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Abstract. Gaussian process models provide a probabilistic non-para-
metric modelling approach for black-box identification of nonlinear dy-
namic systems. The Gaussian processes can highlight areas of the in-
put space where prediction quality is poor, due to the lack of data or
its complexity, by indicating the higher variance around the predicted
mean. Gaussian process models contain noticeably less coefficients to
be optimized. This chapter illustrates possible application of Gaussian
process models within model predictive control. The extra information
provided by the Gaussian process model is used in predictive control,
where optimization of the control signal takes the variance information
into account. The predictive control principle is demonstrated via the
control of a pH process benchmark.

1 Introduction

Model Predictive Control (MPC) is a common name for computer control algo-
rithms that use an explicit process model to predict the future plant response.
According to this prediction in the chosen period, also known as the prediction
horizon, the MPC algorithm optimizes the manipulated variable to obtain an
optimal future plant response. The input of chosen length, also known as control
horizon, is sent to the plant and then the entire sequence is repeated again in
the next time period. The popularity of MPC is to a great extent owed to the
ability of MPC algorithms to deal with constraints that are frequently met in
control practice and are often not well addressed by other approaches. MPC
algorithms can handle hard state and rate constraints on inputs and states that
are usually, but not always incorporated in the algorithms via an optimization
method. Linear model predictive control approaches [13] started appearing in
the early eighties and are well-established in control practice (e.g. [I8] for an
overview). Nonlinear model predictive control (NMPC) approaches [I] started
to appear about ten years later and have also found their way into control prac-
tice (e.g. [19423]) though their popularity can not be compared to linear model
predictive control. This fact is connected with the difficulty in nonlinear model
construction and with the lack of the necessary confidence in the model. There
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were a number of contributions in the field of nonlinear model predictive control
dealing with issues like stability, efficient computation, optimization, constraints
and others. Some recent work in this field can be found in [2]12]. NMPC algo-
rithms are based on various nonlinear models. Often these models are developed
as first principles models, but other approaches, like black-box identification ap-
proaches are also popular. Various predictive control algorithms are based on
neural network models e.g. [17], fuzzy models e.g. [8] or local model networks
e.g. [6]. The quality of control depends on the quality of the model. New devel-
opments in NMPC approaches are coming from resolving various issues: from
faster optimization methods to different process model. The contribution of this
chapter is to describe a NMPC principle with a Gaussian process model. The
Gaussian process model is an example of a probabilistic non-parametric model
that also provides information about prediction uncertainties which are difficult
to evaluate appropriately in nonlinear parametric models. The majority of work
on Gaussian processes shown up to now considers modelling of static nonlinear-
ities. The use of Gaussian processes in modelling dynamic systems is a recent
development e.g. [TAJTAB2TITO/TT] and some control algorithms based on such
are described in [I615].

The chapter is organized as follows. Dynamic Gaussian process models are
briefly introduced in the next section. The control algorithm principle is de-
scribed in Section B] and illustrated with the benchmark pH process control in
Section ] Conclusions are stated at the end of the chapter.

2 Modelling of Dynamic Systems with Gaussian
Processes

A Gaussian process is an example of the use of a flexible, probabilistic, non-
parametric model which directly provides us with uncertainty predictions. Its
use and properties for modelling are reviewed in [22].

A Gaussian process is a collection of random variables which have a joint
multivariate Gaussian distribution. Assuming a relationship of the form y =
f(x) between an input x and output y, we have y',...,y" ~ N(0,), where
Ypg = Cov(yp, yq) = C(xp,Xq) gives the covariance between output points corre-
sponding to input points x, and x,. Thus, the mean p(x) (usually assumed to be
zero) and the covariance function C(x,,%,) fully specify the Gaussian process.
Note that the covariance function C(.,.) can be any function with the property
that it generates a positive definite covariance matrix.

