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Abstract: Model Predictive Control (MPC) has recently found wide acceptance in the process industry, but existing

design and implementation methods are restricted to linear process models. A chemical process, however, involves severe

nonlinearity which cannot be ignored in practice. This paper aims to solve this nonlinear control problem by extending MPC

to accommodate nonlinear models. It develops an analytical framework for nonlinear model predictive control (NMPC). It

also offers a third-order Volterra series based nonparametric nonlinear modelling technique for NMPC design, which relieves

practising engineers from the need for deriving a physical-principles based model first. An on-line realisation technique for

implementing NMPC is then developed and applied to a Mitsubishi Chemicals polymerisation reaction process. Results

show that this nonlinear MPC technique is feasible and very effective. It considerably outperforms linear and low-order

Volterra model based methods. The advantages of the developed approach lie not only in control performance superior

to existing NMPC methods, but also in eliminating the need for converting an analytical model and then convert it to a

Volterra model obtainable only up to the second order.
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1 Introduction

Model Predictive Control (MPC) has recently found
wide acceptance in industrial applications, particularly
in chemical processes where dynamics are relatively
slow and hence can accommodate on-line optimisation
easily. At any given time, MPC only needs to solve an
on-line open-loop optimal control problem over a finite
time horizon, where only the first control of the result-
ing finite control sequence is actually implemented on
the plant.

MPC has also received worldwide attention in
academia[1,2]. However, much of the work has been
confined to linear control based on a linear model or
linearised model of the plant. A chemical process for
instance, is often severely nonlinear, and this system
nonlinearity cannot be ignored in practice. This has
stimulated work in synthesising MPC for use with a
nonlinear analytical Volterra model and in Volterra se-
ries modelling.

Recently, progress in Volterra modelling with a high
degree of accuracy has been made in the Kashiwagi
Laboratory at Kumamoto University, in which Volterra
kernels of up to a 3rd order can now be measured using
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process I/O data excited with a pseudo-random M-
sequence. Based on this, the process can be mod-
elled, and hence predicted more accurately than ex-
isting methods that can only obtain Volterra kernels of
up to a 2nd order. In place of a Kalman estimator for
the linear case, this highly accurate signal reconstruc-
tion leads naturally to an advanced nonlinear model
predictive control (NMPC) technique[3].

In Section 2, an analytical framework for NMPC
is developed based on Volterra models for nonlinear
systems. Section 3 provides an on-line realisation tech-
nique. NMPC is applied to a Mitsubishi Chemicals’
polymerisation reaction process in Section 4. Results
show that NMPC is very efficient and effective and con-
siderably outperforms existing methods. Conclusions
are drawn in Section 5.

2 Analytical framework for NMPC

2.1 Design objective and exact solution

Fig.1 shows notation for a general model-based con-
trol structure. A pre-filter F outside the loop is for
robust consideration in model-following, and is often a
unity gain first-order low-pass with a relatively small
time-constant, or a critically damped second-order fil-
ter with a relatively high natural frequency. A nonlin-
ear process is represented by P. An overall controller
H is composed of a feed-forward path controller Q and
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a feedback model G, all of which are determined in an
MPC synthesis.

If we suppose that the nonlinear system P has a fad-
ing memory[4], as is found in many industrial processes,
then its output can be represented with a Volterra se-
ries as a temporal extension of a Taylor series expansion
as given by:

y(t) =
∞∑

i=1

∫ ∞

−∞

∫ ∞

−∞
· · ·

∫ ∞

−∞
pi(τ1, τ2, · · · , τi)u(t− τ1)

u(t− τ2) · · ·u(t− τi)dτ1dτ2 · · · dτi + d(t) (1)

where pi is an i-th order Volterra kernel, an i-
dimensional impulse response of the nonlinear process.
This equation can be compactly rewritten as:

y(t) =
∞∑

i=1

y(i)(t) + d(t) (2)

where
y(i) = pi

∗u (3)

is the degree-i Volterra contribution to overall output,
and ∗ denotes i-dimensional convolution in the sense
of a Volterra series and is hence non-commutative for
i > 2.

Similar to other control schemes, the objective J :
< → <+ of controller synthesis is to find Q such that

J = min
u
‖e‖ (4)

where
e = yR − y (5)

is control error to be minimised, and M is the degree
of freedom in u that needs to be optimised.

The norm in (4) can be the commonly used L1, L2,
or L∞ metric, or any other norm, provided that the
metric used guarantees selectivity in minimisation.
The metric L2 is most commonly used in MPC and in
optimal control in general, as the optimisation problem
posed this way is most easily solved through quadratic
programming. However, the L1 metric and its time-
weighted version (i.e. ITAE) offers better selectivity[5].

