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What Else Justification Could Be1

Martin Smith

University of Glasgow

According to a captivating picture, epistemic justification is essentially a matter of epistemic or

evidential likelihood. While certain problems for this view are well known, it is motivated by a

very natural thought – if justification can fall short of epistemic certainty, then what else could it

possibly be? In this paper I shall develop an alternative way of thinking about epistemic

justification. On this conception, the difference between justification and likelihood turns out to be

akin to the more widely recognised difference between ceteris paribus laws and brute statistical

generalisations. I go on to discuss, in light of this suggestion, issues such as classical and lottery-

driven scepticism as well as the lottery and preface paradoxes.

I. RISK MINIMISATION

Some philosophers have claimed that, alongside standard Gettier cases, lottery cases

provide further, vivid counterexamples to the traditional analysis of knowledge as

justified, true belief (see Hawthorne, 2003, pp9, Pritchard, 2007, pp4). They reason

along the following lines: Suppose that I hold a single ticket in a fair lottery of one

million tickets. Suppose that I am convinced, purely on the basis of the odds

involved, that my ticket won’t win. Do I know that my ticket won’t win? Intuitively,

I don’t know any such thing, even if it happens to be true. Presumably, though, I have

plenty of justification for believing that my ticket won’t win – after all, given my

1 I have benefited from discussions of this material with a number of people. Particular thanks to Philip
Ebert, Daniele Sgaravatti, Stewart Shapiro, Ernest Sosa and Crispin Wright. Thanks also to an
audience at the first Basic Knowledge Workshop at the University of St Andrews in November 2007.
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evidence, this proposition has a 99.9999% chance of being true. How much more

justification could one want? If I’m not justified in believing that my ticket won’t

win, then surely none of us are justified in believing much at all. Here is a case, then,

in which a justified, true belief fails to qualify as knowledge.

This argument seems straightforward enough, and yet there are reasons for

being a little uneasy. On reflection, lottery cases seem somehow different from

standard Gettier cases. Consider the following: I wander into a room, undergo a

visual experience as of a red wall and come to believe that the wall is red. In actual

fact the wall is red but, unbeknownst to me, it is bathed in strong red light emanating

from a hidden source, such that it would have looked exactly the same even if it had

been white. Intuitively I do not know, in this case, that the wall is red, in spite of the

fact that my belief is both justified and true. There are a number of apparent

differences between these two cases. In particular, while my belief in this case fails to

actually qualify as knowledge, it nevertheless seems to be a good or promising

candidate for knowledge – and would have been knowledge if only conditions in the

world had been more obliging. My belief in the lottery case, however, doesn’t seem

to be the sort of belief that could ever qualify as knowledge. In the standard Gettier

case, the problem seems to lie with the world – and funny, abnormal goings on

therein. In the lottery case, the problem seems to lie with me and the way in which I

form my belief (see Ryan, 1996, pp136, 137).

The Hawthorne/Pritchard argument betrays a commitment to a pervasive and

quite natural way of thinking about epistemic justification. The picture is something

like this: For any proposition P we can always ask how likely it is that P is true, given
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present evidence. The more likely it is that P is true, the more justification one has for

believing that it is. The less likely it is that P is true, the less justification one has for

believing that it is. One has justification simpliciter for believing P (at least at a first

approximation) when the likelihood of P is sufficiently high and the risk of ~P is

correspondingly low. Call this the risk minimisation conception of justification.

This general picture seems to be taken for granted by a broad range of

epistemologists – many of whom have little else in common (in addition to

Hawthorne and Pritchard, see Russell, 1948, chap. VI, Chisholm, 1957, pp28,

Goldman,1986, section 5.5, Pryor, 2004, pp350-351, 2005). The acceptance of this

picture tends to be more self-conscious in the so-called ‘formal epistemology’

tradition where it has been brought to the fore via the paradoxes of rational

acceptability. A number of careful refinements of the basic risk minimisation picture

have been proposed in the hope of circumventing the lottery and preface paradoxes

(see for instance Lehrer, 1974, chap. 8, Pollock, 1990, pp80-81). I shall come to this

in section III.

There is undoubtedly something very attractive about this way of thinking. If

epistemic justification can fall short of epistemic certainty, then what else could it

possibly be if not evidential probability or likelihood? If securing epistemic

justification does not require the complete elimination of error-risk, then what else

could it possibly require if not its minimisation? I hope to present a possible answer

to these questions here – but first a little groundwork is required.
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I assume here that evidence is propositional – that one’s body of evidence

consists of a stock of propositions (Williamson, 2000, section 9.5). Though here is

not the place to defend any particular account of when a proposition qualifies as part

of one’s body of evidence, everything that I say can be reconciled both with Timothy

Williamson’s ‘knowledge account’ of evidence (Williamson, 2000, chap. 9) as well as

traditional empiricist accounts.

A proposition is likely, for one, to be true, just to the extent that it is made

likely by one’s body of evidence. It is worth emphasising that the probability in

question here is not objective frequency or propensity, though the evidence bearing

upon a proposition can, naturally, concern objective frequencies or propensities. The

probability in question is also quite independent of one’s actual estimation of how

likely it is that a proposition is true. Evidential probability is sometimes analysed in

terms of the probability estimate that an ideally rational being would make, given a

body of evidence. This undoubtedly comes close to what is intended – but falls prey

to the problems that standardly plague counterfactual analyses (Shope, 1978,

Williamson, 2000, chap. 9). In any case, no precise analysis is necessary for present

purposes. The notion of evidential probability is easily explained using examples

(typically involving lotteries, dice or random processes of some kind).

The conception of justification that I will work with here is deliberately

minimal. What I mean when I say that one has justification for believing P is simply

that it would be epistemically or intellectually appropriate for one to believe or accept

that P is true, given the evidence at one’s disposal. When I say that one has more

justification for believing P than Q what I mean is that it would be more appropriate,
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given one’s evidence, for one to believe that P than it would be for one to believe that

Q.

Justification, I take it, is what makes a belief a good candidate for knowledge.

