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Abstract

Large Eddy Simulation (LES) is applied to investigate the turbulent non-premixed

combustion flow, including species concentrations and temperature, in a cylindrical

combustor. Gaseous propane (C3H8) is injected through a circular nozzle which is

attached at the centre of the combustor inlet. Preheated air with a temperature

of 773K is supplied through the annulus surrounding of this fuel nozzle. In LES a

spatial filtering is applied to the governing equations to separate the flow field into

large-scale and small-scale eddies. The large-scale eddies which carry most of the

turbulent energy are resolved explicitly, while the unresolved small-scale eddies are

modelled using the Smagorinsky model with Cs = 0.1 as well as dynamically cali-

brated Cs. The filtered values of the species mass fraction, temperature and density,

which are the functions of the mixture fraction (conserved scalar), are determined

by integration over a beta Probability Density Function (β-PDF). The computa-

tional results are compared with those of the experimental investigation conducted
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by Nishida and Mukohara [1]. According to this experiment, the overall equivalence

ratio of 0.6, which is calculated from the ratio of the air flow rate supplied to the

combustion chamber to that of the stoichiometric reaction, is kept constant so that

the turbulent combustion at the fuel nozzle exit starts under the fuel-rich conditions.

Key words: Large Eddy Simulation, Turbulent flow, Non-premixed combustion

1 Introduction

Turbulent non-premixed combustion occurs in many engineering applications.

An understanding of turbulent combustion processes is essential for the effi-

cient design of many engineering devices such as gas turbines, internal com-

bustions engines, furnaces etc. Moreover, the number of combustion systems

used in the transformation and transportation industries is growing rapidly,

and as a result, a large amount of combustion products such as NOx, CO

and unburned hydrocarbons, which are harmful to human health and a great

threat to the global environment, are produced everyday. The accurate control

and prediction of a turbulent flame and the increment of the combustion effi-

ciency, therefore, appear to be an important and essential part in combustion

engineering.

Combustion remains one of the most complicated phenomena to describe and

simulate using numerical tools, mainly because a practical combustion pro-

cess is usually involves turbulent flow. The multi-scale character of turbulence
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makes the simulation of such flow a difficult task. In order to account rig-

orously for the full nonlinear effects of turbulence in a combustion process,

the governing equations are solved numerically such that the finest turbulence

scales, known as Kolmogorov scales, must be resolved. However, to date this

is a very difficult and computationally demanding task for a practical system.

Thus, depending on the scale of interest, different techniques with different

modelling approaches exist in the literature. Large Eddy Simulation (LES)

is one of them and has recently been shown to be a promising approach for

the computation of turbulent flows, because of its clear means of overcoming

some of the deficiencies which appear in other available approaches such as

Reynolds Averaged Navier Stokes (RANS) and Direct Numerical Simulation

(DNS) which is restricted to low Reynolds number flows.

In the traditional RANS approach, the governing equations of motion are ei-

ther time or ensemble averaged, which produces unknown quantities, known

as the Reynolds stresses after the early work done by Reynolds [2]. These

unknown stresses then have to be modelled before solution of the equations

is possible. There are various modelling techniques available in the literature,

though as the governing equations are averaged, it is only possible to predict

the behaviour of the averaged (mean) values of the flow variables. On the other

hand, DNS resolves all turbulence scales present in a flow and the approach

is essentially model free. Thus, with DNS it might be possible to compute the

instant profiles of all the flow variables, but as mentioned, it is feasible only in

a flow with low Reynolds numbers. In most practical engineering flows, such

as one considered in this paper, the Reynolds number is high, and an applica-

tion of DNS to compute those turbulent flows becomes impractical, given the

computational capability available at present. Even with a rapidly increasing
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computing power this is likely to remain the situation for many years. A review

work dealing the current status of DNS applied to non-premixed combustion

is done by Vervisch and Poinsot [3].

