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Abstract−−−−Model Predictive Control (MPC) has recently found wide acceptance in industrial applications, but its
potential has been much impeded by linear models due to the lack of a similarly accepted nonlinear modeling or data-
based technique. Aimed at solving this problem, the paper addresses three issues: (i) extending second-order Volterra
nonlinear MPC (NMPC) to higher-order for improved prediction and control; (ii) formulating NMPC directly with
plant data without needing for parametric modeling, which has hindered the progress of NMPC; and (iii) incorporating
an error estimator directly in the formulation and hence eliminating the need for a nonlinear state observer. Following
analysis of NMPC objectives and existing solutions, nonparametric NMPC is derived in discrete-time using multi-
dimensional convolution between plant data and Volterra kernel measurements. This approach is validated against the
benchmark van de Vusse nonlinear process control problem and is applied to an industrial polymerization process by
using Volterra kernels of up to the third order. Results show that the nonparametric approach is very efficient and
effective and considerably outperforms existing methods, while retaining the original data-based spirit and character-
istics of linear MPC.
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INTRODUCTION

Model Predictive Control (MPC) represents a class of control
schemes where the control signal generation involves the on-line
use of a parametric or a nonparametric model of the plant. Major
design techniques of MPC include Model Algorithm Control, Dy-
namic Matrix Control, Internal Model Control and Generalized Pre-
dictive Control, etc. [Garcia et al., 1989]. The underlying strategy of
MPC is, at any given time, to solve on-line a receding open-loop
optimal control problem over a finite time horizon, where only the
first control of the resulting control sequence is actually implemented
on the plant. MPC algorithms are very intuitive and easy to under-
stand, and practical constraints can often be included in the on-line
open-loop algorithm [Mayne et al., 2000]. MPC has received world-
wide attention because it is straightforward to implement in indus-
trial applications, particularly in chemical processes, where the dy-
namics is relatively slow and can hence accommodate on-line opti-
mization easily [Garcia et al., 1989].

However, much of the work has been confined to a linear con-
trol strategy, based on a linear model in predicting future values of
the plant response [Doyle III et al., 1995; Henson, 1998]. Since severe
nonlinearity often exists in an industrial process that can hardly be
ignored in practice, higher control performance can only be achieved
through using a nonlinear model [Pearson, 2002], including poly-
nomial ARMA model [Hernansez and Arkun, 1993], bilinear mod-
el [Yeo and Williams, 1987], combined ARMA-Hammerstein model
[Fruzzetti et al., 1997], extended Kalman filter [Ahn et al., 1999]

and neural networks [Saintdonat et al., 1991]. In a bid to ach
improved performance, however, these approaches sacrifice the
plicity, accuracy and characteristics arising from process I/O d
[Henson, 1998]. This limits the range of industrial applications,
these models are often difficult and inaccurate to obtain in prac
[Pearson, 2002; Tan and Li, 2002].

This has stimulated work on formulating MPC for use with
nonparametric Wiener model [Norquay et al., 1998; Jeong et
2001] and (its more practical version) Volterra model [Doyle III 
al., 1995; Genceli and Nikolaou, 1995; Maner et al., 1996] and
Volterra modeling [Kashiwagi and Sun, 1995; Kashiwagi and Ro
2002; Pearson, 2002]. A potential advantage of using a nonp
metric model is that it can yield nonlinear MPC (NMPC) direct
from process I/O data [Kashiwagi et al., 1998]. However, meth
developed elsewhere require a first-principles model as so to de
a second-order Volterra model analytically from the bi-lineariz
fundamental model [Doyle III et al., 1995; Genceli and Nikolao
1995; Maner et al., 1996]. Hence, the original limitation on the ra
of applications still remains. Further, these NMPC methods are
far limited to one nonlinear kernel only, i.e., up to the second-order
Volterra kernels may be obtained and utilized. Hence, the fuller 
tential of NMPC remains yet to be realized.

