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Abstract For the calculationof torque in synchronousmotors
a local method is analysed, based on the Maxwell stress the-
ory and the filtered contributions due to the harmonics of the
magnetic vector potential in the motor air-gap. By consid-
ering the space fundamental field only, the method can effi-
ciently estimate the average synchronous torque for a variety
ormotor topologies, including concentratedwinding designs.
This approach employs an analytical filter for the Maxwell
stress tensor and ‘frozen permeability’ technique. The pro-
posed method is validated by comparison with FE results for
several synchronous motor types: interior permanent magnet
motors, wound field motor, synchronous reluctance motor.

Keywords Synchronous machines · Permanent magnet
machine · Reluctance machines · Torque ripple · Pulsating
torque · Cogging · Finite element method

1 Introduction

The problem of accurate and efficient computation of the
torque, based on the results of electromagnetic field finite
element analysis (FEA), was widely studied and a large num-
ber of numerical procedures have been proposed by other
authors, e.g. [1–5]. Most of the techniques are generally
applicable to electromagnetic devices and neither exploit the
particularities of rotating electrical machines nor provide the
kind of insight into the motor parameters and performance,
which would directly help with the selections involved in a
practical design process.
Synchronous machines exhibit torque ripple components

during operation.According to their source the torque ripples
can be described as [6]: (a) Cogging torque—only for per-
manent magnet motors—component generated by the per-
meance variation as the magnets rotate; this component is
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measured and computed at open circuit conditions (i.e. with
stator currents set to zero); (b) Pulsating torque associated
with the interaction of magnetic reluctance variation of the
rotor with current MMF’s; this component has a significant
value only in interior permanent magnet (IPM) machines or
salient pole wound fieldmachines and is computedwith exci-
tation field (magnets or field currents) set to zero. (c) Pulsat-
ing torque associatedwith the interaction of non-sinusoidal or
non-trapezoidal waveform of the induced EMF with current
MMF’s; this component can estimated directly only when
the saturation is ignored.
The aim of the paper is the development of a new com-

putation method to study the design problems for mechani-
cal designs of synchronous motors. These methods are also
applicable to conventional designs and are validated using
four examples: a brushless AC motor with (IPM) rotor, a
wound field synchronous motor and two synchronous reluc-
tancemotorwith different contents of spaceMMFharmonics.
The difficulties associated with the precise computation

of the electromagnetic torque and its pulsating components
from FE solutions have been discussed and some improved
procedures proposed [1,3–5,7–10,13,14,17]. The study pre-
sented in this paper brings further contributions to the subject,
by analyzing the electromagnetic torquewith a dedicated for-
mulation [15,16].

2 Theory and mathematical models

2.1 Maxwell stress tensor method [1,2]

Methods based on Maxwell’s stress tensor are commonly
used in the computation of forces and/or torques for elec-
tromagnetic devices when numerical modelling (e.g. finite
element method) is employed. The electromagnetic torque is
obtained as a surface integral:

Te =
∮
S

r × σ · dS =
∮
S

r
{

1
μ0
(B · n)B− 1

2μ0
B2n

}
dS,

(1)

;lkl;
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where σ is Maxwell’s stress tensor and n is the unit normal
vector of the integration surface.
When Eq. 1 is used for the calculation of the torque of a

rotating electricalmotor, a closed integration surface that sur-
rounds the rotor in free space must be chosen [1,2]. In a 2D
model the surface integral is reduced to a line integral along
the air-gap. If a circle of radius r is taken as the integration
path, the relation for computing the torque becomes:

Te = 1

μ0

2π∫
0

r2BrBθdθ, (2)

where Br and Bθ are the radial and tangential components of
the flux density B.
From Eq. 2 it may be noted that only the flux densities

on the integration contour are employed, which allows for
simple and quick calculation.
If the solutions are exact, the torque value computed with

the above expression is independent of the radius r when r
varies between the inner and outer radii of the air-gap. How-
ever, in an approximate solution (i.e. case of the majority
finite element solutions) the integration path has an effect on
the result. In practice, the variation of the torque as a function
of the radius rmay be as high as 50% from the average value,
when a typical finite element is used.
If the FEA uses first-order triangular elements, the solu-

