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Abstract

In the linear regression quantile model, the conditional quantile of
the response, Y , given x is QY |x(τ) ≡ x′β(τ). Though QY |x(τ) must
be monotonically increasing, the Koenker-Bassett regression quantile
estimator, x′β̂(τ), is not monotonic outside a vanishingly small neigh-
borhood of x = x̄. Given a grid of mesh δn, let x′β̂∗(τ) be the linear
interpolation of the values of x′β̂(τ) along the grid. We show here
that for a range of rates, δn, x′β̂∗(τ) will be strictly monotonic (with
probability tending to one) and will be asymptotically equivalent to
x′β̂(τ) in the sense that n1/2 times the difference tends to zero at a
rate depending on δn.
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1 Introduction.

From the earliest research on L1 regression, it was recognized that the solu-

tions were determined by fitting certain observations exactly. A general form

of this was described by Gauss in 1809 (see Gauss, 1963), who also noted

the subsequent invariance to perturbations not changing the residual signs.

Gauss appears to use this as an argument against L1 regression, though

modern statisticians tend to take the invariance as a desirable robustness

property, and do not find zero residuals to be problematic.

When general regression quantiles were introduced in Koenker and Bas-

sett (1978, (see also Koenker, 2005), it was recognized that this exact-fit

property forced the regression quantile fits to cross in general. Thus, the con-

ditional quantile function must be non-monotonic in its argument, τ , at some

values of the explanatory variable. Although this seems to have upset some

Gauss-minded scholars, it can not be a serious statistical problem (under

standard conditions for asymptotics) since the true (monotonic) conditional

quantile function must lie within usual statistical accuracy. Specifically, if

only a few τ -values are considered, standard asymptotic results show that

the conditional quantile functions (Q̂x(τ)) must be monotonic along these

τ -values with high probability.

Nonetheless, it would be useful to have a general version of regression

quantiles with strictly monotonic conditional quantile functions. Specifically,

one application would be to the use of “direct” confidence intervals and con-

fidence bands (see Zhou and Portnoy, 1996 and 1998 ). He (1997) provides
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such a version when the model is of location-scale form. However, models

for linear regression quantiles can be much more general and thus require a

more general development. Here, based on Neocleous (2005), we show that

by choosing an appropriate grid of τ -values and defining the quantile func-

tions by linear interpolation between grid values, the resulting conditional

quantile estimator is strictly monotonic with probability tending to one, and

is asymptotically equivalent to the usual regression quantile estimator. Note

that this asymptotic equivalence would be easy to establish if the grid mesh

were o
(
n−1/2

)
, but then the interpolated grid estimator would not be mono-

tonic. The crucial result proved here is that the equivalence holds if the mesh

of the grid tends to zero strictly more slowly than n−1/2 (so that monotonic-

ity holds with probability tending to one) but more quickly than n−1/4.

In fact, Koenker and Bassett (1978) noted that the empirical conditional

quantile function is indeed monotonic at the mean, x̄, of the explanatory

variables, and by continuity in some interval about the mean. It may be

of interest to note that this interval tends to be quite small, and in fact

the length will generally tend to zero as the sample size increases. A rough

argument for this is as follows: consider simple linear regression. If the ob-

servations are in general position, each regression quantile solution fits two

points, one of which (say, x∗) remains in the basis for next solution (at the

next largest τ value). Thus the solution pivots about x∗, so that if x∗ is

smaller than x̄, the conditional quantile function must be decreasing every-

where to the left of x∗ (and vice versa for x∗ > x̄). When x is random and

under appropriate stronger assumptions, the argument in Portnoy (1991a)
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can be used to show that the probability that each given basis element be-

comes a pivot is bounded below by a constant independent of sample size.

Thus, if kn →∞, of the kn observations with xi nearest to x̄, at least one to

the left of x̄ and one to the right of x̄ must be pivots at some τ -breakpoint

(with probability tending to one). Therefore, for each x outside an interval

about x̄ shrinking to zero, there must be some τ value at which the condi-

tional quantile function is non-monotonic.

