition, the winner portfolio tends to include shares with lower book-to-market 
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ratios than the loser portfolio, indicating that winners tend to be glamour stocks and 

losers value equities. 

As a robustness test, this study also examines the momentum profitability that the 

same shares generate in both structures by analyzing companies that have return 

information for the duration of the whole sample period. Only 266 shares fulfill that 

condition. Panel B of Table 2 demonstrates that the automated sub-period still 

provides higher monthly momentum profits than the floor sub-period.  

As a control, Panel C of Table 2 examines the magnitude of momentum profits pre 

and post-October 1986 when US data are used2. Unlike with the LSE, there have 

been no major changes in the trading mechanisms of US stock exchanges between 

1975 and 2001; therefore, no major change in the magnitude of momentum 

profitability is expected. Indeed, we find that US momentum returns were 1.40 

percent per month during the pre-October 1986 period and 1.28 percent per month 

during the post-October 1986 period. The difference in momentum gains between 

the two subperiods is neither statistically significant at the 10 percent level nor 

economically significant. Interestingly, momentum profits are stronger in the UK 

than in the US post-October 1986 and smaller pre-October 1986. The distinctive 

pattern of momentum profits in the UK strengthens our arguments that it is changes 

to the trading system that are influencing the size of momentum profits over the 

period we study. 

                                                 

2 We obtained the equal-weighted monthly US momentum returns from October 1975 to October 

2001 from Kenneth French’s website (we thank Kenneth French for making those data freely 

available). Like our study those momentum returns were calculated using deciles to define the 

winner and loser portfolios and unlike our study t-12 to t-2 months were used to form the portfolios. 
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The strong UK momentum returns reported in the post-Big Bang period concur with 

Agyei-Ampomah (2006). Agyei-Ampomah used UK data over the 1988-2003 

period and investigated the profitability of the momentum strategy after transaction 

cost. Using deciles to define the winner and loser portfolios, he reported that the 

representative momentum strategy (6x6) produces strong momentum gains of 33.72 

percent per annum. This level of profitability, which is even stronger than the one 

reported in the present study, reflects pre-transaction cost trading and is largely 

driven by the loser portfolio (L=-24.96 percent per annum).       

This study next examines whether the momentum returns post-Big Bang remain 

strong after controlling for various factors that may account for our empirical 

results. Table 3 shows the magnitude of momentum returns prior to and subsequent 

to Big Bang following bear (Panel A) and bull (Panel B) markets. It is found that 

momentum profits are stronger over the automated sub-period even when we 

consider for bull and bear conditions. For example, following bear markets the 

monthly momentum returns are 3.68 (0.57) percent post- (pre-) Big Bang.   

Table 4 shows the size and book-to-market adjusted portfolio returns. It is found 

that after controlling for size and book-to-market ratios, momentum profits 

decrease, especially when the automated system was in operation. Nevertheless 

continuation profits are economically and statistically significant at the 1 percent 

level using the entire period and abnormal returns are still much larger in the post-

Big Bang period.   

Table 5 shows the portfolio aggregate betas. The winner portfolio displays lower 

aggregate betas than its counterpart loser portfolio. This study also shows that 

portfolios in the automated period tend to have higher betas, but the beta of the 
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arbitrage portfolio ( LW −β ) is –0.22 for the automated period and 0.31 for the floor 

period. Therefore, the arbitrage portfolio generates higher performance and 

experiences lower risk during the automated period. In unreported results, we 

further calculate the aggregate betas of the arbitrage portfolio examining alternative 

lags and leads. When applying up to three lags and three leads, the beta of the 

arbitrage portfolio is always positive during the floor sub-period and negative 

during the automated sub-period.  

Table 6 shows the sensitivities and the intercept of the three-factor model (Fama 

and French, 1993) for the loser portfolio (Panel A), the winner portfolio (Panel B) 

and the arbitrage portfolio (Panel C). In unreported results, the Variance Inflation 

Factor for explanatory variables is around one, indicating that there is no problem 

with multicollinearity. The alpha of the model demonstrates the abnormal profits 

that remained after considering the three factors. When market efficiency holds, 

alpha should be equal to zero. Findings show that the three-factor model cannot 

explain the differences across the two sub-periods. Continuation payoffs remain at 

1.64 percent per month during the period of automation, but lower at 0.80 percent 

per month during the floor period. Using the Chow (1960) test3, this study further 

investigated whether the parameters of the three-factor model for the W-L portfolio 

are statistically different before and after Big Bang. It is found that 21.4=F  and 

                                                 

3 
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−−++
+−−

=
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KRSSRSSRSSF T where is iN the number of observations in sample i, 

iRSS is the residual sum of squares for sample i and K is the number of independent variables. Reject the null 

hypothesis of equality in parameters between the two sets of data if CFF > where  is the critical value for 

numerator and 
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therefore, the null hypothesis (Ho: =− floorLWa , automatedLWa ,− , =− floorLW ,β automatedLW ,−β , 

=  floorLWs ,− automatedLWs ,−
and floorLWh ,− = automatedLWh ,−

) was rejected at the 1 percent level, 

showing that the coefficients of the model for the momentum portfolio are 

significantly different between the two sets of data.  