Recently, progress on Volterra modeling with a high degree of
curacy has been made at Kashiwagi Laboratory, Kumamoto U
versity, using Volterra kernels of up to the third order which c
now be measured easily by perturbing the plant with a pseudo
dom M-sequence signal that provides enough excitation and y
acceptable in an industrial situation [Kashiwagi and Sun, 1995; K
iwagi, 1996]. This progress permits Volterra NMPC schemes to
extended to the third order. In place of a Kalman estimator for
linear case, Volterra measurements offer the potential to realize NM
the same way as linear MPC and hence the full capability of
329
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Volterra methodology, as reported in this paper.
In the next section, objectives and solutions of NMPC are first

analyzed, followed by time-domain formulation using multi-dimen-
sional convolution with Volterra kernels. For this, M-sequence based
high-order Volterra identification techniques are detailed in Section
3. Case studies are reported in Section 4 and conclusions are drawn
in Section 5.

NONPARAMETRIC NMPC

1. Design Objective and Exact Solution
Refer to Fig. 1 for notations in a general framework of model-

based control. The pre-filter F outside the loop is for robust consid-
erations in model-following and is often a unity-gain first-order low-
pass with a relatively small time-constant or a critically damped
second-order filter with a relatively high natural frequency. The pro-
cess P is modeled by G. The controller Q generates a control se-
quence u through observed plant output y and output predicted by
G. The estimator block will be interpreted in Section 2.2.

Suppose that P has a fading memory, as indeed found in many
industrial processes. Then its output can be represented by the Volt-
erra series as a temporal extension of the Taylor series expansion
[Boyd and Chua, 1985], as given by

(1)

where pi is the i-th order Volterra kernel, an i-dimensional impulse
response of the nonlinear process. This equation can be compactly
rewritten as [Doyle III et al., 1995]

(2)

(3)

where y(i)(t) is the degree-i Volterra contribution to the overall output
and * denotes i-dimensional convolution.

Similar to any other control schemes, the design objective, J: RK
�

R+, is to find a Q such that

(4)

subject to constraints imposed upon by saturations of actuators and
their change rates:

uMin≤u(t)≤uMax (5)

∆uMin≤∆u(t)≤∆uMax (6)

u(t)=q*ξ(t), ξ(t)=yR−n(t), n(t)=y(t)−yM(t) (7)

e(t)=yR(t)−y(t) (8)

Here q is the impulse response of the controller Q and K is the de-
gree of freedom in u∈RK under optimization and yR(t) is the desired
output. Denoting the finite number of Volterra kernels of G that may
be identified from P by gi, i=1, 2, …V,

(9)

From this and Eq. (8),

e(t)=(ξ(t)−n(t))−(yM(t)+n(t))=ξ(t)−g*q*ξ(t) (10)

The objective of Eq. (4) is therefore strictly met if

(g*q)*ξ(t)=ξ(t), �ξ(t) (11)

i.e., if an exact inverse controller Q=G−1 is found [Doyle III et al.,
1995].

However, obtaining a strictly zero J of Eq. (4) or strictly satisf
ing Eq. (11) for an exact inverse would be impossible in pract
as otherwise the controller ‘gain’ would, under constraints, nee
be infinite for all frequency and time [Li et al., 2002]. This is al
because an exact inverse implies that the MPC will reduce to o
loop control in effect, which in turn cannot guarantee Eq. (11)
Eq. (4). Such a realization can lead to steady-state offsets if a
turbance d(t) or estimation error n(t) exists [Genceli and Nikola
1995; Henson, 1998].

To resolve this problem, Doyle III et al. [1995] have decompos
G into degree-1 and degree-2 Volterra components, G1 and G2 (Fig.
1), and derived a ‘generalized inverse’ based on the ‘left inverse
the degree-1 component. Their Volterra NMPC framework dev
oped is in a second-order analytic domain, as it needs an anal
Volterra model and this can only be identified up to the second
der via the bilinear Carlemann ‘linearization’ applied to a first-prin
ples model. This means that their NMPC controller offers only o
nonlinear kernel and also loses the ease of realization present 
data-based linear MPC.