I’m happy to leave this suggestion somewhat imprecise for the time being, but the

basic idea is this: My belief is justified just in case I have done my epistemic bit – the

rest, as it were, is up to fate. My belief will qualify as knowledge provided that the

world obliges or cooperates – but I am not required to do anything further2. The

traditional analysis of knowledge can, I think, be seen as a somewhat clumsy way of

trying to capture this basic idea. One lesson of the Gettier cases is that there are other

ways, besides falsity, in which the world can fail to cooperate. While this connection

between justification and knowledge will be helpful for what is to come, I won’t rely

upon it too heavily.

I am taking it for granted here that believing or accepting a proposition as true

involves a commitment over and above merely regarding it as probable. In one sense

this seems quite obvious – to accept that P is probable is precisely to adopt an attitude

that does not risk error if P is false. To accept that P is probable is a way of ‘hedging

one’s bets’ – of avoiding an outright commitment to P. It seems as though I can

regard it as extremely probable that, say, the number of stars in the universe is a

composite number or that ticket #5472 will lose the lottery without actually believing

or accepting either of these things. This view of acceptance is, in any case, a part of

2 Here is one way of making this suggestion more precise, due to Bird (2007): If a subject S with
mental states M forms a belief, then that belief is justified provided there is some possible world in
which S, with the same mental states, forms a corresponding belief that amounts to knowledge. This, I
think, comes close to being right. However, given S5, this proposal would appear to have the
consequence that the justificatory status of a belief is necessitated by one’s mental states and the way
the belief is formed. There may be things to be said in favour of this contention – but it does seem to
be an excessively strong rendering of the intuitive suggestion in the text.
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the risk minimisation picture as I see it. In his Rules for the Direction of the Mind,

Descartes famously advised that we should never believe that which is merely

probable (rule II). I take it for granted that such advice is, at the very least,

intelligible. (In fact, I am inclined to think that, when appropriately construed,

Descartes’ advice is perfectly sound – more on this later).

Obviously, if the evidential probability of P given evidence E is very high,

then any subject in possession of such evidence is epistemically entitled to offer a

generous estimate of P’s probability. What I hope to show, in the forthcoming

sections, is that a body of evidence can, in some cases, be so constituted as to allow

for a very generous estimate as to the probability of a proposition P, whilst mandating

a suspension of judgment as to whether or not P is in fact true.

Before proceeding, it is worth mentioning that, provided evidential

probabilities conform to the probability calculus, justification will not, on the risk

minimisation picture, be closed under what is sometimes called multi-premise

deductive consequence. That is to say, if one has justification for believing P and

justification for believing Q, it will not follow automatically, on the risk minimisation

conception, that one has justification for believing the deductive consequences of P

and Q. Conjunction aggregates risk – even if the probabilities of P and of Q exceed

the justification threshold, the probability of (P  Q) need not. In terms of epistemic

probability, the conclusion of a multi-premise deductive argument can be weaker than

any of the premises.
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This is undeniably a curious result. If multi-premise closure fails, then there

must be possible situations in which it is intellectually appropriate to accept the

premises of a deductive argument, accept its validity and yet remain agnostic about its

conclusion. At this point I won’t make too much of this, however. In fact, I shall

remain officially neutral on the principle here, though I will have a little more to say

about it in section III. The risk minimisation conception would appear to be

consistent with the slightly weaker idea that justification is closed under single

premise deductive consequence.

II. NORMIC SUPPORT

Consider the following example, adapted from one given by Dana Nelkin (2000,

pp388-389): Suppose that I have set up my computer such that, whenever I turn it on,

the colour of the background is determined by a random number generator. For one

value out of one million possible values the background will be red. For the

remaining 999 999 values, the background will be blue. One day I turn on my

computer and then go into the next room to attend to something else.

In the meantime Bruce, who knows nothing about how my computer’s

background colour is determined, wanders into the computer room and sees that the

computer is displaying a blue background. He comes to believe that it is. Let’s

suppose, for the time being, that my relevant evidence consists of the proposition that

(E1) it is 99.9999% likely that the computer is displaying a blue background, while

Bruce’s relevant evidence consists of the proposition that (E2) the computer visually
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appears to him to be displaying a blue background (I will consider other ways of

describing the evidential situation in due course.)

Here are a few preliminary observations about this case: If I were to believe or

accept that the computer is displaying a blue background before walking back into the

computer room, it would be natural to describe this belief as a presumption (albeit a

very safe one), while it does not seem at all natural to describe Bruce’s belief this

way. Second, Bruce’s belief would appear to be a very promising candidate for

knowledge – indeed, it will be knowledge, provided we fill in the remaining details of

the example in the most natural way. My belief, on the other hand, would not

constitute knowledge even if it happened to be true. If there were a power failure

before I had a chance to look at the computer screen, I might well think to myself ‘I

guess I’ll never know what colour the background really was’. But Bruce certainly

wouldn’t think this.

If someone were to ask Bruce ‘what colour is the computer background?’, he

would be perfectly epistemically entitled to reply ‘it’s blue’. But if someone were to

ask me the same question, it seems as though I ought to be more circumspect, and say

something along the lines of ‘It’s overwhelmingly likely that the background is blue –

but I haven’t actually seen it’. Presumably, this is what I ought to believe too. Bruce

is not required to do any further investigation into the background colour – even

though he easily could by, for instance, asking others to have a look. I, on the other

hand, ought to do more investigation – by, for instance, going and having a look

myself – before I rest on my laurels.
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The implication of these considerations is clear enough: Bruce has justification

for believing that the computer is displaying a blue background while I do not. In

spite of this, the proposition that the computer is displaying a blue background is more

likely for me to be true than it is for Bruce. While Bruce’s evidence E2 does make it

highly likely that the computer is displaying a blue background, it clearly does not

guarantee that it is. After all, Bruce could be hallucinating, or he could have been

struck by colour blindness, or there could be some coloured light shining on the

screen etc. These are all rather unlikely – but presumably the likelihood, given

Bruce’s evidence E2, that the computer is displaying a blue background would be no

where near as high as 99.9999%. This, of course, is precisely how likely the

proposition is, given my evidence E1
3. In believing that the computer is displaying a

blue background, Bruce is running a higher risk of error than I am.

