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Abstract

Design automation in Quantitative Feedback Theory ( QFT) is addressed in this paper.
An automatic loop shaping procedure based on Genetic Algorithms ( GAs) is developed,
where a robust controller for uncertain plants can be designed automatically such that the cost
of feedback is minimised and all robust stability and performance specifications are satisfied.
The developed approach can improve the current QFT design in at least two aspects. One is
in the design of an initial controller for complicated plants, which might be difficult even to
find a stabilising controller manually. The other is in proving the initial manual design by op-
timisation of the performance index under the preseribed requirements within the neighbour-
hood of the manual design. An illustrative example which compares manual loop shaping with

automatic loop shaping is presented.

Key words : Quantitative feedback theory , Design automation , Genetic algorithms , Stability

1. Introduction
Quantitative Feedback Theory ( QFT) has

been applied in many engineering systems suc-
cessfully since it was developed by Horowitz
( Horowitz, 1973; Horowitz and Sidi, 1978).
The basic idea in QFT is to convert design specifi-
cations of a closed-loop system and plant uncer-
tainties into robust stability and - performance
bounds on the open-loop transmission of the nomi-
nal system and then to design a controller by using
the gain-phase loop shaping technique .

ISSN : 1708-5284

The most important feature of QFT is that it
is able to deal with the design problem of compli-
cated uncertain plants. However, loop shaping is
currently performed in computer aided design en-
vironments manually and it is usually a trial and
error procedure ( Chait, 1997). Whether or not
the design is successful mainly depends on the ex-
periences of the designer. Moreover for uncertain
unstable and non-minimum phase plants, it is dif-
ficult to design a controller to satisfy all specifica-
tions (even a stabilising controller) manually.
This also occurs for systems with a large number
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of resonances, pure delays, etc. where a high or-
der and complex controller is necessary. This is-
sue was highlighted recently by the design cam-
paign organised by European Space Agency
(ESA), where H, and QFT are chosen as candi-
date design methods for robust control of space-
craft with large flimsy appendages. It was shown
that although QFT outperforms H. methods in
many aspects and QFT is chosen as the preferred
design method for SISO ( single-input-single-out-
put) robust control design for future space mis-
sions, lack of design automation is one of the
main obstacles for extending QFT for MIMO ( Mul-
ti-Input-Multi-Output ) systems, in particular for
spacecraft with 6 degrees of freedom (Bodineau et
al., 2004)

To solve this problem and to unleash the
power of QFT, design automation will be studied
in this paper. It can improve the design of QFT
controllers in at least two aspects. The first is in
generating an initial controller on which the manu-
al loop-shaping is based. This is necessary for un-
stable and non-minimum phase plants or plants
with complicated characteristics where it might be
difficult to find a stabilising controller. The de-
signer starts from this initial controller and designs
a final controller according to his experiences and
design requirements, e.g., the controller order,
robustness, and the sensitivity to the sensor
noise, etc.. The second is that after an initial
controller is designed manually, the optimisation
may be used to maximise the performance/min-
imise the cost of feedback under the prescribed re-
quirements within the neighbourhood of the manu-
al design. The work of Thompson and Nwokah
(1994) belongs to this case. Combining these as-
pects, complete design automation from scratch
may be achieved.

Several researchers have investigated the de-
sign automation of QFT. Horowitz and Gera
(1980) and Ballance and Gawthrop (1991) both
proposed the use of Bode integrals within an itera-
tive approach to loop shaping. Thompson and
Nwokah (1994) proposed an analytical approach

to loop shaping when the templates are approxi-
mated by boxes. A linear programming approach
for automatic loop shaping was proposed by Bryant
and Halikias (1995). The most recent results
about the design automation in QFT are given by
Chait (1997) where, to overcome the non-con-
vexity of the bounds on the open-loop transmis-
sion, the design is based on the closed-loop
bounds. The main disadvantage of these ap-
proaches is attempting to solve a complicated non-
linear optimisation with a convex or linear pro-
gramming. This results in imposing unrealistic as-
sumptions or very conservative design. For exam-
ple, the denominator of the closed-loop transfer
function must be specified in advance in the ap-
proach of Chait (1997).

In view of the non-convexity of the loop
shaping problem in QFT design, this paper ad-
dresses the design automation problem in QFT by
the use of Genetic Algorithms (GAs), which are
multi-objective global optimisation techniques.
The design objective is to design a controller for
the uncertain plants such that the cost of feedback
is minimised and all robust stability and perfor-
mance specifications are satisfied.