Further, this treatment still does not solve the offset and rob
ness problem. Unfortunately, a well-developed theory for non
ear state observers to combat this is unavailable [Henson, 1
While this issue remains unaddressed in the main derivations, D
III et al. [1995] in their case studies have intuitively augmented 
controller with the pre-filter F, by moving it inside the loop to pre-
vent an exact inverse. Clearly, this adds complexity to controller s
thesis and revolts the rigor of their prior theoretical derivations. 
shall show in the following section that this arrangement is unn
essary and the offset problem will be solved neatly by using a n
parametric formulation.
2. Nonparametric Formulation

To relieve application engineers from needing to obtain, and 
earize, a first-principle based nonlinear model, NMPC is to be 
mulated here by using the nonparametric model given by Eq. (
Requiring only a modest computational power in the realizat
and not needing an on-line Runge-Kutta solver (as does the an
ical method by Maner et al. [1996]), this should be more suitable
for computer implementation and for retaining the discrete-ti

y t( )  = … pi τ1 τ2 …τi, ,( )u t − τ1( )…u t − τ1( )dτ10

∞
∫0

∞
∫0

∞
∫

i = 1

∞

∑
…dτi+  d t( )

y t( )  = y i( ) t( ) + d t( )
i = 1

∞

∑

= pi*u t( )  + d t( )
i = 1

∞

∑

J = e t( )
u

limmin

yM t( ) = gi*u t( )  = g*q*ξ t( )
i = 1

V

∑

Fig. 1. Model predictive control framework.
March, 2004

where characteristics of linear MPC. Further, a third or higher-order Volt-
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erra controller formulated in this way does not add more structural
complications to a second-order one.

Discrete-time formulation of MPC can be illustrated as shown
in Fig. 2 [Kashiwagi et al., 1998]. It requires that an ‘open-loop’
optimization problem be solved on-line only over a finite predic-
tion horizon P for a finite control horizon M. Within these receding
horizons, the objective of Eq. (4) becomes

(12)

where L≥1 is the minimum prediction step desired and e(t+j|t)�j∈
{L, L+1, …, L+P−1} is estimated from the model and output in-
formation available at time t. Here the metric norm is evaluated with-
in the finite discrete set {L, L+1, …, L+P−1} and may be either
L1, L2, L∞, mixed, weighted or any other norm provided Jd can be
optimized on-line.

The open-loop offset problem encountered in an analytical inverse
can be handled in discrete-time by designing an error estimator, which
will give the controller an implicit integral action [Henson, 1998].
As we shall see in the sequel, this is naturally and elegantly realized
without needing full-state feedback, given an I/O based nonpara-
metric, as opposed to an analytic, model. The simplest error esti-
mator is a zero-order one, i.e., the discrepancy between the actual
and modeled output at time t is used throughout the prediction ho-
rizon [Henson, 1998]. Genceli and Nikolaou [1995] have shown
that, using such an error estimator, the closed-loop system with a
Volterra controller is asymptotically stable with zero offsets if the
uncertainty and its rate of change are bounded and the end-condi-
tion yM(∞)=R is met. Here we extend this result to the generic MPC
framework of Fig. 1.

Theorem: The linear MPC framework of Fig. 1 is directly appli-
cable to nonlinear MPC in the time-domain with a Volterra predictor

yP(t+j|t)=y(t)+[yM(t+j)−yM(t)], �j∈{L, L+1, …, L+P−1} (13)

and objective

(14)

The resultant nonlinear controller is asymptotically stable with z
offsets from set-point R, if the uncertainty and its rate of chan
are bounded and the end-condition yM(∞)=R is met.