Here, then, are a cluster of intuitions that don’t appear to fit in all that well

with the risk minimisation picture. It may be rather tempting, however, for one to

simply disregard such intuitions as confused or naïve. Perhaps we are simply

accustomed to relying upon perception in such matters and suspending any scruples

about its fallibility. Once we do reflect carefully upon the fallibility of perception, so

this thought goes, these troublesome intuitions are exposed as a kind of groundless

3 One may think of this as an instance of what of David Lewis (1980) called the ‘principal principle’.
According to the principal principle, in a nutshell, the epistemic probability of a proposition P
conditional upon a body of evidence E containing the proposition that the objective probability of P at
time t = x, will itself be x provided that E contains only admissible evidence – in particular, no relevant
evidence pertaining to things that happened after t. Time t, in this case, could be thought of as the time
at which I turn on my computer and leave the room.

According to one view, however, objective probability values must be extremal in a
deterministic world (see Shaffer, 2007). If one took such a view, and the world were deterministic,
then my evidence in the case described above could not concern objective probabilities – it would need
to be reinterpreted as evidence about hypothetical long-run frequencies or some such.
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prejudice. Perhaps this is the right thing to say – but I shall investigate a possible way

of giving these intuitions more credit.

Let’s reconsider the relationship between my evidence E1, Bruce’s evidence E2

and the proposition that (P) the computer is displaying a blue background. Clearly,

neither E1 nor E2 entails that P is true. It would be perfectly possible for E1 and E2 to

both be true while P is false. Notice, though, that if E2 is true and P is false, then this

would appear to be a circumstance crying out for explanation of some kind. If Bruce

visually perceives that the computer is displaying a blue background when in fact it is

not, then there has to be some explanation as to how such a state of affairs came

about. Possible explanations have already been floated above – perhaps Bruce is

hallucinating, or has been struck by colour blindness, or there is funny lighting etc. It

can’t be that Bruce just misperceives – there has to be more to the story.

The circumstance in which E2 and P are both true, we might say, is

explanatorily privileged over the circumstance in which E2 is true and P is false. E1

and P, however, do not appear to stand in this relationship. Although it would be very

unlikely for E1 to be true and P false, this is not something that would require special

explanation. All of the random numbers that might be generated by my computer are

on an explanatory par. The occurrence of the one red number does not require any

more explanation than the occurrence of the 999 999 blue numbers. This, indeed, is

part of what is involved in conceiving of a process as genuinely random.

If Bruce’s belief that the computer is displaying a blue background turned out

to be false then, given the evidence upon which it is based, there would have to be
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some explanation for his error – either in terms of perceptual malfunction or

disobliging features of the environment. If my belief that the computer is displaying a

blue background turned out to be false, there need not be any available explanation for

my error. The buck, as it were, may simply stop with me and the way that I chose to

form my belief.

The idea that normalcy is purely a matter of statistical frequency or propensity

is, undeniably, an attractive one. Adopting it, though, forces us to give up on another

attractive idea – namely, that normal conditions require less explanation than

abnormal conditions do. Sometimes when we use the term ‘normal’ – when we say

things like ‘It’s normal to be right handed’ – we might be making a straightforward

claim about statistical frequency. Other times – when we say things like ‘Tim would

normally be home by six’ or ‘When I turn my key in the ignition, the car normally

starts’ – part of what we are trying to express, I believe, is that there would have to be

some satisfactory explanation if Tim wasn’t home by six or the car wasn’t starting.

In this sense of ‘normal’ it could be true that Tim is normally home by six,

even if this occurrence is not particularly frequent. What is required is that exceptions

to this generalisation are always explicable as exceptions by the citation of

independent, interfering factors – his car broke down, he had a late meeting etc. If

this condition is met, then the best way to explain Tim’s arrival time each day is to

assign his arrival by six a privileged or default status and to contrastively explain

other arrival times in relation to this default (see Pietroski and Rey, 1995).
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This may be possible even if the number of occasions on which Tim arrived

home by six was outweighed by the number of occasions on which he arrived home

later. Suppose Tim is significantly delayed, day after day, by protracted roadworks on

his usual route home and, were it not for the roadworks, he would always arrive home

by six. There’s a sense of ‘normal’ on which it remains true that Tim normally arrives

home by six – we could imagine saying ‘Tim would normally arrive home by six, but

these blasted roadworks just keep delaying him day after day’.

We cannot explain everything at once – we need to abstract away from certain

things in order to expose underlying patterns. This is how the notion of explanatory

privilege, and indeed of an explanatory hierarchy, arises. The notion of explanatorily

privileged conditions can be usefully compared to the familiar idea of an idealised or

simplified model of a potentially complex actual phenomenon.

I will not attempt here to give a full, philosophically satisfactory account of

explanation and idealised normalcy – in fact, everything that I say here will be

compatible with a number of different ways of thinking about this. My aim is more

modest – to present, in rough outline, an alternative picture or a kind of normalcy that

stands apart from the statistical conception that can so easily entrance us.

Given my evidence E1, P would frequently be true. Given Bruce’s evidence

E2, P would normally be true. That is, given Bruce’s evidence, if P turned out to be

false, then this could be explained via some independent interfering factor. We might

say, in this case, that E2 normically supports P. Given E1, if P turned out to be false,

then no such explanation need be available. E1 does not normically support P. The
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distinction between the E1-P relationship and the E2-P relationship might fruitfully be

compared to the distinction between statistical generalisations and normic or ceteris

paribus generalisations widely accepted in the philosophy of science (see, for

instance, Millikan, 1984, pp5, 33-34, Pietroski and Rey, 1995, 1.2). It might also be

compared to the distinction, widely recognised in the philosophy of language,

between generics that contain frequency adverbs – like ‘As are usually B’, ‘As are

typically B’ – and generics that are ‘unmarked’ – generics of the form ‘As are B’ (see,

for instance, Leslie, 2008. I hope to pursue these comparisons elsewhere).

Let’s suppose that possible worlds can be ranked according to their

comparative normalcy and say, slightly more formally, that a body of evidence E

normically supports a proposition P just in case the most normal worlds in which E is

true and P is false are less normal than the most normal worlds in which E is true and

P is true. Further, a body of evidence E normically supports a proposition P more

strongly than it normically supports a proposition Q just in case the most normal

worlds in which E is true and P is false are less normal than the most normal worlds in

which E is true and Q is false4.