This paper is organised as follows. First the
QFT and Genetic Algorithms are briefly introduced
in Section 2. In Section 3, the procedure of auto-
matic loop shaping is developed. In converting the
QFT problem into the evaluating computing formu-
lation, several problems, including how to ensure
the nominal case is stabilised, how to avoid the
right half plane zero/pole cancellations, and how
to ensure the resultant controller is rational, are
answered. The design method developed is illus-
trated by a benchmark example in QFT Toolbox in
Section 4 and we close the paper with a brief con-
clusion in Section 5.

2. QFT method and Genetic Algorithms

2.1. QFT overview

The two-degree-freedom feedback system
configuration of QFT is given in Figure 1.
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where G(s) and F(s) are referred to as
the controller and the prefilter respectively. P(s)
denotes the uncertain plant, which belongs to a
given plant family P. It can contain structured,
unstructured or mixed uncertainties.

One view of the QFT approach is if there is
no uncertainties and noise, the feedback is unnec-
essary and we can achieve the prescribed perfor-
mance specifications by the prefilter F(s), which
can be designed via open-loop shaping. The main
role of the controller, G(s), is therefore to re-
duce uncertainties and disturbances by using feed-
back. The QFT design is thereby divided into two
steps . The first step is to design the controller, G
(s), such that uncertainties and noise on the
closed-loop system is reduced to an acceptable
level which is determined by the closed-loop ro-
bust stability and performance specifications. The
prefilter is then designed to achieve the desired
frequency responses.

In general three kinds of specifications are
considered in QFT:

1. Robust Stability Margin

‘l_f‘(z%”—":?’ forall P(s)EP w€[0,®)
(1)

2. Tracking Performance

F(jw)L(jo)
|a(w)|<‘ 1+ Ljw) \
<|b(w)! forall P(s)EP w€[0,»)

(2)

3. Disturbance Attenuation Performance

P(jw)
!1+L( ’<1d(w)|
for all P(S)EP w&[0, o) (3)

where ¥,a(w),b(w)and d(w) are sta-

Feedback control system Configuration for QFT.

bility performance specifications, which are robust
stability margin, the low and upper tracking per-
formance bounds and disturbance
bounds respectively.
is defined as

attenuation
The open loop transmission

L(S) = P(S)G(S)o

2.2. QFT design procedure

1. Generating templates. For a given uncer-
tain plant P(s) € P, select a series of frequency
points, w;, i = 1, '+, I, according to the plant
characteristics and the specifications. Calculate
the value sets of the plant p(jw;) in the complex
plane, i.e., the so called plant templates, at all
frequency point w; ;

2. Computation of QFT bounds. An arbitrary
member in the plant set is chosen as the nominal
case. At each selected frequency point, combin-
ing the stability and performance specifications
with the plant template yields stability margin and
performance bounds in term of the nominal case.
Intersection of all such bounds, i.e., the worst
case bound, at the same frequency point yields a
single QFT bound. Compute such a QFT bound
for all frequency points w;,i =1,--, /. Hence
the specifications of the closed-loop systems for all
P(s) € P are translated into that of the open
loop nominal case;

3. Loop shaping for QFT controllers. The
design of the QFT controller, G(s), is accom-
plished on the Nichols Chart. The phase gain loop
shaping technique is employed to design of the
controllers, G(s), until the QFT bounds at all-
frequencies are satisfied and the closed-loop nomi-
nal system is stable;

4. Design of prefilters F(s). The final step
in QFT is to design the prefilters, F(s), such
that the performance specifications are satisfied .

In general the first two steps can be carried

out by numerical evaluations on computer. For a
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large class of systems with nonlinear uncertain-
ties, a systematic method for generating the plant
templates and its symbolic computation procedure
has been developed by Chen and Ballance (Chen
and Ballance, 1998a; Ballance and Chen,
1998) . The main difficulty in QFT design proce-
dure lies in Step 3 in Section 2.1, it is normally
performed manually with the help of computer aid-
ed design (CAD) environments, e.g., the QFT
Toolbox for MATLAB ( Borghesani et al.,
1995) . The main advantages of this method are
that the design experiences can be used and the
design procedure is transparent to the designer.
The designer can consider many factors, which
might be difficult to represent by analytical ex-
pressions or quantitatively. However, as pointed
out in Section 1, when the plant has unstable ze-
ro/pole or complicated characteristics, it may be
difficult to design a stabilising controller manual-
ly. In addition, whether or not the design is suc-
cessful mainly depends on designer’ s experience
applied to the trials. If the controllers, which en-
sure all QFT bounds are satisfied, have been
worked out in Step 3, it is quite easy to design the
prefilters by manual loop shaping. Thus, only the
QFT controller design, Step 3, is considered in

this paper.