In realising MPC in practice, J is not measured
over an infinite time span[1]. Neither is the control se-
quence to be optimised. Hence, for on-line realisations
the objective is revised to:

J = min
u(t+1),···,u(t+M)





L+P−1∑

j=L

|yR(t + j)−y(t+j)|r




1/r

(6)
where L > 1 is the minimum number of predictive steps
desired, P is the finite length of a “coincidence hori-
zon”, M is the finite length of the control sequence
within a “control horizon”, and r = 1, 2, · · ·, or ∞ is
the order of the metric norm.

To formalise the structure of MPC based on an
analytical Volterra model, please refer back to Fig.1.
Denoting all identified Volterra kernels of G using gi,
i = 1, · · · , N , (2) can be rewritten as:

y = yM + n =
∞∑

i=1

gi
∗u + n = g ∗u + n. (7)

Hence:

e = (ξ + n)− (yM + n) = ξ − yM = ξ − (g ∗q)∗ξ. (8)

The objective of (4) is therefore strictly met if:

(g ∗q)∗ξ = ξ, ∀ξ. (9)

If we reuse capital letters to denote operators cor-
responding to respective Volterra representations and
reuse ∗ to denote a composition of operators (which is
usually non-commutative), then (9) becomes:

G ∗Q = I. (10)

Hence, an optimal solution Q is found as G−1, if non-
linear Internal Model Control (IMC) can be “exactly”
realised.

However, as observed in [5], obtaining a strictly zero
J of (4), or strictly satisfying (9), is impossible under

Fig.1 A canonical structure of an MPC scheme
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practical constraints (such as voltage or current limits),
as otherwise it would mean that controller “gain” has
to be infinite for all frequencies and time. This is also
because strictly satisfying (9) or (10) implies that MPC
will reduce in effect to open-loop control, which in turn
cannot always guarantee (9) or (4) if disturbance d ex-
ists.

2.2 Controller synthesis and second-order
realisation

The usefulness of a Volterra model is that it de-
composes a nonlinear system into an additive series of
a linear model plus nonlinear models of different de-
grees of nonlinearity, as shown in (2). Now, we rewrite
G and Q as a linear operator (based on a first-order
Volterra kernel) and a nonlinear one based on higher-
order Volterra kernels:

G = G1 + (G2 + G3 + · · ·) (11)

Q = Q1 + (Q2 + Q3 + · · ·). (12)

Then the controller is synthesised by solving (10) with
the above equations [6], as derived in Chapter 7 of [7]:

Q1 =G−1
1 (13)

Q2 =−G−1
1 ∗G2 ∗Q1 (14)

Q3 =−G−1
1 ∗ {G2 ∗ (Q1 + Q2)

−G2 ∗Q1 −G2 ∗Q2 + G3 ∗Q1}
(15)

noting that because of nonlinearity,

G2 ∗ (Q1 + Q2) 6= G2 ∗Q1 + G2 ∗Q2. (16)

This result is useful in that (13) is an exact IMC con-
troller only for the linear part, G1 (degree-1 contribu-
tion from the Volterra model), and in that the synthesis
of all components of Q involves the inverse of only this
linear component, and is dependent only upon known
components in Q.

However, a problem arises if the inverse of G1 ei-
ther does not exist or is unrealisable. To resolve these

issues, [6] proposed a “generalised inverse” synthesis
method by first reverting back to (4) for the relaxed
objective of a minimal J , as opposed to a strict zero J
or (10), and then by revising objective (4) to:

Ji = min
Q
‖e(i)‖, ∀i (17)

where

e =
∞∑

i=1

e(i) (18)

e(1) = H1[ξ]− ξ (19)

e(j) = Hj [ξ], for j = 2, 3, · · · (20)

and
H = G ∗Q = H1 + H2 + H3 + · · · . (21)

If the Euclidian metric (i.e. the L2 norm) is used to
measure revised objective (17), the optimisation prob-
lem for the case i = 1 will have the following solution[6]:

u(1) = G−L
1 [ξ] (22)

i.e.
Q1 = G−L

1 (23)

where the operator G−L
1 is the “left inverse” of G1

defined by:
G−L

1 ∗G1 = I. (24)

This is now a much relaxed inverse linear controller
compared with Q1 = G−1

1 for the exact inverse.
Similarly, higher-degree solutions can be derived as

given by [6]:

u(j) = −G−L
1 [ξ(j)], j = 2, 3, · · · (25)

where ξ(j) is a quantity dependent only upon known
quantities up to Step j.