4 I am assuming, for simplicity, that there will be maximally normal worlds in which P is true for any
contingent proposition P. That is, I’m assuming that we cannot have a situation in which, for each P-
world, there is a more normal P-world. If we relax this assumption, we will need to alter the
characterisation of normic support as follows: A body of evidence E normically supports a proposition
P just in case some world at which E is true and P is true is more normal than any world at which E is
true and P is false. The characterisation of comparative normic support would need to be revised
accordingly. I ignore this complication in the body text.

If we wish to think about normic support as a kind of intensional propositional operator, then
we should, in addition, specify that it be vacuously satisfied in the case of an impossible antecedent –
an antecedent that is true at no possible worlds. Amongst other things this will serve to ensure that
normic support is weaker than classical entailment. Since we are only interested in certain instances of
this relation, however, and this is not a feature that a possible corpus of evidence could have, this
makes no difference for present purposes.
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Here, then, is a support relation that evidence may bear to a proposition that

does not simply reduce to probabilification. It is not difficult to appreciate, at least in

a rough and ready way, why this relation might have some connection with epistemic

justification. If one believes that a proposition P is true, based upon evidence that

normically supports it then, while one’s belief is not assured to be true, this much is

assured: If one’s belief turns out to be false, then the error has to be attributable to

mitigating circumstances – the error can be explained in terms of disobliging

environmental conditions, or cognitive or perceptual malfunction or some such.

Errors that do not fall into this category are, in effect, errors for which I am

intellectually responsible. And if I leave myself open to such error, then I am

intellectually negligent – even if my convictions turn out to be right.

What I propose is that, in order for one to have justification for believing P, it

is necessary that one’s body of evidence E normically support P – it is necessary that

the most normal worlds in which E is true are worlds in which P is true. When one

classifies a belief as justified one is effectively committed to the claim that, if the

belief is not true then this failure will be independently explicable in terms of some

identifiable interfering factor. The probability of P given E can reach any level (short,

perhaps, of one) without this condition being met. Thus, the probability of P given E

can reach any level (short, perhaps, of one) without one having justification for

believing P5. To borrow a turn of phrase used by Pietroski and Rey (1995, pp84), the

5 I am inclined to think that there will be possible cases in which one lacks justification even for
propositions that have a probability of one, given one’s evidence. As is often noted, zero probability
does not imply impossibility or even falsity, at least where infinite probability spaces are concerned.
Suppose X is a standard, continuous random variable, such that the probability of it assuming any one
of the particular values over which it ranges is zero. Although the probability that X = x is zero and the
probability that X  x is one, this is perfectly consistent with there being possible worlds, compatible
with my evidence, in which X assumes the value x. In this case, my evidence need not entail the
proposition that X  x and need not normically support it either.
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notion of justification answers to the need to idealise in a complex world, not the need

to describe a chancy one.

On my account, in order for one to have more justification for believing a

proposition P than a proposition Q, it is necessary that one’s evidence E normically

support P more strongly than Q – it is necessary that any world in which E is true and

P is false be less normal than the most normal worlds in which E is true and Q is false.

The probability of P given E can exceed the probability of Q given E without this

condition being met. The probability of P, given evidence E, can exceed the

probability of Q, given E, without one having more justification for believing P than

Q6.

The property of being normically supported by a body of evidence would

appear to be closed under multi-premise deductive consequence. That is, if E

normically supports P and E normically supports Q then E normically supports P  Q.

This, at any rate, is a consequence of the way that normic support has been modelled

here. Further, given the model that has been employed here, it can be shown that the

degree of normic support that a conjunction enjoys, as measured by the abnormality

of the most normal worlds in which one’s evidence E is true and the conjunction false,

will in fact be equal to the degree of normic support enjoyed by the least supported

6 The following is suggested by this proposal: If one has more justification for believing P than Q, then
one must have justification for believing P. If the most normal worlds in which one’s evidence E is
true and P is false are less normal than other worlds in which E is true, then the most normal worlds in
which E is true must be worlds in which P is true (assuming, of course, that there are maximally normal
worlds at which E is true). Some gradable adjectives have a corresponding feature – for instance if S is
wetter than T, it would appear to follow that S must be wet. It certainly sounds very odd to say ‘S is
wetter than T, but S is not wet’. It does not sound at all odd, in contrast, to say something like ‘S is
taller than T, but S is not tall’. It does sound odd, to my ear at least, to say ‘One has more justification
for believing P than Q, but one does not have justification for believing P’.
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conjunct. In terms of normic support, the conclusion of a multi-premise deductive

inference will be as strong as the weakest premise7.

Provided we hold our standards of normalcy (our ranking of possible worlds)

constant, the most normal worlds in which E is true and P  Q is false will either be

the most normal worlds in which E is true and P is false, or the most normal worlds in

which E is true and Q is false – whichever are more normal. Thus, the degree of

normic support that E affords P  Q will be equal to either the degree of normic

support that E affords P or the degree of normic support that E affords Q – whichever

is lower.

As I hinted above, my description of the computer example and, in particular,

of the evidence available to Bruce and myself, is potentially contentious – in fact, it

takes for granted a certain kind of traditional, empiricist conception of evidence. One

who is impressed by the knowledge account of evidence might object to my

description as follows: Once Bruce sees that the computer is displaying a blue

background, he simply comes to know that it is. According to the knowledge account

of evidence, this suffices for the proposition to qualify as part of Bruce’s body of

evidence. In this case, the probability, conditional upon Bruce’s evidence, that the

computer is displaying a blue background will in fact be one and, thus, will exceed the

probability that the computer is displaying a blue background, conditional upon my

evidence, contrary to what I have claimed.

7 Given a certain assumption, possible worlds could be assigned natural numerical normalcy degrees –
w is normal to degree one (maximally normal), x is normal to degree eleven etc. – and normic support
strength could be gauged in an associated way. The required assumption is that we cannot have infinite
ascending chains of increasingly normal worlds – that is, the normalcy ranks must be well-ordered. I
remain neutral on this here. Even without this assumption we are left with comparative truths about
world normalcy and, correspondingly, about normic support strength. I hope to discuss these issues
elsewhere.
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I think there is something rather unsatisfying about the description that the

knowledge account offers in this case – though it is rather difficult to put one’s finger

on precisely what it is. The question that the case naturally prompts is something like

this: ‘How is it that Bruce’s belief qualifies as knowledge while mine never could?’