In the remainder of the paper, a general regression quantile model is

introduced, and relatively mild conditions are imposed. A grid of τ values in

ε ≤ τ ≤ 1− ε is considered and the linearly interpolated regression quantile

function, β̂∗(τ) is defined. Two results are proven: (1) if the mesh of the grid

tends to zero strictly slower than n−1/2 (as n → ∞), then β̂∗(τ) is strictly

monotonic (on [ε, 1−ε]); and (2) if the mesh tends to zero strictly faster than

n−1/4, then β̂∗(τ) has the same first order asymptotic Bahadur representation

as the usual (Koenker-Bassett) regression quantile estimator.

2 Monotonicity.

Let Yi = x
′
iβ(τ) + ei, i = 1, . . . , n, xi ∈ Rp with p fixed and the errors ei

having τth quantile equal to zero. In quantile form, this is written as

QYi
(τ |xi) = x

′

iβ(τ).

The errors are assumed to be independent, but not necessarily identically

distributed.
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Assumptions.

(F) For D a bounded domain and 0 < ε < 1, there exist constants a, b, c

with a > 0, b < ∞, and c < ∞ such that

a ≤ fYi|x(F
−1
Yi|x(τ)) ≤ b |f ′Yi|x(F

−1
Yi|x(τ))| ≤ c

uniformly for x ∈ D, ε ≤ τ ≤ 1− ε, and uniformly in i = 1, . . . , n .

(X) ||xi|| ≤ d for some constant d uniformly in i = 1, . . . , n.

(XX) The matrix 1
n

∑n
i=1 xix

′
i is positive definite.

Let β̂(τ) be the Koenker-Bassett regression quantile estimator of β(τ)

(see Koenker (2005) for the definition and basic properties). Consider a grid

of τ -values covering [ε, 1 − ε]: let ε = t1 < t2 < · · · < tM = 1 − ε be the M

gridpoints, with mesh δn = tk+1− tk. At the jth gridpoint, tj, the estimated

regression coefficient is β̂(tj) ∈ Rp. Starting with these estimates along the

grid: β̂ = (β̂(t1)
′
, . . . , β̂(tM)

′
)

′ ∈ RMp, let β̂k ≡ β̂(tk), and define β̂∗(τ)

to be the estimator linearly interpolating {(tk, β̂k) : k = 1, · · · , M} (see

equation (??) for a formal definition of the interpolating function).

Theorem 1. Under the above conditions, let δn satisfy:

lim sup
n→∞

δn nη > 0 and lim inf
n→∞

δn n1/2/log n > 0 . (1)

for some η > 0. Then with probability tending to one, x′β̂∗(τ) is strictly

monotonic uniformly on {‖x‖ ≤ d} for ε ≤ τ ≤ 1− ε , and

√
n(β̂∗(τ)− β̂(τ)) = O

(√
n δ2

n

)
+Op

(
(δn log n)1/2

)
+Op

(
n−1/4(log n)1/2

)
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uniformly in ε ≤ τ ≤ 1− ε .

Proof. A basic ingredient of the proof is a Bahadur representation for β̂(τ).

A version for fixed τ appears in He and Shao (1996), though this result is

for i.i.d. errors and does not include uniformity in τ . Portnoy (1991b) pro-

vides an appropriate uniform version under stronger conditions permitting

the sample distributions to be dependent. The following result can be devel-

oped under the conditions here either by specializing the proof in Portnoy

(1991b) for independence, or using the chaining argument there to extend

the He-Shao (1996) result to apply to the nonstationary case and be uniform

in τ :

√
n(β̂(τ)− β(τ)) = n−1/2 A−1(τ)

∑
xi[τ − I(Yi ≤ x′iβ(τ))] +Op (rn) (2)

uniformly for ε ≤ τ ≤ 1−ε , where rn =
√

log n n−1/4, and A(τ) = XV (τ)X
′

with V (τ) = Diag(fYi|xi
(F−1

Yi|xi
(τ)).