A common choice is

D

1
C(xp,%xq) = viexp —§de(ac2—acg)2 + g (1)
d=1

where © = [w1 ... wp vy vl]T are the ‘hyperparameters’ of the covariance func-

tions and D the input dimension. Other forms of covariance functions suitable
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for different applications can be found in [20]. For a given problem, the parame-
ters are learned (identified) using the data at hand. After the learning, one can
use the w parameters as indicators of ‘how important’ the corresponding input
components (dimensions) are: if wy is zero or near zero it means that the inputs
in dimension d contain little information and could possibly be removed.

Consider a set of N D-dimensional input vectors X = [x1,X2,...,Xy] and
a vector of output data y = [y',%2,...,y"]7. Based on the data (X,y), and
given a new input vector x*, we wish to find the predictive distribution of the
corresponding output y*. Unlike other models, there is no model parameter de-
termination as such, within a fixed model structure. With this model, most of the
effort consists in tuning the parameters of the covariance function. This is done
by maximizing the log-likelihood of the parameters, which is computationally
relatively demanding since the inverse of the data covariance matrix (N x N)
has to be calculated at every iteration.

The described approach can be easily utilized for regression calculation.
Based on training set X a covariance matrix K of size N x N is determined. As
already mentioned before the aim is to find the distribution of the corresponding
output y* at some new input vector x* = [x1(N+1),29(N+1),...,2p(N+1)]7.

For a new test input x*, the predictive distribution of the corresponding
output is y*|x*, (X,y) and is Gaussian, with mean and variance

px) = k)" Ky (2)
o2(x*) = k(x*) — k(x)T K™ k(x*) + v (3)
where k(x*) = [C(x!,x*),...,C(x,x*)]T is the N x 1 vector of covariances

between the test and training cases and k(x*) = C(x*,x*) is the covariance
between the test input and itself.

For multi-step ahead prediction we have to take account of the uncertainty of
future predictions which provide the ‘inputs’ for estimating further means and
uncertainties.

If we now consider a new random input, x* ~ N (g~ Xy« ), Girard et. al. [3],
have shown that, within a Gaussian approximation the predictive distribution
is again Gaussian with mean and variance

(s ) = B [p1(X7)] (4)
V(pxr, Ex+) = B [0%(x")] + Exe [(x)?] = (B [1(x")])? (5)

The more detailed derivation can be found in the previous chapter of this
book []. Equations @) and (&) can be applied to calculation of multi-step ahead
prediction with propagation of uncertainty.

Gaussian processes can, like neural networks, be used to model static nonlin-
earities and can therefore be used for modelling of dynamic systems if delayed
input and output signals are used as regressors. In such cases an autoregressive



188 Jus Kocijan and Roderick Murray-Smith

model is considered, such that the current output depends on previous estimated
outputs, as well as on previous control inputs.

X(k) = [g(k - 1),@(/@’ - 2)) s ’g(k - L)’u(k - 1);
u(k —2),...,u(k — L)]*
x(k)) +e€ (6)

Where k denotes consecutive number of data sample. Let x denote the state
vector composed of the previous estimated outputs § and inputs w up to a given
lag L and € is white noise.

Iterative multi-step ahead prediction is done, as described in the previous
chapter [4], by feeding back the predictive mean, as well as the predictive variance
at each time-step, thus taking the uncertainty attached to each intermediate
prediction into account. The Gaussian process model now not only describes the
dynamic characteristics of the non-linear system, but at the same time provides
information about the confidence in the predictions. The Gaussian process can
highlight areas of the input space where prediction quality is poor, due to the
lack of data, by indicating the higher variance around the predicted mean.

It is worthwhile noting that the derivatives of means and variances can be
calculated in straightforward manner. For more details see [21].