To say that the evidential probability of P is higher for Bruce than it is for me might

constitute one kind of informative answer – but not, it seems, if it is motivated by the

knowledge account of evidence. In this case, the only reason that the evidential

probability of P is taken to be higher for Bruce than for me is because Bruce’s belief

is taken to qualify as knowledge whereas mine is not – in which case it is clear that

the original question has not been answered at all. It would appear, in fact, that the

knowledge account will preclude any informative answer that involves a comparison

between the evidence available to Bruce and the evidence available to me. Far from

offering us any insight into the case, this would only seem to deepen our puzzlement.

We need not pursue this further, however. Fortunately, it is relatively easy to

circumvent this kind of objection. We need only point out that the force of the

computer example does not depend in any way upon the actual background colour.

We can simply imagine that the background colour is red and Bruce really is

hallucinating (unbeknownst to him of course). In this case, even the proponent of the

knowledge account would, presumably, have to restrict Bruce’s relevant evidence to

something along the lines of E2 (see Williamson, 2000, pp198). But this changes

nothing. It would still be true that Bruce has justification for believing that the

background is blue (while I do not).
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The example that I have used in this section is undoubtedly rather contrived.

While there is nothing particularly remarkable about Bruce’s epistemic situation, the

evidence that I possess – evidence, in effect, about the probabilistic features of a

random process – is somewhat unusual. I think that evidence of this kind makes for

the most compelling example of evidence that is purely probabilifying – that supports

a proposition in a purely probabilistic fashion. While I do think that other, more

commonplace, kinds of evidence share this feature, this is not something I will argue

here. What is important for present purposes is that justification and evidential

likelihood can come apart in principle, regardless of the extent to which they come

apart in practice.

III. SOME PUZZLES

Lottery cases famously raise a number of related epistemic puzzles. Perhaps the best

known of these is the so-called ‘lottery paradox’ first described by Henry Kyburg

(1961). The puzzle is essentially this: Consider a fair lottery with one thousand

tickets and one guaranteed winner. It seems that one would be justified in accepting,

for any given ticket, that it will lose. Given the set up, one also knows that some

ticket will win. If justification is closed under multi-premise deductive consequence

then one would be justified in accepting a contradiction – namely, that no ticket will

win and that some ticket will win.

Kyburg’s preferred and influential strategy for resolving the problem was to

reject the principle of multi-premise closure. One general problem with this approach

is that, even without multi-premise closure, one is forced to tolerate a conclusion that
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is somewhat unpalatable – namely, that one can be justified in holding each of a

corpus of beliefs known to be jointly inconsistent.

Many epistemologists, in any case, have attempted to hold on to multi-premise

closure and to motivate instead the denial of the first premise – that one has

justification for believing, of any given ticket, that it will lose. There has been a

certain tradition of attempts to engineer this result, whilst leaving the broad risk

minimisation conception of justification as intact as possible. I don’t propose to

review these attempts here. The following, which is the essence of the proposal made

by Lehrer (1974, chap. 8) is representative: One has justification for accepting a

proposition if it has a probability that exceeds the threshold and, in addition, exceeds

the probability of any other proposition that is negatively relevant to it (where a

proposition P is negatively relevant to Q just in case the evidential probability of Q is

lower on the assumption that P than otherwise). There has also been a certain tradition

of arguments exposing such attempted revisions as disastrous (Douven and

Williamson, 2006 is perhaps the most recent and comprehensive example).

My inclination, of course, is also to reject the first premise – but not to try and

reconcile its rejection within a risk minimisation framework. As Jonathan Vogel

observes:

…although winning a lottery on a particular ticket is unlikely or improbable, it would not be

abnormal in some intuitive sense, for the ticket one holds to turn out to be a winner.

(Vogel, 1990, pp16)

I have claimed that, in order for one to have justification for believing a proposition P,

one’s body of evidence must normically support P. One’s only relevant evidence in

the lottery case is the fact that the lottery is fair and that there are one thousand
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tickets. This evidence does not normically support, for any particular ticket, the

conclusion that it will lose – the one thousand possible outcomes will all be on an

explanatory par. Amongst the most normal worlds in which the evidence holds true

will be worlds in which each ticket wins. Thus, one lacks justification for believing,

of any particular ticket, that it will lose.

One reason that people have traditionally been squeamish about denying that

one can justifiably believe that a given ticket will lose a fair lottery is for fear of

inviting radical scepticism. If we cannot be justified in believing, of a single ticket,

that it will lose, then surely we cannot be justified in believing much at all. Richard

Foley clearly expresses this worry:

…most of us, on reflection, would be likely to regard the evidence we have for the claim that

ticket one will not win to be as strong as the evidence we have for most of the claims that we

believe. For instance, we would be likely to regard the evidence for it as being at least as strong

as the evidence we have for the claim that the room we have just left still has furniture in it…

(Foley, 1987, pp245)

My response to Foley’s concern is, perhaps, easy to anticipate: ‘Strong’, in this

context, is effectively ambiguous. On one reading what Foley writes is true, on

another it is false.

Suppose that one’s relevant body of evidence E consists of the proposition that

I saw furniture in the room 30 seconds ago and the proposition that I hold a single

ticket in a fair lottery of one million tickets. Let P be the proposition that the room

has furniture in it now and Q be the proposition that I will lose the lottery. What

seems clear is that P is no more probable, given E, than Q is – indeed Q may be more

probable. Foley supposes, however, that this is all that there is to say about the
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bearing of the evidence – and this is a mistake. E normically supports P but does not

normically support Q. If E were true and P false, there would need to be some

explanation for this – such as very fast-working burglars or the interventions of a

mischievous demon. While E probabilistically supports Q more strongly than P, it

normically supports P more strongly than Q.