2.3. Genetic algorithms

Clearly, the manual loop-shaping procedure
may be replaced, and thus automated, by a com-
puterised optimisation procedure. However, such
a nonlinear, non-convex multi-objective optimisa-
tion problem can hardly be solved using conven-
tional, gradient-based techniques, as these suffer
from the following deficiencies:

1. The objective function may not be well-
behaved and a smooth derivative may not exist;

2. Direct domain constraints (such as pa-
rameter range requirements and fixed relation-
ships) and indirect inequalities (such as control
constraints) often exist, which impose difficulties
in synthesising an appropriate objective func tion;

3. Even when an appropriate objective func-
tion exists and is well-behaved, gradient guidance
can usually leads to a local optimum and is noise
prone ;

4. Conventional techniques can only deal
with one, or one composite, objective; and

5. It is difficult to make use of engineers’
existing knowledge on certain parameters for a
globally optimal solution.

One approach to this problem could be ex-
haustive search. Suppose that, therefore, 10 pa-
rameters need to be tuned, each of which has 10
candidate values to evaluate. This requires re-
peatedly running a CAD toolbox 10" times. In
practice, however, such a process could take 4
months to complete, if each evaluation on the
CAD simulator takes | mini-second! This ap-
proach would thus be impractical.

The most powerful computational intelligence
technique, evolutionary computation, mimics the
human intelligent trial-and-error procedure in an
emulated * survival-of-the-fittest *  evolutionary
process (Li et al., 1996; Li and Haeussler,
1996) . In contrast to conventional optimisation
and search algorithms, a GA uses multiple points
(in the form of a ‘ population’ of candidate solu-
tions) to conduct parallel search every time. It
thus offers a better opportunity to arrive at the
global optimum and to deal with multiple objec-
tives. Note that a constrained simulation problem
is much easier to solve than a constrained synthe-
sis problem. As long as the CAD simulator works,
candidate designs can be evaluated and selected.
A GA incorporates biased selection and replication
mechanisms using the ° survival- of-the-fittest ’
Darwinian principle. It thus guides the search in a
trial-and-error based a-posteriori process, requir-
ing no gradient information. After replicating bet-
ter performing candidates, the GA then diverges
the search using an operation called * crossover’
by exchanging coordinates or parameters among
surviving candidates. It also diverges the search
by altering some parameter values in an operation
called ‘mutation’ . This way, a new ‘generation’
of candidate designs will be formed and the emu-
lated evolutionary cycle continues until no mean-
ingful improvements in the design may be found.

GAs offer an exponentially increased efffi-
ciency compared with exhaustive search. The GA
paradigm has been successfully applied to solve
many control engineering problems (Li et al.,
1996; Li and Haeussler, 1996). A GA can rec-
ommend several top-performing candidates. Multi-
ple solutions to multiple design objectives provide
sensitivity and reliability information on the de-
signs and also provide design transparency for
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‘minimum commitment’ at the CAD stage. Thus
the application of an optimisation procedure is not
intended to replace an engineer’s job. It is to as-
sist the engineer to arrive at a preliminary design
quickly and to assess whether an existing design
may be improved based on simulation results.

3. Automated QFT design

3.1. Problem formulation

The design automation problem considered in
this paper can be stated as, given the QFT bounds
and the nominal plant, to develop a controller au-
tomatically satisfied and the given performance in-
dex is minimised.

A good automatic design procedure, we be-
lieve, should be flexible and transparent to the
designer. That is the designer should know how to
control the optimisation process to achieve the
specific requirements for a problem in hand by ad-
justing the parameters provided by the optimisation
procedure, for example, the order of the con-
troller, whether or not an integral is included,
etc.

3.2. Choice of optimisation variables

One way to optimal QFT design is to use the
Bode integrals, which enforces the analytical rela-
tionship between the gain and phase for minimum
and stable plants and can be easily extended to
non-minimum phase and unstable cases.