In LES, a spatial filtering approach is applied to the governing equations in or-

der to filter out the sub-grid scale (sgs) motions from the large scale. The large

scale motions which carry most of the turbulent energy are resolved explic-

itly, while the unresolved smaller scales are modelled. A suitably defined filter

function of width proportional to the mesh spacing of the numerical scheme

is usually selected. The chemical reactions that control combustion, however,

occur at the smallest scales of the flow and can almost never be fully resolved.

As such, modelling approaches are needed in order to predict accurately the

chemical behaviour of reacting flows, e.g. pdf approaches. Regarding the mod-

elling of the sub-grid scale (sgs) eddies, the majority of LES applications have

utilised the eddy viscosity approach formulated first by Smagorinsky [4] and

developed further by Lilly [5]. The ideas were further developed by Deardorff

[6] who simulated a plane Poiseuille flow (channel flow), which represents one

of the earliest applications of LES in the area of engineering. Since then, LES

has been developed by a large number of researchers and applied to a range of

increasingly complex problems, such as LES of turbulent confined co-annular

jets, Akselvoll and Moin [7], LES of a plane jet in a cross-flow, Jones and

Wille [8], LES of a round jet in a cross flow, Yuan et al. [9], and LES of

turbulent flow past a swept fence, di Mare and Jones [10]. Comprehensive

reviews on Large eddy Simulation of turbulent flows can be found in Lesieur

and Metais [11], Moin [12] and Lesieur et al. [13].

LES application to turbulent reacting flows began in the 1990s. Since then a

number of papers have demonstrated the power of LES to the flows of tur-
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bulent combustion, such as an LES scheme for turbulent reacting flows of

Gao and O’Brien [14], LES of a non-premixed reacting jet, DesJardin and

Frankel [15], LES of a turbulent non-premixed flame, Branley and Jones

[16], LES of a model gas turbine combustor, di Mare et al.[17] and LES of

auto-ignition, [18; 19]. Peters [20], Pitsch [21] and Riley [22] also offer a com-

prehensive review of Large Eddy Simulation of turbulent combustion.

In the present paper, our aim is to investigate the turbulent non-premixed

combustion, including species concentrations and temperature, in a model

cylindrical combustor by using LES. A schematic of the cylindrical combustor

including the computational domain is shown in Fig. 1, which corresponds to

the configuration investigated experimentally by Nishida and Mukohara [1].

Gaseous propane (C3H8) is injected through a circular nozzle with an internal

diameter of 2mm at the centre of the combustor inlet, while the pre-heated air

with an averaged velocity of 0.96ms−1 and temperature of 773K is supplied

through the annulus of 115mm diameter surrounding the fuel nozzle into the

1m long combustion chamber. The overall equivalence ratio is maintained at

1.6 so that the burning occurs in a fuel-rich non-premixed combustion mode.

The average fuel velocity of 30ms−1 was measured by [1] at the inlet, which

corresponds to a flow Reynolds number of 13, 000. The presently computed

temperature and species concentration fields are compared with those of the

experimental investigation of Nishida and Mukohara [1]. To the best of the

authors’ knowledge this is the first time that the turbulent flame inside this

combustion chamber under the fuel-rich condition is investigated by means of

LES.

The paper is structured in the following order. A brief description of the

necessary mathematical formulation in LES including the sgs modelling and

5



the conserved scalar approach to combustion modelling is given in §2. In §3

the computational procedure and the necessary boundary conditions used in

the LES are described. Results and discussion are presented in §4. Finally,

conclusions on the findings are drawn in §5.