Even if this immediate threat is defused, though, a further, and somewhat

subtler, sceptical menace still looms. As John Hawthorne (2003) writes:

Just as I have excellent statistical grounds for supposing that any given lottery ticket will lose, I

have excellent statistical grounds for supposing that a given apparently healthy person will not

have a fatal heart attack very soon. Just as there was no special reason in advance for supposing

that the winning ticket was going to win, there was no reason in advance for expecting the worst

for some heart attack victim who was apparently healthy. And just as many of our ordinary

commitments entail that this or that person will lose a lottery, many of our ordinary

commitments entail that this or that person will not soon suffer a fatal heart attack.

(Hawthorne, 2003, pp3)

If one cannot have justification for believing, in the absence of special, non-

statistical reasons, that one will lose a fair lottery, then it seems as though one cannot

have justification for believing, in the absence of special, non-statistical reasons, a

range of relevantly similar things – for instance, that one will not soon have a fatal

heart attack. Given that we often believe things that entail such propositions then,

provided justification is closed under single premise deductive consequence, this

would appear to usher in a widespread scepticism.
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Although we have excellent statistical grounds for thinking that an apparently

healthy person will not soon suffer a fatal heart attack, this is not to say however that

we conceive of this possibility as the outcome of a completely random process, like a

lottery. While there may be a kind of pessimistic mind-set in which we view future

health as tethered to pure chance, generally speaking we regard the continued health

of an apparently healthy individual as being more normal, in the sense that his

suddenly suffering a fatal heart attack would be a circumstance requiring special

explanation. That is, if an apparently healthy person were to suddenly drop dead of a

heart attack, this would require special explanation in a way that his continued health

would not – so, at any rate, we are inclined to suppose.

This is a significant disanalogy with propositions about lottery outcomes.

Recall Vogel’s claim above: It would not be abnormal, in some intuitive sense, for my

ticket to win a fair lottery, no matter how unlikely that outcome may be. And yet we

would regard it as abnormal, in just this sense, for an otherwise healthy individual to

drop dead of a heart attack. On the view I have developed, one can be epistemically

entitled to disregard possibilities that are genuinely abnormal – but not possibilities

that are merely unlikely8.

Similar remarks, I think, can apply to Hawthorne’s other examples of so-called

‘lottery propositions’ such as the president has not died within the last few minutes,

my refrigerator is still running and my plane will not crash. The analogy between

8 If I have justification for believing, of an apparently healthy individual, that he won’t soon suffer a
fatal heart attack then, given the multi-premise closure principle, I can presumably have justification
for believing, for arbitrarily large collections of apparently healthy people, that none will soon suffer
fatal heart attacks. This result does not strike me as clearly disastrous – but it is for reasons of this kind
that I remain neutral on multi-premise closure here. I will have a more to say about this in due course.
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these propositions and propositions about lottery outcomes is not robust. Scepticism

about the latter need not overflow into scepticism about the former.

While the class of ‘lottery propositions’ may not be as broad as Hawthorne

suggests, it may of course turn out that some of our ordinary commitments do entail

the rejection of possibilities that are merely unlikely, as opposed to genuinely

abnormal – certainly there can be no general a priori guarantee to the contrary. In my

view, we are not justified in undertaking any such commitments – at least not without

some probabilistic qualification. The question as to which commitments may fall into

this class is a somewhat delicate one, and one I don’t propose to investigate further

here.

Another puzzle associated with lottery intuitions is that emphasised by

Harman (1968), Cohen (1988, section IV) and DeRose (1996) (see also Sorensen,

2006): Suppose that Bob has bought a single ticket in two lotteries, both of which are

guaranteed to have a single winner. The first of these is a relatively small community

lottery in which just one hundred tickets were sold and the other is a nationwide

lottery with a total of one million tickets. Suppose that both of these lotteries have

now been drawn and Bob has not won either. Bob watches the drawing of the

community lottery on TV and hears the announcer read out the number of the winning

ticket which, naturally, is not his. The broadcast of the nationwide lottery draw,

however, has been delayed and Bob has not yet seen it.

In seems clear, in this situation, that Bob knows that he has lost the community

lottery, but does not yet know that he has lost the nationwide lottery. A number of
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further intuitions seem to accompany this: It seems reasonable for Bob to assert that

he has lost the community lottery, but premature for him to assert that he has lost the

nationwide lottery. If asked about the nationwide lottery, Bob ought to say something

like ‘It is very likely that I’ve lost’ or ‘I’ve almost certainly lost’. This sort of

qualification is not required when it comes to the community lottery. It also seems

reasonable for Bob to throw away his community lottery ticket stub or to sell it for a

cent (perhaps to someone who has not yet seen the draw). But it would certainly not

be reasonable for Bob to throw out his nationwide lottery ticket stub or to sell that for

a cent.

In spite of all of this, it is very plausible to think that the probability, given

Bob’s evidence, that he has lost the community lottery is actually lower than the

probability, given that same evidence, that he has lost the nationwide lottery. After

all, what Bob sees on TV does not guarantee that he has lost the community lottery.

The person drawing the lottery could have misread the ticket, or hallucinated a

different number etc. Such things may not happen often but presumably the

likelihood of such an occurrence would be somewhat higher than one in ten thousand.

How is it that Bob can know that he has lost the community lottery, reasonably assert

that he has lost the community lottery and even reasonably tear up his ticket stub

when the likelihood, for him, that he has lost the community lottery is actually lower

than the likelihood that he has lost the nationwide lottery?

Perhaps the most common putative solution to this problem exploits the notion

of sensitivity (Dretske, 1971, DeRose, 1996). If Bob had won the community lottery

then he would have heard his ticket number read out on TV. That is, if Bob had won
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the community lottery, his evidence would have been different. We might say, in this

case, that Bob’s evidence is sensitive to his losing the community lottery. In contrast,

if Bob had won the nationwide lottery, he wouldn’t have seen or heard anything

different – his evidence would have been exactly the same.

This is a striking observation – but it cannot be the full story as to what is

driving our intuitions. Imagine now a slightly different case in which Bob has won

the community lottery, but the person drawing the lottery actually does hallucinate a

completely different number on the winning ticket. As a result, he reads out the

wrong number at the televised draw that Bob sees. It is just as reasonable, in this

case, for Bob to assert that he has lost the community lottery. It is just as reasonable

for Bob to throw away his community lottery ticket stub or to sell it for a cent. As

tragic as such actions would be, we could I think forgive Bob for taking them. And if

he did act in this way, he may well have a legitimate claim to compensation of some

kind. Bob, of course, does not know in this case that he has lost the community

lottery, but his belief would appear to be a very good candidate for knowledge.