tion for vector potentialA is relatively accurate, while the dis-
tributions of B and H are an order less accurate, since these
functions are obtained by differentiating the trial functions
for A. That is, A is described by a linear function over each
element, but B and H are piece-wise constant over each ele-
ment. Important errors can arise in the tangential components
ofB andH in elements adjacent to boundaries betweenmate-
rials of different permeabilities (e.g. rotor steel, permanent
magnets, air).
For linear (first-order) elements in [1,8] is suggested a

zig-zag integration path through the midpoints of the ele-
ments and elements sides. Studies [2,7,8] have shown that
the integration contour should not be through nodes or along
boundaries of elements and that several contours should be
chosen to determine an average value and the range of uncer-
tainty for the torque. It is also recommended that the defi-
nition of the integration contour to be as displaced several
elements (at least two elements) away from any interface
boundaries. Even though an integration path has been cho-
sen properly some significant errors can still arise if a coarse
mesh is used. Note that Eq. 1 is composed of B2—this means
that stress tensor is one order worse in accuracy thanB. In the
two-dimensional model of an electrical machine, the three-
dimensional surface integral in Eq. 1 may be replaced by a
volume integral over a hollow shell in free space surround-
ing the moving rotor. As the true torque is independent of
the radius, we obtain by integrating the expression (2) in the
radial direction over the air-gap.

Te(rs − rr) =
rs∫
rr

Te dr = 1

μ0

rs∫
rr

⎧⎨
⎩

2π∫
0

rBrBθ dθ

⎫⎬
⎭ dr

= 1

μ0

∫
Sg

rBrBθ dS, (3)

where rs and rr are the outer and inner radii of the air-gap
respectively and Sg is the cross sectional area of the air-gap.
From the equations above, the torque is obtained sometimes
as an integral over the air-gap.

Te = 1

μ0(r − rr)
∫
Sg

rBrBθdS. (4)

2.2 Maxwell stress harmonic filter (HFT) method [15,16]

A method of improving the accuracy of the Maxwell stress
torque computationwouldbedirect derivationof thefluxden-
sities components froman analytical expression of the air-gap
magnetic vector potential. In cylindrical co-ordinates, which
are suitable for radial-flux rotating machines, two concentric
circles of radii R1 and R2 are defined inside the motor air-gap
and used as non-homogenous Dirichlet boundary conditions,
with values determined by themagnetic vector potential solu-
tion. Inside the cylindrical shell (R1 < r < R2) the magnetic
vector potential can be analytically described as [2] (Fig. 1):

A (r, θ) =
∞∑
n=1

[(
cnr

n + dnr−n
)
(gn cos (nθ)

+h n sin (nθ))
]
. (5)

The magnetic vector potential on the two circular boundaries
can be expressed in Fourier series:

A(R1, θ) =
∞∑
n=1
[an1 cos (nθ)+ bn1 sin (nθ)] , (6)

A(R2, θ) =
∞∑
n=1
[an2 cos (nθ)+ bn2 sin (nθ)] , (7)

Fig. 1 Explicative for the Maxell HFT method for computing torque
based on the harmonics of the vector potential in the motor air-gap
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and by writing (7) for R1 and R2 the cross products of the
coefficients are identified as:

cngn = 1

δn
·
[
an1

(
R1

R2

)n
− an2

]
, (8)

cnhn = 1

δn
·
[
bn1

(
R1

R2

)n
− bn2

]
, (9)

dngn = 1

δn
·
[
an2 − an1

(
R2

R1

)n]
, (10)

dnhn = 1

δn
·
[
bn2 − bn1

(
R2

R1

)n]
, (11)

where:

δn =
(
R1

R2

)n
−

(
R2

R1

)n
. (12)

The magnetic flux density components are calculated by der-
ivation of the magnetic vector potential:

Br = ∂A

r ∂θ
; Bθ = −∂A

∂r
. (13)

Substituting Eqs. 8, 9, 10, 11 and 12 in Eq. 5 and further using
Eq. 13 in Eq. 2, a hybrid analytical-numerical computational
formula is derived for the electromagnetic torque [15,16]:

Te =
(
P

2

)
· 2π �fe
μ0

·
∞∑
n=1

n2(an2 · bn1 − an1 · bn2)
δn

· (14)