Proof: Eq. (13) is equivalent to

yP(t+j|t)−yM(t+j)=y(t)−yM(t), �j∈{L, L+1, …, L+P−1} (15)

This implies that the modeling error y(t)−yM(t) estimated from the
nonparametric Volterra model is held constant throughout the 
diction horizon by a ‘zero-order estimator’. Denote this amount
unmeasured state variables by n(t) and error-correct the set-po
yR(t+j)−n(t)=ξ(t+j). This agrees with Fig. 1 for the linear case. The
fore, the normed quantity in Eq. (14) evaluates to

yR(t+j)− [y(t)−yM(t)]−yM(t+j)=yR(t+j)−y(t+j|t) (16)

and is hence the same as that in Eq. (12). <qed>.
Note that here yM(t) can be estimated �t≥0 from convolution

between u(t) and the Volterra kernels, given the assumption 
plant P has a fading memory and hence the Volterra model c
verges [Boyd and Chua, 1985]. While Genceli and Nikolaou ha
shown that prediction using a second-order Volterra model will m
the sufficient condition for robust tracking with zero offsets [Genc
and Nikolaou, 1995; Henson, 1998], a third-order one will furth
reduce the estimation error (as we shall see in Section 3). H
the theorem proves following their derivations [Genceli and Nikola
1995; Henson, 1998].

The discrete-time Volterra model allows a rigorous retention
the original characteristics and spirit of linear MPC. The theor
signifies that the control sequence can be optimized such that M(t)
tracks ξ(t) for an implicit inverse within the finite horizons, instea
of mathematically formulating y(t) to track yR(t) �t. To further re-
duce the estimation error and improve robustness, the ‘hard-c
mand’ of a set-point change can be replaced by a ‘soft-comm
trajectory yR(t) for the process to follow, provided yR(∞)=R [Li et
al., 2002].

Without loss of generality, consider a first-order low-pass pre-fi
with unity-gain

(17)

The reference trajectory in the continuous domain is given by

yR(t)=R(1−e− t/τ) (18)

It is not difficult to derive its discrete-time version in difference equ
tion

yR(t+1)=αyR(t)+(1−α)R (19)

where, with a given sampling interval T,

(20)

Iterating the first-order equation yields

yR(t+j)=α jyR(t)+(1−α j)R (21)

for calculating the reference trajectory j steps ahead [Kashiwag
al., 1998].

Since the control signal will go through a D/A converter, the 
solution of u will be finite. Hence we can search for a discrete va

Jd = e t + j t( )
u t + 1 t( ) … u t+ M t( ), ,

lim
j = L

L + P − 1min

Jd = ξ t + j( ) − yM t + j( )
u t + 1 t( ) … u t+ M t( ), ,

lim
j = L

L + P − 1min

F s( ) = 
1

1+ τs
------------

α  = 1− 
T
τ
---

Fig. 2. General principle of discrete-time MPC.
Korean J. Chem. Eng.(Vol. 21, No. 2)



ber

a-

st
, we
of the
ro-
un,

oss-

we

-

cted

3)
332 H. Kashiwagi and Y. Li

of ∆u for each element in u∈RK [Kashiwagi et al., 1998]. A simple
optimization algorithm that accommodates constraints easily is an
a posteriori hill-climbing algorithm, i.e., hill-climbing guided by
trail-and-error [Li et al., 2002]. Compared with conventional non-
linear programming, an a posteriori search takes a longer time, but
is much more straightforward to implement for any objective met-
ric under any constraints [Li et al., 2002; Tan and Li, 2002].

Now the only task left is to obtain Volterra kernels in Eq. (10)
for i=1, 2 and 3, by using a pseudorandom sequence that provides
the plant with enough excitation and yet are acceptable in an indus-
trial situation [Kashiwagi, 1996; Pearson, 2002].