2 Mathematical formulation in LES

To obtain the LES equations the governing equations of motions are filtered

first by applying a spatial filter, a technique to separate the large scale (re-

solved scale) flow field from the small scale (sub-grid scale) [23]. Applying the

density weighted-filtered function [24] to the continuity, Navier-Stokes and

mixture fraction (conserved scalar) equations gives:

∂ρ̄

∂t
+
∂ρ̄ũj

∂xj
= 0, (1)

∂ρ̄ũi

∂t
+
∂ρ̄ũiũj

∂xj
= −

∂p̄

∂xi
+

∂

∂xj

[

2µS̄ij −
2

3
µS̄kkδij

]

−
∂τij

∂xj
, (2)

∂ρ̄ξ̃

∂t
+
∂ρ̄ũj ξ̃

∂xj
=

∂

∂xj

(

Γ
∂ξ̃

∂xj

)

−
∂Jj

∂xj
, (3)

where t is time; xj is the spatial coordinate directions; uj is the velocity vector;

p is the pressure; ρ is the density, which, in reacting flows, varies due to the

heat release from the chemical reaction and on the chemical composition of

the fluid. µ is the molecular viscosity, Sij = 1

2
( ∂ui

∂xj
+

∂uj

∂xi
) is the strain rate, δij

is the Kronecker delta, ξ is the conserved scalar or the mixture fraction, and

Γ = µ
Pr

= µ
Sc

is the diffusion coefficient where Pr/Sc is the Prandtl/Schmidt

number.
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The sub-grid scale stresses, τij , are modelled using the eddy viscosity assump-

tion of Smagorinsky [4]:

τij −
1

3
δijτkk = −2ρ̄(Cs∆)2|S̄|S̄ij, (4)

where ∆ is the filter width and |S̄| =
√

2S̄ijS̄ij is the magnitude of the re-

solved strain rate tensor, S̄ij. Two computations have been performed, one

with the Smagorinsky constant, Cs, of 0.1 (Case1) as suggested by Branley

and Jones [16] and another one with its dynamically calibrated values, Ger-

mano et al. [25] (Case2), clipping the negative values of Cs to zero. We also

note that Jones and Wille [8] argued the value of the Smagorinsky constant of

0.23 used by Lilly [5] is too large, which could result in excessive attenuation of

small scales. In other successful simulations of channel flow (e.g. Deardorff [6]),

the value of Cs, for instance, was around 0.07 while the values of 0.081–0.1

were used in mixing layers by Yoshizawa [26].

For the sub-grid scale scalar flux, Jj, a gradient model, Schmidt and Schumann

[27],

Jj = −ρ̄Γsgs
∂ξ̃

∂xj

= −ρ̄
(Cs∆)2|S̄|

σsgs

∂ξ̃

∂xj

, (5)

is applied, where σsgs is a constant sub-grid scale Prandtl/Schmidt number

which is assigned a value of 0.7.

The combustion is modelled via the conserved scalar modelling approach with

the laminar flamelet model, Peters [28]. In this approach, the chemical reaction

rates are assumed to be fast compared to the rate at which reactants mix. The

mixing is described by a strictly conserved scalar also known as the mixture

fraction. The instantaneous species concentrations are then considered to be
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a unique function of this conserved scalar. As the functional dependence is

highly nonlinear, mean or filtered values are obtained via the probability den-

sity function of the conserved scalar [29]. Once the density weighted mixture

fraction, ξ̃, and its sub-grid scale variance are known, the filtered density (ρ̄)

and density weighted thermochemical variables (φ̃) are obtained by integrat-

ing over a β - probability density function. Further details of this model are

given in Paul [30] and di Mare et al. [17].

3 Computational procedure

3.1 Grid arrangement and boundary conditions

A curvilinear body fitted coordinate system is employed for the present sim-

ulation consisting of a total of about 1.5 million nodes inside the combustion

chamber with a non-uniform mesh distributed along the three co-ordinate

directions. At the centre of the combustor inlet, where the fuel is injected

through a circular nozzle at a speed relatively higher than that of the air

supplied through the cylinder, a very fine mesh is required so that the steep

gradients that appear in this area are adequately resolved. The mesh lines are

contracted at the centre and near the inlet of the combustor, and they are

expanded smoothly in all the three directions outwards from the centreline

and inlet (Fig. 2).