To realise the algorithm, [6] derived a second-order
Volterra controller structure as shown in Fig.2. They
reported successful case studies in the process control

Fig.2 A second-order Volterra controller
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of the benchmark van de Vusse reactor and in a con-
tinuous stirred tank reactor using this second-order re-
alisation. However, their Volterra model can only be
identified up to a second-order via bilinear Carlemann
“linearization” applied to a first-principles model. This
means that a first-principles model is needed and the
NMPC controller can offer only one nonlinear kernel,
which consequently does not unleash the full potential
of a Volterra controller.

2.3 Third-order structure

Volterra kernels up to a 3rd order can now be ob-
tained directly from I/O data by exciting a process with
a pseudo-random M-sequence[8], which will be shown in
Section 3. This leads to improved modelling accuracy
and hence to the ability to unleash greater potential in
NMPC.

Here we show that the structure of a second-order
Volterra controller based on the “generalised inverse”
of [6] can be extended to a third-order.

Theorem. The structure of a third-order Volterra
controller based on the “generalised inverse” takes the
same underlying form as a second-order one and is
given in Fig.3.

Proof. The theorem is proved if we can show that
the control signal u in Fig.3 is the same as that in Fig.2.

Third-order structure:

yM3 = (G1 + G2 + G3)[u] (26)

ξ3 = yR − (y − yM3)

= yR − y + (G1 + G2 + G3)[u] (27)

ξ′3 = (G2 + G3)[u]. (28)

By definition of the “addition” of operators,

ξ3 − ξ′3 = yR − y + G1[u] + (G2 + G3)[u]

− (G2 + G3)[u] = yR − y + G1[u]
(29)

∴ u = G−L
1 [ξ3 − ξ′3]

= G−L
1 [yR − y + G1[u]]. (30)

Second-order structure:

yM2 = (G1 + G2)[u] (31)

ξ2 = yR − (y − yM2)

= yR − y + (G1 + G2)[u] (32)

ξ′2 = G2[u] (33)

ξ2 − ξ′2 = yR − y + G1[u] + G2[u]−G2[u]

= yR − y + G1[u] (34)

∴ u = G−L
1 [ξ2 − ξ′2]

= G−L
1 [yR − y + G1[u]]. (35)

So both control signals are indeed the same. ¤
Corollary. The essence of (30) and (35) is to force

y = yR through IMC, so that objective (4) or (6) is
met.

Proof. This yields by noting that G−L
1 is the “left

inverse” of G1 and both operators are linear. ¤

3 On-line predictive realisation

To relieve application engineers from needing to ob-
tain and hence linearise a first-principle based nonlinear
model, an NMPC system could be realised directly in
discrete-time using (7) and process I/O data. Also, us-
ing this method, a third-order Volterra controller does
not lead to more complication in its realisation than a
second-order one, as long as the third-order kernel can
be measured.

Realising a Volterra controller directly in discrete-
time is similar to a special category of MPC: Dynamic
Matrix Control (DMC)[1], where a linear Kalman es-
timator is replaced by nonlinear Volterra kernel based
signal reconstruction. Such an on-line realization of
MPC requires only modest computational power and
the process dynamics are often relatively slow. At any
given time, only the first control of the resulting solu-
tion to the on-line open-loop optimal control problem
is actually implemented in plant[9].

Direct discrete-time realisation of MPC has recently
gained increasing popularity in process control, as it

Fig.3 A third-order Volterra controller
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requires that a simple quadratic program be solved on-
line only over finite horizons P and M , as depicted in
Fig.4. Here the set-point is R and the reference tra-
jectory for the process to follow is yR. Referring back
to Fig.1, yR is the response of pre-filter F to the step
command of amplitude R. Given a typical first-order
low-pass pre-filter:

F (s) =
1

1 + τs
(36)

the reference signal in the continuous domain is repre-
sented by:

yR(t) = R(1− e−t/τ ). (37)

It is not difficult to derive the discrete-time difference
equation version, as given by:

yR(t + 1) = αyR(t) + (1− α)R (38)

where with a given sampling interval T ,

α = 1− T

τ
. (39)

Iterating the first-order difference equation yields:

yR(t + 2) = αyR(t + 1) + (1− α)R

= α2yR(t) + (1− α2)R (40)

and, in general,

yR(t + j) = αjyR(t) + (1− αj)R. (41)

Hence, the reference trajectory can be calculated j
steps ahead.

Fig.4 Direct discrete-time realisation of MPC

At time t, process output can also be predicted j
steps ahead using:

yP (t + j) = yP (t) + [yM (t + j)− yM (t)] (42)

where yM is calculated using Volterra kernels up to a
third-order, as given by (7) for i = 1, 2 and 3.