This equation clearly illustrates the proportionality of torque
with the motor polarity P and the torque production mecha-
nism by the interaction of the air-gap field harmonics of the
same order. Such a formulation is beneficial in identifying
and mitigating the source of the parasitic torque harmonics.
From a computational point of view, Eq. 14 is advantageous
because of its reduced sensitivity to the finite element mesh-
ing, especially in the air-gap.
If we associate the coefficients (an1,2) in Eqs. 6 and 7

with the direct d-axis component of each field harmonic
and the coefficients (bn1,2) in Eqs. 6 and 7 with the quadra-
ture q-axis component of each field harmonic, then the term
n2(an2 · bn1 − an1 · bn2) in Eq. 14 corresponds to the vecto-
rial product between stator (R2) and rotor (R1) field harmonics
(An1 ⊗ An2) of order n. This product is essentially the mea-
sure for R times (Bn1⊗ Bn2) which is the torque density and
where Bn1,2 represent the flux-density vectors for rotor and
stator nth harmonic fields.
On the other hand, the analytical solution that uses the

Fourier series is sensitive to the maximum order of the har-
monics considered in the summation [4,8,13].
Most notably, this equation illustrates the mechanism of

torque production by the interaction of same-order air-gap
field harmonics. A certain harmonic will provide a non-zero
torque contribution if the sine and/or cosine coefficients of
the magnetic vector potential waves on the two boundaries
are different, respectively. Physically, this would be caused

by a change in the field direction, i.e. a variation of the radial
and tangential flux density components, under the provisions
of Gauss law of magnetic flux conservation. Other authors
[3–5], using different approaches based on the coefficients cn,
dn, gn, hnψ of Eq. 5, have developed formulae equivalent, in
principle, to Eq. 14. This approach can be used in conjunc-
tionwith any general-purpose electromagnetic FEA software
package, also enables insights into the torque components of
a synchronous motor.
Themethod based onEq. 14,which resembles a harmonic

filter and is therefore referred to as Maxwell HFT, has been
implemented in the scripting language of a FEA software
package [11] and was validated on a number of examples
of synchronous motors. In order to enable a fair comparison
of new method and classical FEA results, the motors have
no rotor-stator axial skew. From a computational point of
view, the Maxwell HFT method is advantageous due to its
reduced sensitivity to finite element meshing, especially in
the air-gap. On the other hand, the Maxwell HFT method is
sensitive to parameters such as the maximum order of the
harmonics considered for summation. These factors will be
further analysed in this paper.

2.3 d-q axis average torque method

The resultant total rotating field under load is determined by
both the rotor permanent magnetization and the stator arma-
ture currents and has a space fundamental component, which
travels at synchronous speed and is responsible for the pro-
duction of the average torque. The open-circuit flux density
high order space harmonics produced by the rotor magneti-
zation also travel at synchronous speed, but their contribution
to average torque is zero because their polarity is different
to that of the fundamental space harmonic of the armature
MMF, which is the only one of the stator harmonics that
rotates at synchronous speed. Thus, the Maxwell HFT for-
mulation suggests that a reasonable estimation of the average
torque component is obtained by limiting the summation in
Eq. 14 to the first electrical harmonic only.
The average torque may be evaluated with the dq

formulation:

Te = 3

2
· P
2

(
ψdiq − ψqid

)
, (15)

where the dq flux linkages ψd;q and currents id;q have been
determined at each rotor position by applying the Park trans-
formation to the phase quantities.
The comparison of the Maxwell HFT equation Eq. 14,

written for the contribution of the fundamentalwave only, and
of Eq. 15, which is based on the dq theory, points out a simi-
larity in that waveforms placed in quadrature are responsible
for torque production. Unlike the dq theory, which identifies
the sources of torque as flux linkages and currents, the Max-
well HFT method indicates as the torque source, the spatial
shift of themagnetic field harmonics along the air-gap radius.
From a theoretical point of view, the dq theory is confined to
perfectly sinusoidally distributed windings and excitation.
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Fig. 2 FE model of a nine-slots six-pole IPM motor design with three-phase concentrated windings