In the absence of the results of the flow-field measurement (mean velocity

profiles and fluctuations) in [1], we have used the one-seventh empirical power-

law profile to generate the fully developed turbulent streamwise mean velocity

profile at the inlet of the fuel injector. With the bulk Reynolds number of

8



13, 000, the ratio of the bulk velocity to the mean centreline velocity becomes

0.82 which gives the centreline mean velocity of about 36.73 at the fuel inlet. A

simple polynomial relation with the turbulent intensity of about 5% (estimated

by using 0.16Re−1/8 but has close agreement with Durst and Unsal [31]) is

fitted to the data of Laufer [32] to generate the rms profiles of the velocity

fluctuations of the flow [30]. Then, the instantaneous velocity field is generated

by using the Gaussian distributed noise as

ũi(xi, t) =< ũi(xi) > +ψ(xi, t)u
′

rms (6)

where ψ is a Gaussian random distribution. The mixture fraction at the inlet

is defined as

ξ =































1 in the fuel stream

0 in the air stream.

(7)

At the outlet boundary, a non-reflective boundary condition is used, a condi-

tion sufficient to minimise the effects of the outlet boundary in the solutions.

A thin viscous sub-layer develops adjacent to the walls of the combustor and

a prohibitively fine mesh would be required to resolve this. To overcome this

difficulty an equilibrium log-law condition is employed as a near wall condition

at the surfaces of the combustor.

3.2 Numerical method

The in-house developed finite volume code LES-BOFFIN (Boundary Fitted

Flow Integrator) has been used to solve the governing equations. The code is
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based on a fully implicit low-Mach number formulation and is second order

accurate in both space and time. The BOFFIN code has been applied exten-

sively in the LES of reacting and non-reacting turbulent flows; for examples,

see LES of a gas turbine combustor, di Mare et al.[17], of a turbulent non-

premixed flame Branley and Jones [16], and of turbulent flow past a swept

fence di Mare and Jones [10]. For a full details of the numerical method used

in the BOFFIN, the readers are referred to those published papers and the

relevant references therein.

An energy conserving discretisation [33] is used for the convective terms in

the momentum equations (2), while all the other spatial derivatives in equa-

tions (1, 2) are discretised using the standard second order accurate central

difference schemes. A central scheme applied to the convection terms in the

mixture fraction equation (3) may result in a violation of the extremum prin-

ciples of the exact equations when the cell Peclet numbers are greater than

around 2. However, the mixture fraction must remain bounded between zero

and unity if any unphysical values of the density, temperature and species

concentrations are to be avoided. In order to achieve this a Total Variation

Diminishing (TVD) scheme, Sweby [34], is used for the convective terms in

the mixture fraction equation.

The time derivatives in equations (1-3) are approximated by a three point

backward difference scheme with a variable time-step to ensure that the max-

imum Courant number, based on the filtered velocity, always lies between 0.1

and 0.2.. The pressure is determined by a two-step second-order time-accurate

approximate factorisation method. A co-located pressure and velocity arrange-

ment is used and an odd/even node uncoupling of the pressure and velocity

fields is prevented by a pressure smoothing technique, Rhie and Chow [35]. The
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system of the algebraic equations resulting from the discretisation is solved us-

ing the matrix pre-conditioned conjugate gradient methods; Bi-CGSTAB [36]

for the velocity and scalar equations, and ICCG (1,1,1) [37] for the pressure.

The time mean (average) values, defined as

< φ̃ >=
1

N

N
∑

n=1

φ̃(xi, t), (8)

have been accumulated over a total of N = 3 × 105 time steps, where φ

is a generic flow variable. The sub-grid contribution to the rms (root mean

square) values are negligible and are ignored with the consequence that the

rms of turbulence fluctuations in φ̃ is obtained from

φ′

rms =

(

1

N

N
∑

n=1

(

φ̃− < φ̃ >
)2

)1/2

. (9)

4 Results and discussion

In this section we begin with the presentation of the results of the flamelet com-

putations and this is followed by the presentation of the LES results including

the flame temperature, density, mixture fraction and species concentrations.