This approach is inspired by the onginal
work of Horowitz who shows the optimal QFT de-
sign is achieved when the open-loop transmission
lies on the corresponding QFT bound at each fre-
quency (Horowitz, 1973). However in general it
gives irrational controllers. Using Bode Integrals
in automatic QFT design produces an approximat-
ed frequency response of the optimal controllers
and requires rational function approximation
( Horowitz and Gera, 1980; Ballance and
Gawthrop, 1991). The disadvantages of this ap-
proach are:

1. control by the designer over the order of
the controller is lost;

2. unstable poles and non-minimum phase
zeros cancellation between the controller and the
plant may occur;

3. it requires rational function approxima-
tion.

The second disadvantage means that although
by appropriately chosen Bode Integrals it can be
ensured that the number of the unstable poles of
the resultant open-loop system are the same as
that of the nominal plant, it does not imply that
there are no right-half plane pole/zero cancella-
tions between the controller and the plant. That
is, it is possible that the controller cancels an un-
stable pole in the nominal plant by a non-mini-
mum phase zero and introduces another new unsta-
ble pole in the resultant open-loop transmission.

The automatic design is based on the open-
loop transmission, L (s), in most of the QFT
methods {e. g., see Bryant and Halikias (1995)
and Chait (1997)). The use of the open-loop
naturally follows because the QFT bounds are giv-
en in term of the open-loop transmission. All ex-
isting optimal design methods in QFT are based on
the open-loop transmission L(s) and thereby the
controller order is equal to the plant order plus the
resultant open-loop transmission order. In con-
tragt , in this paper the controller G (s) is de-
signed directly. Direct design of G(s) is one of
the main features of this paper, and, as shown in
later, greatly simplifies the optimisation problem.
The order of the controller can be prespecified,
which enables a low order controller to be de-
signed. In this paper, the optimisation variables
are the coefficients of the controller’ s transfer
function

C(s) = brs" + -+ bys + by

(4)

as" o+ a s + ag

Other advantages of this approach are that it gives
control over the control struc ture to designers, e.
g., whether or not an integral is included, the
relative order in the controller. In general a,, is
set equal to 1.

3.3. Stability of the nominal case

According to the Zero Inclusion Theorem (for
example see Jayasuriya and Zhao (1994)), the
sufficient and necessary condition for the robust
stability of the closed-loop systems is that the
nominal system is stable and the open-loop trans-
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mission under the prescribed plant set does not in-
tersect the — 1 + jO point in the complex plane.
The later is guaranteed in QFT by the robust sta-
bility margin condition (1) .

It is easy to check the stability of systems in
the Nichols Chart since the stability criteria in the
Nyquist plot is extended to the Nichols Chart (Co-
hen et al., 1992) . However it is a graphical cri-
teria and not easily tested numerically. In our
method, the stability of the closed-loop nominal
system is simply tested by solving the roots of the
characteristic polynomial. The function

| {0 if stable

1 if unstable (5)

is defined as the stability index.

3.4 . Right half plane pole/ zero cancella-

tion

In order to ensure internal stability, it is de-
sired that a minimum phase and stable controller
is designed. This can guarantee the internal sta-
bility and no unstable pole and non-minimum
phase zero cancellations. Our method is to limit
all coefficients of the transfer function G(s) to be
positive. This is a necessary condition for a poly-
nomial having negative real part roots. Certainly
we can calculate the poles and the zeros of the
controllers and avoid right half pole/zero cancella-
tion by comparing them with all right-half plane
poles/zeros (if any) of the nominal case. Another
way is to use the Horowitz method for QFT design
of unstable and non-minimum phase plants, i.e.,
translation of QFT bounds for an unstable/non-
minimum phase nominal plant to that for a stable
and minimum phase plant ( Horowitz and Sidi,
1978; Horowitz, 1992; Chen and Ballance,
1998b) . Then it is impossible to have right half
plane pole/zero cancellations since the new nomi-
nal plant is stable and minimum phase.