3 Nonlinear Model Predictive Control

Nonlinear model predictive control as it was applied with the Gaussian process
model can be in general described with a block diagram, as depicted in Fig.
[[l The model used is fixed, identified off-line, which means that used control

n
[+
w Reference Optimisation u y
. >
generator algorithm Process ?_074’
7y
v .
u g X
Model Model F——

Fig. 1. Block diagram of model predictive control system

algorithm is not an adaptive one. The structure of the entire control loop is
therefore less complex than in the case where the model changes with time. The
following items describe the basic idea of predictive control:
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— Prediction of the system output signal y(k + j) is calculated for each discrete
sample k for a large horizon in future (j = Ny,..., N3). Predictions are de-
noted as §(k + j|k) and represent j-step ahead prediction, while N7 and No
determine lower and upper bound of prediction horizon. Lower and upper
bound of output signal prediction horizon determine coincidence horizon,
within which a match between output and reference signal is expected. Out-
put signal prediction is calculated from process model. Predictions are de-
pendent also on the control scenario in the future u(k+j|k),5 =0,..., N,—1,
which is intended to be applied from a moment k onwards.

— The reference trajectory is determined r(k + j|k),j = Ni,..., N2, which
determines reference process response from present value y(k) to the setpoint
trajectory w(k).

— The vector of future control signals U(k) containing u(k + j|k),j = 0,...,
N, — 1 is calculated by minimization of cost function (also called objective
function) such that predicted error between r(k + j|k) and g(k + jlk),j =
Ny, ..., Ns is minimal. Structuring of future control samples can be used in
some approaches.

— Only the first element u(k|k) of the optimal control signal vector u(k +
jlk),7=0,...,N, — 1 is applied.

In the next sample a new measured output sample is available and the entire
procedure is repeated. This procedure is called a receding horizon strategy.

The control objective is to be achieved by minimization of the cost func-
tion. The cost function penalizes deviations of the predicted controlled outputs
g(k + jlk) from a reference trajectory r(k + j|k). This reference trajectory may
depend on measurements made up to time k. Its initial point may be the output
measurement y(k), but also a fixed set-point, or some predetermined trajec-
tory. The minimization of cost function, in which future control signal (U(k)) is
calculated, can be subject to various constraints (e.g. input, state, rates, etc).

The process model for calculation of predicted outputs is in our case a Gaus-
sian process model, which provides not only the mean value §(k + j|k) but also
the corresponding variance.

There are many alternative ways of how NMPC with Gaussian process models
can be realized.

Cost function. The cost function used () is just one of many possible ones.
It is well known that selection of the cost function has a major impact on
the amount of computation.

Optimization problem for AU(k) instead of U(k). This is not just a
change of formalism, but also enables other forms of MPC. One possibil-
ity is a DMC controller with nonlinear model, e.g. [8] - a frequently used
principle, that together with appropriate cost function enables problem rep-
resentation as a least squares problem that can be solved in one iteration in
which an explicit solution is found. This is, as in the case with other special
case simplifications, not a general case solution.

Process model. The process model can be determined off-line and fixed for the
time of operation or determined on-line during the operation of controller
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[16). However, the problem of increasing covariance matrix dimension with
incoming data has to be dealt with. Safety related issues also need to be
considered thoroughly in the case of adaptive version application.

Soft constraints. Using constraint optimization algorithms is very demanding
for computation and soft constrains, namely weights on constrained variables
in cost function, can be used to decrease the amount of computation. More
on this topic can be found in [924].

Linear MPC. It is worth to remark that even though this is a constrained
nonlinear MPC problem it can be used in its specialized form as a robust
linear MPC.

There are several issues of interest for applied NMPC. Let us mention some
of them.

Efficient numerical solution. Nonlinear programming optimization algo-
rithm is very demanding for computation. Various approximations and other
approaches (e.g. approximation of explicit solution) exist to decrease com-
putational load, mainly for special cases, like linear process models or special
cost functions.

One possibility to decrease the computational load necessary for optimiza-
tion is with the incorporation of prediction derivation (and variance) into
optimization algorithm. When using Gaussian process models the predic-
tion and variance derivation can be calculated in a straightforward manner.

Stability. At present no stability conditions have been derived for Gaussian
processes as a representative of probabilistic non-parametric models.

Robustness. This issue has a major impact on the applicability of the algo-
rithm in practice. The fact that the process model contains the information
about the model confidence enables controller to optimize the manipulative
variable to “avoid” regions where the confidence in the model is not high
enough. This possibility itself makes the controller robust if applied prop-
erly. MPC robustness in the case of other algorithms is usually not some
specially built feature of the MPC algorithms, but was more an issue of
assessment for particular MPC algorithms.