4.2. Momentum profits in dealer and auction systems 4

Table 7 reports that the magnitude of continuation profits is different when 

comparing quote-driven and order-driven mechanisms. It is found that monthly 

momentum profits for shares trading on the SETS mechanism are 1.20 percent 

when three portfolios are examined, 2.01 percent when five portfolios are studied 

and 2.94 percent when ten portfolios are employed. These abnormal returns are 

driven by the loser portfolio and are significantly higher than those reported by 

shares trading on other systems between 1975 and 2001. Since auction mechanisms 

tend to generate lower execution costs than dealer systems (e.g., Huang and Stoll, 

1996), the difference in the profitability of momentum profits generated by the two 

mechanisms is even greater than revealed by our data.  

Since the auction and dealer systems operate in parallel, we can compare directly 

the magnitude of profits from the two systems for the same periods. These simple 

controls were not possible when making comparisons of the automated and floor 

based periods. It is found that stocks trading on SETS system generate roughly 

comparable momentum profits to those shares traded on the SEAQ.  

                                                 

4 Full adjustment tests were not undertaken in this section, since the SETS sample includes a small 

number of companies to generate a large number of portfolios.    
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Companies trading on SETS and SEAQ are, however, essentially different. Large 

companies trade on SETS and smaller companies on SEAQ. As shown by Hong et 

al. (2000), there exists a negative relationship between size and momentum 

profitability and since companies trading on SETS are the largest on the LSE, we 

would anticipate them to generate lower momentum profits. To adjust for size, 

momentum profits were calculated for the 150 largest companies (by market value) 

that have been trading on the SEAQ dealer system, as these will be most similar to 

those trading on SETS. It is found that the largest 150 shares trading on the SEAQ 

mechanism generate significantly lower continuation profits than their counterpart 

companies trading on SETS when five or ten portfolios are formed. In unreported 

results, the momentum portfolio (using deciles) achieves a Sharpe ratio equal to 

0.46 for shares trading on the SETS system and 0.15 for the largest 150 shares 

trading on the SEAQ.   

We further calculated the continuation profits generated by the stocks on the SETS 

in the previous four years (1994-1997) when they were traded on the SEAQ system. 

It is shown that the SETS stocks generate significantly lower returns when they 

were traded on the dealer system between 1994 and 1997, while the full sample 

demonstrates strong profits.  

5. Conclusions 

This study found that momentum profits are significant when we use all listed 

companies on the LSE (over 6000 shares), a sub-sample of 2000 shares with 

additional accounting information, the SETS sample of 150 shares and a small 

number of 266 stocks with complete return information from 1975 to 2001. It was 

further documented that momentum profits persist after controlling for size, book-
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to-market and risk as defined by the CAPM and the three-factor model. These 

suggested that the momentum effect persists on the LSE using various data sets and 

after controlling for various factors that might influence share returns. 

This study also studied the impact that the trading system might have on momentum 

profits and is the first time this issue has been examined. The motivation to examine 

this field stems from the influence that different stock market structures have on 

stock returns. When momentum profits were measured in the period prior to and 

subsequent to the introduction of SEAQ, it was found that shares trading in the post-

Big Bang period generate higher continuation profits than trading in the pre-

deregulation floor period. When we examined the momentum profits generated 

from trading on SETS, it was shown that shares trading on the SETS system provide 

higher continuation profits than those trading on SEAQ. The difference in 

momentum profits between the two structures widens significantly after taking into 

consideration share market values. Our empirical results concur with the theoretical 

findings of the trader’s hesitation model of Du (2002) and the empirical findings of 

Arena et al. (2005). 
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Table 1 