THIRD-ORDER VOLTERRA MODEL

Consider the identification of the nonlinear process of Eq. (1). In
order to identify Volterra kernels gi(τ1, τ2, …), an M-sequence [Kash-
iwagi, 1996] is used to excite the nonlinear system with acceptable
amplitude. The resultant cross-correlation function φuy(τ) between
the input u(t) and the output y(t) can be written as [Kashiwagi, 1996]

(22)

where  denotes time average. Usually the moment of u(t) is difficult
to obtain, but with an M-sequence, the n-th moment of u(t) yields
easily. Here, the (i+1)th moment of the input M-sequence u(t) is
given by [Kashiwagi, 1996; Kashiwagi and Rong, 2002]

(23)

where N is the period of the M-sequence. For an M-sequence with
the degree greater than 16, 1/N is in the order below 10−5. Hence
Eq. (23) can be approximated as a set of impulses which appear at
certain τ’s.

Let us consider measuring the i-th Volterra kernel. Then for inte-
gers , there exists a unique  (mod N) such that
[Kashiwagi and Sun, 1995]

(24)

where j is the number of the group (ki1, ki2, …, Ki, i− 1) for which Eq.

(24) holds. This property is called the Shift and Add Property of
the M-sequence [Kashiwagi, 1996]. Assume that the total num
of those groups is mi (that is, j=1, 2, …, mi). Then Eq. (23) becomes
unity when

(25)

Therefore Eq. (22) is approximated by

(26)

Since gi(τ1, τ2, …, τi) is zero when any of τi is smaller than zero,
each gi  in Eq. (26) appears in the cross-correl
tion function φuy(τ) when τ> .

In order to obtain Volterra kernels from Eq. (26),  mu
appear sufficiently apart from one another. For this to be realized
should select suitable M-sequences that set the cross-sections 
Volterra kernels sufficiently apart from one another. Some app
priate M-sequences are given in Kashiwagi [Kashiwagi and S
1995; Kashiwagi, 1996].

When measuring Volterra kernels up to the third order, the cr
correlation function φuy(τ) becomes

(27)

where

(28)

and ∆t is the time increment or sampling period. To generalize, 
have,

(29)

Here F(τ) is a function of τ and is the sum of the odd order Volt
erra kernels when some of its arguments are equal. Since F(τ) ap-
pears together with g1(τ) in an overlapped manner, F(τ) must be
calculated from the odd order Volterra kernels and be subtra
from the measured g1(τ) in order to obtain an accurate g1(τ). Fol-
lowing this, a Volterra model can be identified for use with Eq. (1
[Kashiwagi et al., 1998].

φuy τ( ) = u t − τ( )y t( )

= … pi τ1 τ2 …τi, ,( )
0

∞
∫0

∞
∫0

∞
∫

i = 1

∞

∑
u t − τ( )u t − τ1( )…u t − τi( )dτ1…dτi

u t − τ( )u t − τ1( )u t − τ2( )…u t − τi( ) = 
1 for certain τ( )

− 1 N⁄ otherwise( )



ki1

j( )
k i2

j( ) … ki i − 1,
j( ),< < k ii

j( )

u t( )u t + k i1

j( )( )…u t + k i i − 1,
j( )( ) = u t + ki i

j( )( )

τ1= τ  − ki1

j( )
τ2 = τ − k i2

j( )
… τi = τ − kii

j( )
, , ,

φuy τ( )  = gi τ − ki1

j( ) τ − ki2

j( ) … τ  − k i i

j( ), , ,( )
j = 1

mi

∑
i = 1

∞

∑

τ  − ki1

j( ) … τ − kii

j( ), ,( )
k i i

j( )

k i i

j( )