3.5. QFT bounds

In general the QFT bounds are very compli-
cated and are non-convex ( Horowitz, 1963) . It is
difficult to give analytical expressions of the QFT
bounds except for some special templates ( Thomp-
son and Nwokah, 1994). In our approach, the

QFT bounds are generated by the computation pro-
cedure in the QFT Toolbox and numerical bounds
are yielded. The properties of GAs allows these
numerical bounds to be used directly in our de-
sign. At each frequency, the gain and phase of
the open loop transmission L(j) is calculated and
then checked to see whether or not the QFT bound
at this frequency is satisfied by interplotation. A
bound index is defined by

o {0 if the QFT bound at w; is satisfied
711 otherwise
i=1,51 (6)

A Universal High-frequency Bound (UHB)
is widely used in QFT. There are several interpre-
tations about UHB including the robust stability
margin, the maximum overshoot and disturbance
attenuation ( Ballance, 1992; Ballance and
Gawthrop, 1992) . To ensure the open-loop trans-
mission does not intersect the UHB, a number of
frequencies near or greater than the largest fre-
quency in w;, i=0+1,...,h, are added. The
gain and phase of the open loop transmission
(joy),i=1+1,...,h, are computed and the
UHB is tested at those frequency points. This is
not to add much computational burden since no
new QFT bounds need to be calculated.

3.6. Performance index

Among all loop transmissions, L ( jw; ),
which satisfy the QFT bounds and the stability re-
quirement of the nominal system, the optimum is
taken to be any L (jw;) whose magnitude as a
function of frequency decreases as fast as possible
(Horowitz, 1992). The justification for this is to
consider the effects of high frequency sensor noise
and the unmodelled high-frequency dynamics/par-
asitics, which may result, with unnecessarily
large bandwidth, in actuator saturation and insta-
bility. It follows that the cost-function to be mini-
mized is the high-frequency gain of the open loop
transmission L(s) where the high-frequency gain
is defined by

lim sL(s) (7)

Ll

when the relative order of the transfer function L
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(s) is ¢. It is also called the cost of feedback in
QFT. Since the nominal plant is fixed, this is e-
quivalent to the high frequency gain of the con-
troller, given by

Jﬁg-_- b,/am (8)

This performance index is widely adopted in QFT
optimisation ( Horowitz, 1991; Chait, 1997;
Thompson and Nwokah, 1994; Bryant and Ha-
likias, 1995).

3.7. Fitness in the GA

The fitness in a GA for the QFT design
should reflect the stability and performance re-
quirements, and the performance index, given by

h
J = thg + ;‘1 yi]bi + yﬂjsm (9)

where ¥;,i =0,1,-:-, h are weighting factors. In
general ¥;, i =0, 1,*-, h should be reasonably
large. In this paper we choose ro is about 2h
times than the biggestiny;, i = 1,..., h, and
Y; is chosen as the maximum of all controller pa-
rameters .

3.8. Choice of parameter space and cod-
ing
After the controller order and the control

structure in (4) are specified by the designer, the
variables to be optimised are fixed, given by

P= [br""!blﬁbug awll",a]gan]ERr+m+l
(10)

when a_, is fixed equal to 1 in this paper.

In the preparation phase for GAs, all the pa-
rameters need to be coded by an integer string to
form a chromosome. The choice of the range of
the parameters is important in the automatic loop
shaping, which determines the size of the search-
ing space. Since all parameters are positive ac-
cording to the stable minimum phase controller re-
quirement , the minimum is chosen as close to zero
and the maximum of all parameters can be chosen
as a reasonably large number if there is no prior

information about the ranges of the parameters. To
improve the convergence of the Genetic Algo-
rithms, noting that all controller parameters are
positive, we optimise these parameters in the log-
arithmic space rather than the original parameter
space. That is, first the parameters, P, are
translated into the logarithmic space. For any ele-
ment Pi in (10), let

p; =logl0(p;),i=1,",r+m+1

The P = [P,y prymsr]) is coded to form a
chromosome for GAs. Our expeirence shows this
greatly saves the optimisation time.

4. Design example

The above method is applied to design a con-
troller for the Benchmark Example 2 in the QFT
Toolbox of MATLAB (Borghesani et al., 1995).
The automation of the design of a QFT controller
for this example is also investigated by Chait
(1997).

The uncertain plant is described by

ka
P= {p(s) s a):ke[l,lo],ae[l,loﬂ
(11)
The closed-loop specifications include the ro-

bust stability margin and the tracking perfor-
mance, which are specified by

<1.2, forall PE€Ep,w=0
(12)

‘ p(jw) G(jw)
1+ P(jw)G(jw)
and

P(jw) G(jw)
1+ P(jw)(Gw)

= Tu(w)
(13)

T;,(w)s‘l«“(jw)

respectively, where

0.6854(jw + 30)
(jw)?+4Cw) +19.752

and
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L 120
T Gw)? + 17(w)? + 828(jw) + 120
(15)

T,

The design objective in this paper is to find a
controller such that all the closed loop specifica-
tions are satisfied and the cost of feedback is as
small as possible. As in the QFT Toolbox, the
QFT bounds on the frequencies w = [0.1, 0.5,
1, 2, 15, 100] are calculated. In order to ensure
the whole loop transmission satisfies the UHB
(which is yielded by the robust stability margin
requirement) , in the automatic loop shaping, the
frequency points w = 120, 200, 300, 400,
500, 1000, 2000, 3000, 5000. are added to test
the UHB. Since a third order controller is de-
signed in the QFT Toolbox, we try to design a
lower order controller for this plant and specify a
second order controller.