Momentum profits in floor and automated systems 

 Entire period Floor sub-period  Automated sub-period 

Panel A: 3 portfolios 

L 0.17% 1.40% -0.74% 
2 0.99% 1.79% 0.41% 
W 1.13% 1.80% 0.64% 
W-L 0.96%*** 0.41%* 1.38%*** 

Panel B: 5 portfolios 

L -0.01% 1.32% -1.00% 
2 0.70% 1.62% 0.03% 
3 1.01% 1.84% 0.41% 
4 1.07% 1.78% 0.56% 
W 1.17% 1.82% 0.69% 
W-L 1.18%*** 0.50%* 1.69%*** 

Panel C: 10 portfolios 

L -0.34% 1.15% -1.44% 
2 0.31% 1.49% -0.55% 
3 0.54% 1.56% -0.21% 
4 0.86% 1.68% 0.26% 
5 1.01% 1.88% 0.37% 
6 1.00% 1.79% 0.43% 
7 1.08% 1.78% 0.57% 
8 1.07% 1.77% 0.56% 
9 1.14% 1.76% 0.69% 
W 1.19% 1.87% 0.70% 
W-L 1.53%*** 0.73%* 2.14%*** 

Each company was ranked on the basis of its stock market performance over the previous six 
months. We then placed each security into one of ten equally sized portfolios. The winner portfolio 
(W) contained the best performing decile of securities and the loser portfolio (L) contained the worst 
performing decile of securities. When using three portfolios, winners and losers each comprised 30 
percent of the sample and when using five portfolios, winners and losers each included 20 percent of 
the sample. One month was skipped to avoid potential market frictions identified by Jegadeesh 
(1990) and in the following six-month period, the returns of each of the equal weighted portfolios 
were calculated. This procedure was repeated for each non-overlapping six-month period. The 
difference between winner and loser portfolio returns (W-L) showed the profitability of the 
momentum strategy. *, ** and *** show significance at the 10, 5 and 1 percent level for the W-L 
respectively. 
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Table 2 

Employing different datasets 

 Entire period Floor sub-period Automated sub-period 

Panel A: Accounting sub-sample 

L -0.19% 1.24% -1.22% 
W 1.28% 2.20% 0.62% 
W-L 1.47%*** 0.96%** 1.84%*** 
    
L        size 
         B/M 

232.40 
1.86 

55.76 
2.58 

395.96 
1.18 

W      size 
          B/M 

501.36 
0.98 

70.87 
1.45 

870.36 
0.59 

W-L   size 
          B/M 

268.96 
-0.87 

14.45 
-1.17 

504.62 
-0.60 

Panel B: 266 shares  

L 0.58% 1.81% -0.30% 
W 1.47% 2.16% 0.97% 
W-L 0.89%*** 0.35% 1.28%*** 

Panel C: Obtaining US momentum returns by Kenneth French’s website 

L 0.90 1.26 0.63 
W 2.23 2.67 1.91 
W-L 1.33*** 1.40*** 1.28** 

Panel A shows the momentum profitability when the accounting sub-sample is employed. Panel B 
shows the momentum profitability that the same shares generate in both structures by analyzing 
companies that have return information for the duration of the whole sample period. Only 266 shares 
fulfill that condition. Panel C uses the equal-weighted monthly US momentum returns from October 
1975 to October 2001 from Kenneth French’s website. Like our study those momentum returns were 
calculated using deciles to define the winner and loser portfolios and unlike our study t-12 to t-2 
months were used to form the portfolios. *, ** and *** show significance at the 10, 5 and 1 percent 
level for the W-L respectively.  
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Table 3 

Adjusting for bull and bear markets   

 Entire Period  Floor sub-period  Automated sub-period  

Panel A: Bear state 

L -1.66% 0.42% -2.90% 
W 0.90% 0.99% 0.78% 
W-L 2.57%*** 0.57% 3.68%*** 

Panel B: Bull state 

L 0.19% 1.38% -0.74% 
W 1.31% 2.15% 0.66% 
W-L 1.12%*** 0.77%* 1.41%*** 

The bull state (Panel B) was when the average market return (FTSE-All Share) was non-negative six 
months before the test period, and the bear state (Panel A) was when the average market return was 
negative six months before the test period. 76 percent of the periods identified as bull during the 
floor sub-period and 68 percent during the automated sub-period. *, ** and *** show significance at 
the 10, 5 and 1 percent level for the W-L respectively.  
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Table 4 