The notion of sensitivity, needless to say, is no help here. Bob’s evidence, in

this case, is clearly not sensitive to his having lost the community lottery – after all he

has actually won the community lottery. Of course, if we are able to resolve the

puzzle in this more difficult case, then presumably we won’t need to invoke

sensitivity considerations in order to resolve it in the former case.

This new case also shows us that the knowledge account of evidence cannot

offer a satisfactory resolution of this puzzle. With respect to the original case, the
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proponent of the knowledge account could protest that the proposition that Bob has

lost the community lottery is part of Bob’s evidence and thus more likely, given that

evidence, than the proposition that he has lost the nationwide lottery. But this cannot

be maintained with respect to the new case. In the new case, the proponent of the

knowledge account will have to admit that Bob’s having lost the nationwide lottery is

more likely, given his evidence, than his having lost the community lottery.

My account of justification offers a straightforward resolution that will apply

in both cases: If Bob had won the community lottery in spite of what he saw on TV,

then this would require some explanation – the announcer hallucinated or misread the

ticket number or some such. In contrast, if Bob had won the nationwide lottery, in

spite of the odds against it, then no special explanation would be needed. Someone’s

ticket had to win – it might just as well have been Bob’s as any other. The one

million possible outcomes are on an explanatory par. Bob’s evidence (in both the

easy and difficult case) normically supports the conclusion that he has lost the

community lottery, but does not normically support the conclusion that he has lost the

nationwide lottery. As a result, Bob has justification for believing that he has lost the

community lottery, but not for believing that he has lost the nationwide lottery. This

is why it is reasonable for Bob to assert that he has lost the community lottery, but not

that he has lost the nationwide lottery. This is why it is reasonable for Bob to act on

the proposition that he has lost the community lottery, but not on the proposition that

he has lost the nationwide lottery.

The fact that one should not in general assert that one has lost a fair lottery,

purely on the basis of the odds involved, has been observed by others – notably
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Williamson (2000, section 11.2) and Hawthorne (2003, section 1.3). Both

Williamson and Hawthorne take this observation to support the knowledge account of

assertion, according to which one should only assert what one knows to be true. Put

simply, their reasoning is something like this: If one should not assert that one has lost

a fair lottery, then no epistemic probability threshold shy of one can suffice for

warranted assertion. Since only one’s knowledge has an epistemic probability of one,

one should only assert what one knows to be true.

The assumption here is clear enough: Any appropriate epistemic standard less

demanding than knowledge will have be understood in terms of an epistemic

probability threshold, shy of one. Williamson does consider the possibility that

evidence may, in some cases, support propositions in a way that does not reduce to

probabilification, but then falls back on something like the risk minimisation

conception, claiming that, if one has warrant to assert a proposition, then surely one

has warrant to assert any proposition that is more likely for one to be true

(Williamson, 2000, pp251). Once we give up this principle, we can see that the

knowledge account of assertion draws little support from consideration of lottery

cases (see Nelkin, 2000, Douven, 2006, pp464, Kvanvig, 2007).

A third epistemic puzzle associated with lotteries is that identified by Jonathan

Vogel (1999) and discussed by Hawthorne (2003, section 1.2): Suppose that every

year Sue’s community hosts a hundred ticket lottery and Sue is in the habit of buying

a ticket. Clearly, I cannot know, purely on statistical grounds, that Sue will not win

this year’s community lottery. However, it seems that I can know that Sue is not

going to win the community lottery every year for the next fifty – at least this strikes
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many as intuitive. But my only evidence for believing this, presumably, is statistical.

Furthermore, if Sue were to buy a single ticket in a mammoth lottery with 10100

tickets, we would once again have the intuition that I cannot know that she’ll lose –

even though, given a few idealising assumptions, the odds of this happening are

exactly the same.

Notice, though, that Sue’s winning the community lottery fifty years running

would be a circumstance that would undoubtedly rouse our suspicions. More

precisely, it would be a circumstance that would motivate us to seek out some special

explanation – the lottery is rigged or biased or a guardian angel is smiling on Sue or

some such. We can easily imagine ourselves exclaiming ‘Sue has won the lottery

every year for the past fifty?! There has to be some explanation!’ What this shows is

that we are not inclined to treat the 10100 possible outcomes of fifty community

lotteries as being on an explanatory par – although we find it natural to treat the 10100

mammoth lottery outcomes this way. In so far as one thinks that Sue’s winning the

community lottery fifty years running would be a circumstance demanding special

explanation, one will regard oneself as having tangible reason to prefer the other

possible outcomes.

My only evidence for thinking that Sue will not win fifty years running is

probabilistic – and yet it is extremely tempting for me to think about the situation in

non-probabilistic terms. There is considerable evidence to suggest that people are

strongly disinclined to accept that event sequences exhibiting a recognisable pattern

could arise through a purely random process. People tend to perceive such sequences

as nonchance and as demanding special explanation (see, for instance, Falk and
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Konold, 1997). It is often noted anecdotally that humans have a general tendency to

disregard the possibility of ‘coincidental’ events occurring purely by chance –

preferring, in many cases, even conspiratorial or supernatural explanations over such a

concession. Some research tends to corroborate this impression9. The urge to say that

I can know in advance that Sue will not win the community lottery fifty years running

is, I suggest, an urge that springs from essentially the same tendency.

It is our bias against patterned outcomes that discourages us, in the iterated

lottery situation, from seeing Sue’s winning fifty years running as being on a par with

the other possible outcomes. No such bias will influence our reasoning about the

mammoth lottery. Further, it seems possible to divest oneself of the troublesome

intuitions – the comparison between the iterated lottery and the mammoth lottery and

the associated parity of reasoning considerations can, I think, be helpful here. Once I

do genuinely conceptualise Sue’s winning fifty years running as just one amongst

10100 possible winning ticket combinations, each equally probable and equally

plausible, then I will lose any tendency to think that I can simply rule it out.