The method of average torque estimation, with the Max-
wellHFTequation appliedonly for the fundamentalmagnetic
vector potential waveform, is remarkable, as it requires only
one FE solution at a suitably selected rotor position and cur-
rent distribution. This can be extremely useful, especially in
the early stages of designing a new motor, when computa-
tional speed is of essence.
If we assume that the effect of the torque components

can be superimposed, a ‘frozen permeability’ technique can
be employed for the segregation of the torque components.
The field solution that allows the reluctance torque calcula-
tion is obtained with Eq. 14 from an initial field distribution
when the motor is under load conditions. The permeability
corresponding to each mesh element is ‘frozen’ and the mag-
net sources are switched off by setting the flux density to zero.
As the employed input permeability describes the saturation
conditions in the machine, the computed cogging torque re-
flects the load conditions. Similarly, the cogging torque can
be computed with Eq. 14 if the currents are switched off
after computing the permeability for saturation conditions.
Finally, by subtracting reluctance and cogging components
from the total instantaneous torque the alignment torque my
be determined.
This separationof torque components indicates the sources

of parasitic torque harmonics and can prove useful in electri-
cal machine design optimization.

2.4 Numerical validation study

The proposed method may be implemented in any scripting
language of a FEA software [11]. A numerical validation
study was performed by computing the electromagnetic

torque of a four three-phase synchronous motors with frac-
tional number of slots/pole:

– Motor A—an IPM motor with nine-slots, six-pole (Fig.
2); magnets material is NdFeB. This motor was selected
for the analysis for its high ripple torque content.

– Motor B—a synchronous reluctance motor with nine-
slots, six-pole and four layers of low permeability (air)
in the rotor (Fig. 3). This motor employs a similar stator
with Motor A, but with a much stronger magnetic reluc-
tance variation of the rotor and no excitation or cogging
torque.

– Motor C—a wound field salient pole synchronous motor
with nine-slots, six-pole (Fig. 4). This motor employs
a similar stator with Motor A, but with a much stronger
magnetic reluctance variation of the rotor and no cogging
torque.

– MotorD—asynchronous reluctancemotorwith lowspace
MMF harmonics content [12] with 18-slots, four-pole
(Fig. 5). This motor was selected for the analysis as it
illustrates the presence of ripple torque even when there
is no space mmg harmonics effect or cogging torque.

For all motors a 90Hz fundamental freqency was assumed,
i.e. the six-polemotors rotate at 1,800 rpm.The currentwave-
forms are sinusoidalwith an amplitude of 100Aand a controll
torque angle γ = 30◦.
Such motor designs, with a fractional number of slots

per pole and phase stator with a distributed winding, are
known for their relatively high ripple torque. For the enclosed
numerical examples three computations methods have been
employed: Maxwell stress method [1], Maxwell stress HFT
and virtual work [3]. The Maxwell stress method has been
applied using 361 points equidistantly distributed in the air-
gap along two circular contours, through the middle of the
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Fig. 3 FE model of a nine-slots six-pole synchronous reluctance motor design with six-phase concentrated windings

Fig. 4 FE model of a nine-slots six-pole salient pole wound field motor design with six-phase concentrated windings

two central FE layers, respectively. The values reported for
the Maxwell stress method were computed by averaging the
results for these two contours. For HFTmethod, the two con-
tours defined the cylindrical shell (R1 < r < R2) as per Eq. 14
are chosen at the surface of the rotor and stator. Discrete rotor
positions have been simulated maintaining the same meshes
for the stator and rotor, moving the rotor and re-meshing the
air-gap layers.
The comparative graphics between different computation

methods from Figs. 6, 8, 10 and 12 illustrate the consistency
of HFT method when compared to other methods. The num-

ber associated with HFT results in each legend represents
the employed harmonics order for the respective case. Note
the perfect agreement between the results for all employed
methods.
Figures 7, 9, 11 and 13 show a comparison for the aver-

age torque estimation between the classical dq axis theory
and HFT method where only the fundamental harmonic was
considered. Motor A (Fig. 7) is the only case in this study
when it was necessary to consider up to fifth order field har-
monics in order to obtain a reasonable estimation for the
average torque.
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Fig. 5 FE model of a 18-slots four-pole synchronous reluctance motor design with low space harmonics content three-phase windings

Fig. 6 Torque estimation for a nine slots six-pole IPM motor with three-phase concentrated windings (See Fig. 2)

Fig. 7 Average torque estimation using dq theory and HFT method for a nine slots six-pole IPM motor with three-phase concentrated windings
(See Fig. 2)