The revised objective of a linear MPC case[1] is also
applicable to a nonlinear one, given the assumption
that the nonlinear system P has a fading memory, and
is hence suitable for Volterra representation[4]. Under
this assumption, the objective of (4) is enforced within
a “coincidence horizon” of a finite length P . Hence,
the task is to find a control sequence within a “control
horizon” of a finite length M , such that:

J = min
u(t+1),···,u(t+M)

L+P−1∑

j=L

{yR(t+j)−yP (t+j)}2 (43)

where L > 1 is the minimum prediction step needed.
At the end of the optimisation, only the first con-

trol signal u(t + 1) is implemented. Similar to [6], the
Euclidian metric is used here. However, the objective
is not limited to the use of this norm, as other norms
can also be used as long as the optimisation algorithm
to be used can accommodate these norms. Note that in
the optimisation process we need to be able to search
for the control sequence under constraints such as actu-
ator saturation. This can limit the choice of a suitable
optimisation algorithm.

However, since the control signal will go through a
D/A converter the resolution of u will be finite. Hence
we can search for a discrete value of ∆u for each of the
elements in the M -element control sequence u ∈ <M .
The easiest optimisation algorithm that can accommo-
date the constraints is an a-posteriori nondeterminis-
tic hill-climbing algorithm, i.e. hill-climbing guided by
trail-and-error, not by a gradient that may not exist or
exist accurately due to sampled noisy data. Such an
algorithm is outlined in Fig.5.

Now the only task left in devising an accurate
Volterra model based predictive controller is to obtain
Volterra kernels in (7) for i = 1, 2 and 3. For details of
this, please refer to [3].

4 Application to a polymerisation pro-
cess

The NMPC method developed here is applied to a
process control problem of Mitsubishi Chemical Corp.
Their chemical reactor is described by the differential
equations:





dx1

dt
=

1
Tp1

(−x1 + Kp1u1)

dx2

dt
=

1
Tp2

(Kp2x1x2 − x2 + Kp3u2)

y = x2

(44)

with initial conditions:
{

x1 = 0.02kgh−1, x2 = 5.0kgcm−2

u1 = 0.05kgh−1, u2 = 3195kgh−1 (45)
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where x1 is the consumption velocity of a catalyst, x2

is gas density, u1 is the supply quantity of the cat-
alyst, u2 is the supply quantity of polyethylene, and
Tp1, Tp2,Kp1,Kp2 and Kp3 are constants. Here, the
control input to optimise is u1, and the output to con-
trol is x2, which are required to follow a step change
with reference to R = 10 kg cm−2 from 5.

For this, an M-sequence with amplitude ±0.025 and
characteristic polynomial f(x) = 260577 in octal nota-
tion is applied to the reactor with a sampling period of
0.3 h. Taking cross-correlations between this excitation
signal and corresponding plant output, Volterra kernels
can be measured. The search for a control sequence
was carried out within a range of ±0.05 with a 0.001
increment. Figs.6 and 7 present control performance
and control signal results. From these results, it can
be seen that the NMPC formulated from a third-order
Volterra model offers the best closed-loop performance.
In addition the control signal predicts well, and hence
results in minimal chatter.

5 Conclusion

MPC has recently found wide acceptance in the pro-
cess industry, but existing design and implementation
methods have been restricted to linear process models.
As severe nonlinearity inherent in, for example, a chem-
ical process, cannot be ignored in practice, this paper
has developed an analytical framework for NMPC. It is
based on a Volterra model for nonlinear systems, which
has been successfully extended to a third-order kernel.

Fig.6 Performance of the NMPC controllers with first,

second, and third-order Volterra models

Fig.7 Control signals resulting from models with three

different levels of nonlinearity

public hillclimber() f
declaration and initialisation;

for (i=0; i<Number of repetitions required; i++) f
local= FALSE;

use a known or existing uc as current (or generate it at random);

evaluate uc by J(uc); // calculate constrained J

do f
perturb uc to generate N new u sequences;

// with constraints on u

evaluate all N new sets;

select the sequence ui that has the smallest J ;

if (J(ui) < J(uc))

uc = ui; // this means that improvement is possible

else

local = TRUE; // no improvements found

g while (!local ) // continue if local not found

output uc;

g
return; // completed a prescribed number of trials

g
Fig.5 An a-posteriori nondeterministic hill-climbing algorithm
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With an on-line realisation technique, NMPC has been
applied to a Mitsubishi Chemical’ polymerisation re-
action process. Results show that this nonlinear MPC
technique is feasible and very effective. It considerably
outperforms linear and low-order Volterra model based
methods. The advantages of the approach developed
lie not only in control performance superior to existing
NMPC methods, but also in relieving practising engi-
neers from the need to derive an analytical model, and
then convert it to a Volterra model in which a model
can only be obtained up to a second order.
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