Size and book-to-market adjustment 

 Entire period  Floor sub-period  Automated sub-period  

L -0.61% -0.36% -0.79% 
W 0.38% 0.38% 0.39% 
W-L 0.99%*** 0.74%* 1.18%*** 

Securities were first sorted into three groups based on their market capitalization. Companies in each 
size-sorted group were further divided into three additional groups based on their book-to-market. 
All this provided nine portfolios. The returns of these nine size-book-to-market portfolios were 
calculated over the test period as: where is the characteristic-adjusted 

return on security i in month ,  is the return on security i in month , and is the return on 
a size-book-to-market matched portfolio in month t . To undertake this procedure, book and market 
values were required. Since LSPD does not provide book values, our smaller accounting sub-sample 
was utilized for this analysis. *, ** and *** show significance at the 10, 5 and 1 percent level for the 
W-L respectively.  
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Table 5 

Aggregate betas 
 Entire period Floor sub-period  Automated sub-period  

L 1.51 0.91 1.81 
W 1.42 1.22 1.59 
W-L -0.09 0.31 -0.22 

We estimated regressions of portfolio returns against lagging, contemporaneous and leading market 
returns. The aggregate coefficient betas were determined by the number of leads and lags that are 

statistically significant.  where  is the 

return of portfolio 

titkftkm

n

nk
pptftp eRRaRR ,,,,,,, )( +−+=− ∑

−=

β tpR ,

p in month ,  is the one-month Treasury Bill rate in month , and  is 
the return of the proxy market (FTSE All-Share) in month t . The aggregate coefficient beta was the 
sum of betas with different leads and lags. Four lags and two leads were analyzed for the loser 
portfolio and four lags and four leads for the winner portfolio. 
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Table 6 

Controlling for risk with the three-factor model  

 Entire period Floor sub-period Automated sub-period 

Panel A: L 

pa -1.26% 
1.51% -1.08% 

pβ 1.28 
1.20 1.37 

ps 0.87 
1.07 0.69 

ph -0.18 
0.09 -0.23 

2Radj − 0.52 0.70 0.48 

F 108 97 54 

Panel B: W 

pa 0.00% 
2.30% 0.56% 

pβ 0.98 
1.04 0.91 

ps 0.59 
0.69 0.52 

ph -0.35 
-0.06 -0.45 

2Radj − 0.51 0.76 0.41 

F 104 133 41 

Panel C: W-L 

pa 1.26%*** 
0.80%** 1.64%*** 

pβ -0.30*** 
-0.16* -0.46*** 

ps -0.28*** 
-0.37*** -0.18 

ph -0.17** 
-0.15 -0.22** 

2Radj − 0.09 0.06 0.14 

F 10*** 3.87** 10*** 
We estimated the following 
regression: tptptptftmpptftp eHMLhSMBsRRaRR ,,,,, )( +++−+=− β  where  is the 

return of portfolio 
tpR ,

p in month ,  is the one-month Treasury Bill rate in month , and  is 
the return of the proxy market (FTSE All-Share) in month . We generated nine portfolios; shares 
were sorted into three groups based on the market value and then, each size-sorted portfolio was 
divided further into three portfolios based on the book-to-market ratios.  (Small Minus Big) 
shows the portfolio that buys the three small size portfolios and sells short the three big size 
portfolios.  (High Minus Low) shows the portfolio that buys the three high book-to-market 
portfolios and sells short the three low book-to-market portfolios. *, ** and *** show significance at 
the 10, 5 and 1 percent level for the W-L respectively. 
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Table 7 

Momentum profits in dealer and auction systems 

 SETS auction system 
(1997-2001) 

Dealer system 
(1975-2001) 

Dealer system 
(1997-2001) 

150 largest SEAQ 
shares (1997-2001) 

SETS stocks 
(1994-1997) 

Full sample 
(1994-1997) 

Panel A: 3 portfolios 

L -0.79%      
      
      

      
      
      

      
      
      

0.17% -1.66% -1.37% 1.42% -0.29%
W 0.41% 1.13% -0.22% -0.11% 1.85% 1.02%
W-L 1.20% 0.96%*** 1.45% 1.25% 0.43% 1.31%***

Panel B: 5 portfolios 

L -1.14% -0.04% -2.17% -1.99% 1.52% -0.53%
W 0.88% 1.15% -0.33% -0.70% 2.06% 1.12%
W-L 2.01% 1.19%*** 1.85% 1.29% 0.54% 1.65%***

Panel C: 10 portfolios 

L -2.07% -0.35% -2.79% -2.38% 1.90% -0.86%
W 0.86% 1.18% -0.34% -1.30% 3.01% 1.12%
W-L 2.94% 1.53%*** 2.45%* 1.08% 1.10% 1.98%***

*, **, and ***, significant at the 10, 5 and 1 percent level for the W-L respectively.  
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Fig. 1. Momentum profits in floor and automated sub-periods 
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Fig. 2. Structure of momentum returns in floor and automated sub-periods 
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