Results of the velocity field, and the turbulent fluctuating and sgs quantities

are presented thereafter.

4.1 Laminar flamelet calculation

The dependencies of temperature, density and species mass fraction on the

mixture fraction (ξ) resulting from the laminar flamelet computations used

in the combustion model are presented in Fig. 3. The flamelet is generated
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at a strain rate of 15s−1 and the boundary conditions are taken to comply

with the experimental pre-heated conditions for the air [1]. In steady laminar

counterflow flames the composition depends on the mixture fraction and the

rate of strain, with extinction occurring at high strain rates. However, the

incorporation of strain or flame stretch effects into LES is problematic and

knowledge of the local rate of strain or the scalar dissipation rate - often

used in RANS approaches - is insufficient to characterise local extinction.

For this reason a flamelet at a single strain rate is selected and the strain

rate below 15s−1 did not show any significant changes in flame temperature

and species concentrations. A detailed reaction mechanism consisting of a

total of 87 species and 466 reactions has been used to generate the flamelet

data. Further details of the reaction mechanism can be found in Leung [38].

To account for the radiative heat loss to the combustor walls, the flamelet

temperature is adjusted using the following relation, Fairweather et al. [39]:

T (ξ) = Tad(ξ)



1 − χ

(

Tad(ξ)

Tad,max

)4


 , (10)

where Tad represents the adiabatic flamelet temperature, and the radiative

fraction, χ, which is taken as 0.2, gives good agreement with the measured

peak temperature.

In Fig. 3 the temperature of 773K at a mixture fraction (ξ) of 0 corresponds

to that of the pre-heated air stream, whereas the temperature of 298K at

ξ = 1 is that of the propane. At the stoichiometric condition (ξstoich), which

is at about 0.06, the oxygen and fuel stream curves meet together and react,

see in Fig. 3 (iii), as a result a maximum temperature of 1896K is achieved

at this location of ξ. The corresponding density at stoichiometric shows a

minimum value. The concentrations of CO2 and H2O have their maximum
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close to the stoichiometric condition, whereas the other products have the

maximum values under the fuel rich conditions.

4.2 Temperature, density and mixture fraction

In Fig. 4 some snapshots of the instantaneous flame temperature, T̃ , on the

horizontal midplane of the combustor are plotted at different simulation times

for Case1. The purposes of this figure are to visualise the development of flame

and its structure by means of the temperature distributions and also to show

how the structure of the flame temperature varies with time. At the inlet

when the fuel gets its first contact with the air, the combustion takes place

and the flame temperature rises. The flame puff, which initially generates

near the fuel nozzle, diffuses and propagates towards the downstream of the

combustor. A higher colour contour level is seen around the centreline where

the combustion occurs around the stoichiometric condition. No combustion

occurs near the wall close to the inlet zone where the temperature remains

the same as that of the pre-heated air. The mean result in Fig. 5 shows that

the flame temperature at the centre of the combustor increases along the axial

direction and drops gradually to the downstream from y ≃ 0.35m. Moreover,

due to the diffusion of the flame the temperature of the walls towards the

downstream rises.

In Fig. 6 the computationally predicted mean temperatures, < T̃ >, are com-

pared against the measurements of Nishida and Mukohara [1]. The corre-

sponding mean density results are also presented in this figure. In Fig. 6(a),

the predicted mean axial temperature on the centreline initially starts with

the fuel temperature at the inlet. As the combustion takes place, the flame
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temperature increases and achieves a maximum value of 1696K (Case1) and

1730K (Case2) at about y = 0.35m. The flame temperature then drops gradu-

ally to the downstream with a value of about 1200K (Case1) and 1329 (Case2)

arising at the outlet of the combustor. The maximum temperature of 1778K

at y = 0.39m was recorded in the experiment, which is bit further downstream

of our prediction and is slightly under-predicted in the computations. But the

peak level of the mean temperature is better predicted in Case2. Moreover,

the experimental results show a concave like shape around y = 0.2m, which

is not evident in the predictions where a slight over-prediction is evident in

both the cases. However, overall a very good agreement is achieved and the

decaying trend of the temperature along the downstream is also well predicted

in Case1. The mean density decreases from the inlet as the temperature rises

and becomes minimum at the point where the temperature is maximum. The

density then rises very slowly towards the downstream of the combustor, which

is consistent with the falling temperature.