Note that as stated in Sect. 2.3, theMaxwell HFTmethod
indicates as the actual torque source, the spatial shift of the
magnetic field harmonics along the air-gap radius. Thus, all

the ripple torque sources are present inMaxwellHFTmethod,
i.e. cogging torque, space MMF harmonics torque, reluc-
tance torque. Several factors should be considered in the
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Fig. 8 Torque estimation for a nine slots six-pole synchronous reluctance motor with three-phase concentrated windings (See Fig. 3)

Fig. 9 Average torque estimation using dq theory and HFT method for a nine slots six-pole synchronous reluctance motor with three-phase
concentrated windings (See Fig. 3)

Fig. 10 Torque estimation for a nine slots six-pole salient pole wound field motor with three-phase concentrated windings (See Fig. 4)

explanation of the torque ripple. As the rotor moves, the air-
gap permeance varies and the permanent magnet operating
point oscillates around an average value, a phenomenon that
has been studied for example in [14] in relation with the
cogging torque production.As a consequence, the equivalent
MMF of the PM and the fundamental air-gap field vary and
the rotor positions of zero cogging are more likely to provide
the basis for average torque estimation. The motor magnetic
circuit is shared by the stator armature field and local satu-
ration can also play a role in the oscillations of the average

torque calculations. Of the two types of zero-cogging po-
sition, the one corresponding to the alignment of the rotor
inter-pole axis with the center of a slot opening not only en-
joys a much smaller derivative of the cogging torque but also
exhibits a favorable alignment of the stator MMF. Thus, the
torque oscillations in Figs. 7, 9, 11 and 13 for HFT method
are created by the cogging torque effect.
The average torque estimated with dq theory reflects only

the interactionbetweenflux-linkages and currents transformed
from three-phase system to two phase axis system. It does
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Fig. 11 Average torque estimation using dq theory and HFT method for a nine slots six-pole salient pole wound field motor with three-phase
concentrated windings (See Fig. 4)

Fig. 12 Torque estimation for a 18 slots four-pole synchronous reluctance motor with low space harmonics content three-phase windings (See
Fig. 5)

Fig. 13 Average torque estimation using dq theory and HFT method for a 18 slots four-pole synchronous reluctance motor with low space
harmonics content three-phase windings (See Fig. 5)

not contain any information regarding the ripples created by
cogging torque. Thus, for non sinusoidal waveforms of the
phase flux-linkages, the dq axis average torque will partially
reflect the content of space MMF harmonics, but no infor-
mation on the cogging torque ripples. These differences be-
tween the torque computed with HFT method and the torque
computed with dq axis theory explain the phase shift in their
waveforms (See Figs. 7, 9, 11, 13). In some cases these wave-

forms can be completely in phase opposition (Figs. 7, 9, 13)
or they can be in phase (Fig. 11). Note that Fig. 11 corre-
sponds to the case of Motor C—a wound field salient pole
synchronous motor, which is the only case with d axis induc-
tance (Ld ) higher than q axis inductance (Lq).
Generally, the numerical results demonstrate that HFT

method represent a better solution when the average torque
estimation is required, even for a motor that was designed
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Fig. 14 Cogging torque estimation for a nine slots six-pole IPM motor with three-phase concentrated windings (See Fig. 2)

with a very low space MMF harmonics content (Motor D,
Fig. 13).
Different torque components can be estimated in FEA

by using ‘frozen permeabilities’ technique. For example, by
switching off the current sources, in Fig. 14 the cogging
torque predictions for the Motor A are illustrated. Note the
numerical oscillations within Maxwell stress method. This
behaviour is consistent with other authors observations [7,8,
13–17].

3 Conclusions

The numerical and experimental studies performed have
indicated that the analytically filteredMaxwell stress method
is less sensitive to the variation of computational FE param-
eters and exhibits reduced numerical noise, as the necessity
for the magnetic vector potential numerical differentiation is
eliminated. This, together with its apparent improved stabil-
ity, makes it a recommended choice for sensitive calculations
such as instantaneous electromagnetic torque and its compo-
nents: excitation, reluctance, cogging torque for synchronous
motors. Also, this method represents a suitable choice for fi-
nal design checks and calibration against experimental data.
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