φuy τ( )  = ∆tg1 τ( ) + F τ( ) + 2 ∆t( )2 g2 τ − k21

j( ) τ − k22

j( ),( )
j = 1

m2

∑

+ 6 ∆t( )3 g3 τ  − k31

j( ) τ  − k32

j( ) τ  − k33

j( ),,( )
j = 1

m3

∑

F τ( ) = ∆t( )3g3 τ τ τ, ,( )  + 3 ∆t( )3 g3 τ q q, ,( )
q = 1

m1

∑

φuy τ( )  = ∆tg1 τ( ) + F τ( )  + i! ∆t( )i gi τ − ki1

j( ) … τ − kii

j( ), ,( )
j = 1

mi

∑
i = 2

∞

∑

March, 2004

Fig. 3. An example of crosscorrelation function φφφφuy(ττττ).
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To illustrate this method, an example is shown below. When we
use M-sequence of 13 degree with the generating characteristic poly-
nomial f(x)=36073 in octal notation, we can get, by computer search,
those  in Eq. (24) as

That is,

φuy(τ)=∆tg1(τ)+2(∆t)2{g2(τ−73∆t, τ−75∆t)

+g2(τ−146∆t, τ−150∆t)+…}+…

where F(τ) and third order kernel are omitted for simplicity. Fig. 3
shows an example of φuy(τ) actually calculated for some nonlinear
system, where two cross-sections of second Volterra kernel can be
seen. Since M-sequence is selected in order for those kernels to be
separated from each other, we can cut those kernel slices from φuy(τ),
and reconstruct the second order kernel as shown in Fig. 4. When
third order kernel exists, we reconstruct g3(τ1, τ2, τ3) first, calculate
F(τ) in Eq. (18) and subtract F(τ) from the part of crosscorrelation
function in the neighborhood of origin to obtain g1(τ).

CASE STUDIES

1. Benchmark van de Vusse Reactor Problem
The van de Vusse reactor is studied in the second example of

Doyle III et al. [1995]. This is an isothermal continuous mixed tank
reactor. Control of two density components is carried out by adjust-
ing the amount of input flow. The process is known to be highly
nonlinear and is used in nonlinear process control as a benchmark
problem.

Denote the two component concentrations as x1 and x2, and the
amount of input flowing as u. Under the same condition as that in
Doyle III et al. [1995], the process is modeled by

(30)

Using the method presented in Section 3 to identify the Volte
kernels, the results obtained are shown in Figs. 5-7. The M-sequ
used here has an amplitude of 0.025 and a characteristic po
mial f(x)=260577. With the measured Volterra kernels g1, g2, and
g3, responses of the process can be estimated. In Fig. 8, thes
validated against the actual output from Eq. (30) with respec
two step inputs. When a first and a second-order Volterra mo
are used, the results are almost the same as those in Doyle III
[1995] (Figs. 9 and 10). However, it is clear that a third-order mo
el significantly outperforms both.

k ir

j( )

k21

1( )
 = 73 k22

1( )
 = 75 k21

2( )
 = 146 k22

2( )
 = 150 …, , , ,

dx1

dt
-------  = −  50x1−  10x1

2
 +  10 − x1( )u

dx2

dt
-------  = 50x1− 100x2 − x2u

y = x2







Fig. 4. Reconstruction of second Volterra kernel.
Fig. 5. The 1st-order Volterra kernel of the van de Vusse reactor.

Fig. 6. The 2nd-order Volterra kernel of the reactor.

Fig. 7. The 3rd-order Volterra kernel (t 3=1) of the reactor.
Korean J. Chem. Eng.(Vol. 21, No. 2)
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Using the measured Volterra kernels g1, g2, and g3, nonparamet-
ric NMPC is realized for α=0.5 and M=P=10. Here, for compari-
son on the same ground, a quadratic objective (L2 norm) is used,
whilst any objective (including non-differentiable ones) can be used
with an a-posteriori optimizer [Li et al., 2002; Tan and Li, 2002].

from 1.12 to 1.0. We see that, while all nonparametric NMPC c
trollers offer zero-offsets, the third-order one offers superior per
mance. It is not only improved over the second-order contro
but this is also achieved without requiring an analytical model, wh
is needed for a parametric method [Doyle III et al., 1995].
2. Application to a Polymerization Process