Now, to show monotonicity, note that Condition (F) implies that

d

dτ
x

′
β(τ) =

1

fY |x(F
−1
Y |x(τ))

≥ 1

b

so x
′
β(τ) must grow by at least δn

b
in moving from tk to tk+1. From the

Bahadur representation (??), (β̂(tk) − β(tk)) = Op

(
n−1/2

)
uniformly in k,

and so {β̂k}M
k=1 must also be strictly monotonic with probability tending to

one as long as δn tends to zero strictly more slowly than n−1/2.

To show asymptotic equivalence, note that the linearly interpolated quan-

tile regression estimator β̂∗(τ) for tk ≤ τ ≤ tk+1 is

αnβ̂(tk) + (1− αn)β̂(tk+1) (3)
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where αn = (tk+1 − τ)/δn (so that αntk + (1− αn)tk+1 = τ).

Then

√
n(β̂∗(τ)− ˆβ(τ)) =

√
n(αnβ̂(tk) + (1− αn)β̂(tk+1)− ˆβ(τ)) (4)

= αn

√
n(β̂(tk)− β(tk)) (5)

+(1− αn)
√

n(β̂(tk+1)− β(tk+1)) (6)

−
√

n(β̂(τ)− β(τ)) (7)

+
√

n(αnβ(tk) + (1− αn)β(tk+1)− β(τ)) (8)

Let S ≡ (??)+(??)+(??). Then by (??), up to an error of order Op (rn)

(with rn = n−1/4(log n)1/2) and uniformly in ε ≤ τ ≤ 1− ε .

S = n−1/2 A−1(τ)
∑

xi{αn[I(Yi ≤ x′iβk)− I(Yi ≤ x′iβ(τ))]

+(1− αn)[I(Yi ≤ x′iβk+1)− I(Yi ≤ x′iβ(τ))]} .

Note that S has mean zero:

ES = n−1/2 A−1(τ)
∑

xi{αn(tk − τ) + (1− αn)(tk+1 − τ)} = 0 .

Each of the terms in S is the difference of a weighted empirical process

between two values of the argument. Thus, we need a bound on the modulus

of continuity for the weighted empirical process. To obtain a result in the

form needed here, let D ≡ n−1/2 ∑
xi[I(Yi ≤ u) − I(Yi ≤ u + δn)] . Then,

since the standard deviation of each summand is bounded by
√

δn, one can

use the the chaining argument in Portnoy (1991b) (for example) to obtain:

D − ED = Op

(
(δn log n)1/2

)
+Op

(
n−1/4 (log n)1/2

)
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uniformly in u, as long as δn satisfies the condition (??) in the hypotheses of

the Theorem. Inserting this in S, it follows that

S = S − ES = Op

(
(δn log n)1/2

)
+Op

(
n−1/4 (log n)1/2

)

Finally, for (??), note that

∣∣∣∣∣ d2

dτ 2
x

′
β(τ)

∣∣∣∣∣ =

∣∣∣∣∣∣−
f ′Y |x(F

−1
Y |x(τ))

f 3
Y |x(F

−1
Y |x(τ))

∣∣∣∣∣∣ <
c

a3

Thus, by a second-order Taylor expansion for x
′
iβk and x

′
iβk+1 and using

αntk + (1− αn)tk+1 = τ ,

|x′

i(αnβ(tk) + (1− αn)β(tk+1)− β(τ))| < cδ2
n

a3
,

and the Theorem follows. ‖

Remark. If δn = n−1/2(log n)ε , then x′β̂∗(τ) is strictly monotonic (with

probability tending to 1) and

√
n(β̂∗(τ)− β̂(τ)) = Op

(
n−1/4(log n)1/2+ε/2

)

which is (essentially) the best the Bahadur representation will permit. In

fact, choosing δn larger will make the probability of monotonicity larger,

perhaps moderately so for moderately small n. However, this comes at the

cost of increasing the difference between β̂∗(τ) and β̂(τ) . For example, if

δn = n−1/3 , the two largest error terms have the same exponent, providing

√
n(β̂∗(τ)− β̂(τ)) = Op

(
n−1/6(log n)1/2

)
.
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