The radial distribution of the mean temperature in Fig. 6(b-e) shows that the

peak value is slightly under-predicted in the computations and moves towards

the wall near the inlet (frames b, c), and the temperature at the centre shows

slight over-prediction in both the Cases. In the most downstream stations, in

frames (d, e), a slight under-prediction of the temperature occurs at the centre

but a better prediction is found in Case2. Despite this slight over and under-

prediction of the temperature comparing with the experiment, it is clear that

the trend of increasing and decaying of the temperature in the radial direc-

tion is matched reasonably well with the experimental data and qualitatively

their agreement is good. The radial distributions of the mean temperature

predicted by Fairweather et al. [39] using the κ-ǫ turbulence model show an
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under-prediction near the inlet (in frames b, c) and over-prediction at the fur-

ther downstream (in frames d, e). However, comparing the radial temperature

profiles against the experimental measurements, the predicted results in the

present computations have some better agreement in frames (d, e). Again the

mean density shows minimum values at the locations of the maximum tem-

perature as the mean density of the mixture is inversely proportional to the

temperature.

It might be interesting to see how the results presented above are linked with

the mixture fraction and its sub-grid scale variance, given the fact that they

are a function of these two variables. These results are presented in Fig. 7. The

rapid decay of the mixture fraction in the upstream region from its highest

level at the inlet corresponds to the ‘fast’ mixing with the supplied air stream.

The mixture fraction in both Case1 and Case2 is found almost same at the

upstream, but towards the downstream of the combustor, where it decays

slowly, is predicted slightly higher in Case2. However, in both the cases, a

very good agreement is shown with the experimental data of Nishida and

Mukohara [1]. The magnitude of the sub-grid scale variance of the mixture

fraction is predicted small and it behaves in the similar way as the mixture

fraction, i.e., a rapid decay at the upstream and then slowly decay to the

downstream. The radial profiles of the mixture fraction and the sgs variance

also show clearly that the curve drops gradually with y and that it diffuses

towards the wall. The dotted straight line in frames (a, b) indicates the location

of the stoichiometric mixture fraction in the computation.
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4.3 Combustion species

In Figs. 8-10, comparisons of the predicted species mean mole fractions with

those of the experiment are made. The centreline mean mole fraction of C3H8

in Fig. 8(a) decays rapidly, which is consistent with the fast decay of the mix-

ture fraction profile seen in Fig. 7(a), and has an excellent agreement with

the experimental data. The mole fraction of N2 is predicted very well in the

downstream, while the reactant O2 is well predicted against the experiment at

the upstream with an over-prediction at the downstream region. The experi-

mental results of O2 show hardly any variation from the mid-location of the

combustor, whereas in the simulations O2 increases continuously towards the

downstream, a result that is consistent with the simulated mixture fraction

decay (Fig. 7) and the flamelet data shown in Fig. 3. Note that Fairweather

et al. [39] had an under-prediction of O2 throughout the centerline.

The peaks of the combustion products CO and H2 are over-predicted com-

pared with the experiment but the trends are well reproduced. The mole frac-

tion of CO2 is well-predicted up to y = 0.3m but shows an under-prediction

beyond this region. The mole fraction of H2O is over-predicted within the

region of 0.28m < y < 0.7m and is under-predicted near the inlet and outlet

regions. The products of the two unburned hydrocarbons, C2H2 and CH4,

are compared in frames (h, i). The peaks of C2H2 show an under-prediction,

however, the flamelet data in Fig. 3 clearly shows that the peak value of C2H2

would not exceed the maximum limit of about 0.025 when the mixture frac-

tion variance is close to zero. The peak level of C2H2 obtained by Fairweather

et al. [39] is also under-predicted, but comparatively better than the present

results. CH4 is slightly over-predicted up to y = 0.1m but is well-predicted in
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the rest of the domain.