Following the benchmark tests, the developed higher perfo
ing and easier to implement NMPC method is applied to a proc
problem of Mitsubishi Chemical Corp. Their chemical reactor
described by the differential equation

(31)

with initial conditions

(32)

where x1 is the consumption velocity of catalyst, x2 is gas density,
u1 is the supply quantity of catalyst, u2 is the supply quantity of poly-
ethylene, and Tp1, Tp2, Kp1, Kp2 and Kp3 are constants. Here the
control input to optimize is u1 and the output to control is x2, required
to follow a step change in reference to R=10 kg cm−2 from 5.

For this, an M-sequence, denoted by ∆u, with amplitude ±0.025
and characteristic polynomial f(x)=260577 in octal notation is app
to the reactor, with a sampling period of 0.3 h. Taking cross-corr
tions between ∆u and ∆y, Volterra kernels are measured. These a
shown in Figs. 10-12. In Figs. 13-15, comparison is made betw
the actual output and the Volterra estimates responding to a sin
idal input. We see again that the third-order model offers the 
estimation which should be sufficient enough to preclude the n
for a further higher-order model.

Then, using the measured Volterra kernels, NMPC is realized 

dx1

dt
------- = 

1
Tp1

-------- − x1 + Kp1u1( )

dx2

dt
------- = 

1
Tp2

-------- Kp2x1x2 − x2 + Kp3u2( )

y  = x2







x1= 0.02 kgh
− 1, x2 = 5.0 kgcm

− 2

u1= 0.05 kgh
− 1, u2 = 3195 kgh

− 1



Fig. 8. Actual and modeled step responses of the van de Vusse re-
actor (solid: actual output; +: linear model; dotted: up to
the 2nd-order Volterra kernels; dashed: up to the 3rd-order
kernels).

Fig. 9. NMPC performance comparison on the van de Vusse reac-
tor (solid: linear model; dotted: 2nd-order Volterra model;
dashed: 3rd-order model).

Fig. 10. Obtained first-order Volterra kernel of the Mitsubishi poly-
merization process.
March, 2004

The result of the NMPC is shown in Fig. 9 for a set-point changethe same settings in the van de Vusse case. The search for the con-
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trol sequence is carried out within the range of ±0.05 with a 0.001 in-
crement. Figs.16 and 17 present the controlled performance and con-
trol signals. From the results, we see that the nonparametric NMPC
formulated from the third-order Volterra model offers the best closed-

Fig. 11. Obtained second-order Volterra kernel of the process.

Fig. 12. Obtained third-order Volterra kernel of the process.

Fig. 13. Comparison between the actual output and the output es-
timated from a first-order Volterra model of the Mitsub-
ishi polymerization process.

Fig. 14. Comparison between the actual output and the output es-
timated from a second-order model.

Fig. 15. Comparison between the actual output and the output es-
timated from a third-order model.

Fig. 16. Performance of the NMPC controllers formulated using
the first, second and third-order Volterra models for the
Korean J. Chem. Eng.(Vol. 21, No. 2)

loop performance. Mitsubishi polymerization process.
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CONCLUSION

In this paper, methods for formulating and realizing nonparamet-
ric Volterra NMPC have been developed. They allow retention of
the original characteristics of linear MPC and relieve practicing en-
gineers from the tedious task of obtaining an often less accurate and
less computerized fundamental model. This simple and yet rigorous
approach to NMPC incorporates an error estimator automatically
in the realization with zero offsets, needing no explicit nonlinear ob-
server. The nonparametric NMPC has been validated against the
benchmark van de Vusse nonlinear process control problem and
then applied to the control of an industrial polymerization process
by using Volterra kernels of up to the third order. Results show that
it is very efficient and effective and considerably outperforms exist-
ing methods. Further work includes the development of powerful
nonlinear search algorithms for use with on-line implementation under
multiple constraints.
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