9 There is some evidence indicating that people tend to perform badly when asked to generate random
sequences or to predict the outcomes of random processes – in particular, people appear to exhibit a
bias against sequences with a large amount of repetition and tend to overestimate the frequency of
alternation (see, for instance, Ross and Levy, 1958). People’s judgments regarding the randomness of
presented sequences have also been the focus of research (Falk, 1981, Lopes and Odin, 1987, Falk and
Konold, 1997). Findings tend to corroborate the existence of a general bias to associate randomness
with excessive alternation. Naturally, the interpretation of the experimental findings is delicate and has
been subject to dispute – for an overview see Bar-Hillel and Wagenaar (1991), Nickerson (2002).

One study, performed by Falk and Konold (1997), demonstrated that the average confidence
with which subjects judged sequences of binary values to be randomly generated was strongly
correlated with the average time it took for subjects to successfully memorise such sequences and that
both judgments of randomness and memorisation performance were well predicted by a measure of
encoding difficulty. Any general hypothesis to the effect that the ease of digesting or encoding a
sequence of events guides our judgments of randomness would go some way toward explaining a
strong verdict of nonrandomness in the case of a repetitive sequence such as Sue’s winning the
community lottery fifty years running.
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I have argued that one can lack justification for believing propositions that are

nevertheless highly likely for one to be true. In order for one to have justification for

believing that proposition P is true, P must be normically supported by one’s body of

evidence, and evidence can fail to normically support propositions that are

nevertheless highly likely conditional upon that same evidence. This naturally invites

the question of whether we ought to admit cases of the opposite kind – that is, cases in

which one has justification for believing propositions that are nevertheless highly

unlikely for one to be true. I shall conclude by considering, in a rather more

speculative spirit, whether we should.

It is clear that a body of evidence can normically support propositions that are

nevertheless highly unlikely conditional upon that same evidence. This will follow

straightforwardly, given that normic support is closed under potentially risk-

aggregating multi-premise deductive consequence relations. Familiar preface paradox

type cases provide clear examples of this phenomenon: Suppose I am organising a

dinner party to which I have invited fifty guests. All have responded saying that they

will attend. Plausibly, I have evidence normically supporting the propositions that

Chuck will attend, that Barbara will attend etc. Presumably, these propositions are

individually quite likely for me to be true – let’s say for the sake of argument that

each is 90% likely.

Given that normic support is closed under multi-premise deductive

consequence, I have evidence normically supporting the proposition that every guest

will attend. If this proposition turns out to be false, then there must be some guest

who fails to attend and, given his positive reply, some explanation as to why this is –
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he lied or caught a cold or got into a car accident or some such. But, in spite of this,

the proposition that every guest will attend is very unlikely, given my evidence, to be

true – indeed, it is far more likely to be false. Assuming that the probabilities of each

guest attending are independent, the probability of every guest attending will be in the

region of one in two hundred.

Do I, then, have justification for believing that every guest will attend?

Nothing I have said so far commits me to a positive answer – normic support has been

proposed as a necessary but not a sufficient condition for justification. Indeed, the

view I have developed is quite compatible with the claim that there is some evidential

probability requirement upon justification. According to one sort of view, although

justification will not exclusively be a matter of risk minimisation, it will have a risk

minimisation component. Multiple premise closure for justification will, on this view,

have to be sacrificed – and the risk-aggregating ‘preface paradox’ cases will be the

very cases in which the principle fails. Though it lacks a certain overall elegance, this

‘hybrid’ view is in many ways quite attractive. I do think however that it is worth

exploring a more radical alternative – a view on which multiple premise closure is

maintained and justification is deemed compatible, in principle, with evidential

probabilities that are arbitrarily low.

On this view, justification will have no essential connection to the

minimisation of error risk. This is not to say, of course, that securing justification will

not require the successful management of error risk – it is just that managing error risk

and minimising error risk need not be the same thing. There is a sense in which both

probabilistic support and normic support should be understood as providing a kind of
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protection against error. Probabilistic support makes for what we might call a ‘low-

risk’ guarantee – it serves to minimise the overall error risk. This is why the

guarantee can evaporate as propositions are conjoined and risk aggregates. Normic

support is not like this. It makes for a ‘no risk’ guarantee – that is, it serves to

eliminate error risk of a certain kind (roughly speaking, the risk of error that is not

attributable to, or explicable in terms of, extenuating circumstances). If each of a set

of propositions enjoys normic support then, in conjoining them, there is no risk of the

relevant kind to aggregate and, thus, the sort of guarantee offered cannot weaken.

It is often observed just how odd it would seem to accept a series of

propositions, accept that further propositions follow deductively and yet remain

agnostic about those further propositions. It would be very strange for me to accept,

in a single conversational setting, that Chuck will attend, Barbara will attend, Pam

will attend, running right through my invitation list, and then balk at the conjunctive

claim that everyone will attend – without withdrawing or weakening any of my

previous commitments. Further, in those circumstances in which I would be most

obviously anxious about accepting the conjunction – when the possibility of car

accidents or lies or the poor statistical track record of such arguments is salient to me

– I would also be somewhat anxious about accepting flat-out the individual conjuncts,

preferring something probabilistically qualified. With such concerns at the forefront

of my mind, I’d find myself inclined to say ‘Chuck will most probably attend’,

‘Barbara will very likely attend’ etc.

The claim that it can be intellectually appropriate for me to believe that every

guest will attend does undeniably make us uneasy. But the alternative is not clearly
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preferable. For the alternative, after all, is that I am intellectually mandated to deny

or suspend judgment on this proposition even while it is perfectly appropriate for me

to accept, for every individual guest, that he or she will attend. It seems that no one

would self consciously hold to such a combination of attitudes – and we should be

somewhat suspicious of any theory that would make it intellectually appropriate to do

so.

In this paper I have attempted to disarm the natural thought that lies behind the

risk minimisation conception of justification. I have attempted to outline a kind of

positive epistemic status that is defeasible, falls shy of knowledge and of epistemic

certainty, but is nevertheless quite independent of epistemic probability or likelihood.

There are different ways of responding to human fallibility – for managing the ever-

present possibility of error. In the end, perhaps the only real failing of the risk

minimisation picture is a certain myopia in this respect.
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