The radial plots in Figs. 9, 10 show that the trends in which the species curves

grow or decay along the radial direction compare well with the experiment and

comply well with the flamelet data. The over-prediction of the peaks in some

species, e.g. CO and H2 in Fig. 9; and the under-prediction of the peaks in

H2O and C2H2 in Fig. 9, and CO2 and C2H2 in Fig. 10 might be linked

with the uncertainties in the reaction mechanisms (Leung et al. [40]) used to

generate the flamelets, which particularly concern the formation of a number

of minor species in the propane flame. We also note that no comparison was

possible to make for C3H8 at y = 0.3m due to the absence of the experimental

data.

4.4 Velocity field

Fig. 11 shows that the level of fluctuations in the instantaneous velocity com-

ponents and pressure at the downstream of the inlet is much higher compared

to the rest of the domain, and these fluctuations slowly decay towards the

downstream. The mean axial velocity, < ṽ >, also decays from its maximum

at the inlet towards the downstream but varies a little when y > 0.3m. The

profile behaves like a fully developed flow established from about the one-third

axial location of the combustion chamber where the gradient of the centreline

velocity, ∂<ṽ>
∂y

, tends to zero. That is why, in this figure and the rest of figures

where the axial results are plotted, the data are plotted up to the maximum

axial location of 0.35m in order to clearly view the results of the velocity and

turbulent characteristics which are dominant mostly at the upstream region.
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The power law profile for the centreline mean axial velocity of an axisymmet-

ric turbulent fully developed flow, which is approximated by using <ṽ>
<ṽ>y=0

=

6.4
(

y
D

)

−n
, Tennekes and Lumley [41], where the index n takes a value of unity

and D is the internal diameter of the fuel nozzle, is plotted in Fig. 11(b) as

a solid line with circles in order to get a qualitative feeling of the mean axial

velocity achieved in the simulations. It clearly shows that the trend is same

though we don’t expect that these results would match perfectly with the

power law fittings, this is simply due to the case of combustion where the

results are affected by the many factors such as the density field which varies

in the simulation and the pressure which is coupled with the combustion tem-

perature. The choice of the dynamic sub-grid scale model makes no difference

in the mean velocity and pressure profiles, and the deep mean-pressure drop

after the inlet occurs due to the temperature and density variation between

the fuel and air.

4.5 Turbulent fluctuating and sgs quantities

In Fig. 12 the centreline profiles of the mean turbulent shear stresses are

presented. The high level of the turbulent shear stresses found at the upstream

plays an important role in determining the mean flow as they contribute to

a large amount of momentum transfer in the flow. The rms results of the

fluctuating components in Fig. 13 show a sharp rise from the inlet and achieve

their peak where the magnitude of the stresses is high. The rms then drop

gradually towards the downstream, and a very little variation is shown in the

further downstream. Comparing between the results of the two sgs models,

samll variations in the stresses and rms are found at the upstream of the
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combustor.

The mean mixture fraction fluxes along the centreline are depicted in Fig. 14,

which again show that the magnitude of the fluxes is high at the upstream be-

cause of the turbulent fluctuation. Note that these fluxes play a dominant role

in the mixing of air and fuel together and also contribute to the scalar trans-

ports. Moreover, the mixture fraction flux with the axial velocity component,

< v′ξ′ >, has the largest value compared to the other two fluxes as the axial

velocity is higher than that of the radial components. Similar to the resolved

scale stresses, the magnitude of the fluxes decreases towards the downstream

as the intensity (rms) of the turbulence is predicted very low there, and the

two sgs models show some variations at the upstream, but small.