For a second order controller, there are four
parameters when a, = 1. Since there is no prior
information about the range of the coefficients in
the controller, the quite large ranges of all param-
eters are chosen, or p; € [0.001, 10'°]. Follow-

ing the suggestion in Section 3, before coding the
parameters to form a chromosome in GAs, we
translate them into the logarithmic space. It there-
fore becomes ;i €[ -3,10]. Since the maximum
of the parameters are i ey AR B i DR LR
chosen as 10'0 as well. 7, is selected as 10"
since the stability is more important than one QFT
bound .

The design method developed in this paper
gives, after 75 generations, a second order con-
troller:

6.753 x 10%s + 1.3947 x 107
s2+3.4834 x 10°s + 1.6218 x 10°
(16)

G(s) =

The loop shaping result is given in Figure 2.
It can be shown that all robust stability margin and
the performance specifications are satisfied. The
nominal system is also stable. This controller
would not be easy to design by other optimization
methods since the coefficients vary in quite large
ranges .

Open-loop:  -299.09deg,-52.52dB

Closed-loop:  -299.20deg,-52.53dB

Freguency: n/a rad/sec
s

80 S e R S T e R R R e

20 .:...w..‘,w....‘;.,;-:,. .,.:;'..E.............3.,...A......,,'E.....,‘...-.- T oA S

60 .'.....' ~ 300 (AN U A

t i i i H ' H
H i r ! H H '

i i
-350 -300 -250 -200

-150 -100 -50 0

X:Phase(degrees) Y:Magnitude(dB)

Fig.2. Loop shaping via Genetic Algorithms:Second order controller.

The third order controller for this plant in the
QFT Toolbox is given by

3.0787 x 10%52 + 3.5365 x 10%s + 3.8529 x 10°
s3 +1.5288 x 10352 + 1.0636 x 10%5 +4.2810x 107
(17)

G(s)=
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The loop shaping result under this controller
is shown in Figure 3. Only the high frequency
gain of the new second order controller is a little
higher than that of the third order controller in
QFT Toolbox .

Chait (1997) also designs a controller for
this plant by the design automation procedure. In
Chait” s method the poles of the nominal closed-
loop transfer function must be prescribed. Cer-
tainly this imposes an unnecessary requirement on
the design and thereby the design result is quite
conservative. The controller order yielded by this
method is the sum of the prescribed nominal
closed-loop transfer function and the order of the
nominal open-loop plant. As expected, the order
of the controller is high. In Chait (1997) a fifth
order and a ninth order controller are designed.

5. Conclusion

A genetic algorithm based automatic design
procedure for QFT has been reported in this pa-

per. Using this approach, an engineer does not
need to approximate a complicated non-convex op-
timisation problem of QFT design by a linear and
convex programming problem. The GA based ap-
proach overcomes the the disadvantages of the pre-
vious automatic design methods in QFT that results
in imposing unrealistic assumptions or very con-
servative designs. The design is accomplished di-
rectly on the controller instead of on the loop
transmission, as in the traditional QFT design and
other automatic design methods. In converting a
QFT design problem into a nonlinear optimisation
problem, several key problems including the sta-
bility of the nominal plant, QFT robust stability
and performance bounds, the internal stability of
the uncertain systems etc. are discussed. The de-
sign result shows the introduction of genetic algo-
rithm in QFT can efficiently overcome the difficul-
ties in loop shaping and improve the QFT design.
It provides an alternative approach to loop shaping
in QFT design.

Open-loop: -19.49deg,57.10dB
Closed-loop: -0.03deg,-0.01dB
Fraqt{(_-}ncy: n/a rad/sec

I I I

L
.350 -300 -250 -200

-150 -100 -50 D
X:Phase{degrees) Y:Magnitude(dB})

Fig.3. Loop shaping in the QFT Toolbox: Third order controller.
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