In Figs. 15 and 16, the mean centerline values of the sub-grid scale shear

stresses and the sub-grid scale mixture fraction fluxes are presented respec-

tively. The sub-grid scale contributions to the shear stresses and the mixture

fraction fluxes are predicted maximum at the upstream since the turbulent

intensity found was high here. The sgs contributions are negligible and almost

vanish beyond the region of y = 0.1m of the combustor. The effects of the two

sgs models on the sub-grid scale quantities are now evident in Figs. 15 and

16 which show that Case2 (dynamics sgs model) gives higher values of the sgs

stresses and fluxes in the upstream where the dynamic value of Cs found is

higher than 0.1.
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5 Conclusion

Large Eddy Simulation technique has been applied to investigate the tur-

bulent flow, species concentration and temperature arising in the turbulent

non-premixed combustion of propane-air in a cylindrical combustor. The con-

served scalar approach with the laminar flamelet model is used to the mod-

elling of the combustion process. The LES results are obtained by employing

the Smagorinsky model with a constant Cs of 0.1 as well as the dynamically

calibrated Cs.

The predicted mean temperature and species concentration in both the ax-

ial and radial directions have been compared with those of the experimental

data obtained by Nishida and Mukohara [1] in the turbulent propane and

pre-heated air combustion. The mean temperature and mixture fraction pre-

dictions show very good agreement with the experimental data, while some

combustion species at some locations are under or over predicted in the com-

putations. The possible reasons of these have been discussed in the paper,

which involves some of the uncertainties in the reaction mechanisms (Leung

et al. [40]) used to generate the flamelets for this study. Moreover, the simpli-

fied treatment of the radiative heat loss from the flame might have some effects

on the prediction of temperature and species concentration. A full coupling of

LES with a radiation model is required to better account the radiative heat

loss and the effects of these on the species concentrations. However, this clearly

involves significant challenges in the development of subgrid scale interactions

between the combustion and radiation and would deserve significant comput-

ing resources as well. Furthermore, in the experimental study of Nishida and

Mukohara [1], a small part of the fuel was injected through the annular sur-
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rounding to form a pilot flame. This has been ignored in our computations as

no detailed information was available in the experimental paper on the pilot

flame nozzle and the fuel flow rate through it. It is possible that including the

pilot flame in the simulations might have resulted in some of the species and

temperature profiles being in closer agreement with the experimental data.

Most of the results are almost uninfluenced by the choice of the sub-grid scale

models, whether it is a Smagorinsky model with constant Cs of 0.1 or a dy-

namic model for Cs. However, the mean mole fraction of O2 is predicted better

in the dynamic model, which in turn leads to a slightly better prediction in

CO2 and H2O by this model. It is also found that the sub-grid scale quantities

are predicted higher by the dynamic model in the upstream region where the

value of dynamic Cs is found higher than the constant Cs of 0.1.

In the fuel nozzle exit of the combustor, combustion occurred under the fuel-

rich conditions where the overall equivalence ratio was 0.6, which produced

various forms of hydrocarbons in the combustion products. One of them is

acetylene, C2H2, which usually contributes to the formation and growth of

soots (solid carbon particles, solid emissions) in the combustion process. Re-

search is currently underway in order to predict the soot formation and growth

in the same flame.
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Fig. 4: Instantaneous temperature plots on the horizontal midplane of the combustor for Case1 at (left

to right) t = 3.6 × 10−3, 2.86 × 10−2, 6.31 × 10−2, 9.13 × 10−2, 1.17 × 10−1, 1.43 × 10−1, 1.69 × 10−1,

1.96 × 10−1, 2.22× 10−1, 2.48 × 10−1, 2.74× 10−1, 3.01 × 10−1, 3.26 × 10−1, 3.51× 10−1, 3.76 × 10−1,

and 4.01 × 10−1 sec.
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Fig. 5. Mean temperature plot on the horizontal midplane of the combustor for

Case1.
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