4 Example

4.1 pH Process

A simplified schematic diagram of the pH neutralization process taken from [7]
is given in Fig. @21 The process consists of an acid stream (@), buffer stream
(Q2) and base stream (Q3) that are mixed in a tank T;. Prior to mixing, the
acid stream enters the tank To which introduces additional flow dynamics. The
acid and base flow rates are controlled with flow control valves, while the buffer
flow rate is controlled manually with a rotameter. The effluent pH (pH) is the
measured variable. Since the pH probe is located downstream from the tank T1,
a time delay (7T}) is introduced in the pH measurement. In this study, the pH
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Fig. 2. The pH neutralization system scheme

>

is controlled by manipulating the base flow rate. A more detailed description
of the process with mathematical model and necessary parameters is presented
in [7].

The dynamic model of the pH neutralization system shown in Fig. [2 is de-
rived using the conservation equations and equilibrium relations. The model also
includes valve and transmitter dynamics as well as hydraulic relationships for
the tank outlet flows. Modelling assumptions include perfect mixing, constant
density, and complete solubility of the ions involved. The simulation model of
pH process, which was used for necessary data generation contains therefore var-
ious nonlinear elements as well as implicitly calculated function which is value
of highly nonlinear titration curve.

4.2 Model Identification

Based on responses and iterative cut-and-try procedure a sampling time of 25
seconds was selected. The sampling time was so large that the dead-time men-
tioned in the previous section disappeared.

The chosen identification signal of 400 samples was generated from a uniform
random distribution and rate of 50 seconds.

Obtained hyperparameters of the third order Gaussian process model were:

6= [wla w2, W3, W4, W5, We, Vo, vl]
— [-6.0505, —2.0823, —0.4785, —5.3388, —3.4206, —8.7080,
0.8754, —5.4164] (7)

where hyperparameters from w; to ws denote a weight for each output regressor,
from w4 to wg denote a weight for each input regressor, vg is estimated noise
variance and v is the estimate of the vertical scale of variation.
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Model identification
11 T T T T
— - proces
— GP model
mean+2*std ||
mean-2*std

pH
- —
—

2 I I I I I I I I I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time [sec]

Fig. 3. Response of Gaussian process model on excitation signal used for iden-
tification

The region in which the model was obtained can be seen from Fig. Bl A
very good fit can be observed for the identification input signal which was used
for optimization. However, the obtained model contains information mainly in
the region below pH=T7 as can be concluded from the response in Fig. Bl The
validation signal was from the same region as the identification signal. The iden-
tification and validation signal were obtained with generator of random noise
with different initial values. Response of the model to validation signal and com-
parison with process response is depicted in Fig. @ Fitting of the response for
validation signal:

— average absolute test error

AE = 0.0691 (8)
— average squared test error
SE =0.0109 9)
— log density error
LD = -0.7130 (10)

After model validation the model was utilized for control design. See [I1] for
more issues on pH process modelling with Gaussian process models.

4.3 Control

A moving-horizon minimization problem of the special form [13]

11}1(113 [r(k + P) — §(k + P))? (11)
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Model validation
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— proces
/ — GP model
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Fig. 4. Response of Gaussian process model on excitation signal used for vali-
dation

subject to:
var g(k+ P) < ky (12)
| U(k) | < Fin (13)
| U(k) | < ki (14)
| x(k) | < ko (15)
| x(k) | < ksr (16)

is used in our case, where U(k) = [u(k)...u(k + P)] is input signal, P is the
coincidence point (the point where a match between output and reference value
is expected) and inequalities from ([I2) to (IG) represent constraint on output
variance k,, input hard constraint k;,, input rate constraint k;., state hard
constraint kg, and state rate constraint kg, respectively. The process model is a
Gaussian process.

The optimization algorithm, which is constrained nonlinear programming, is
solved at each sample time over a prediction horizon of length P, for a series of
moves which equals to control horizon. In our case control horizon was chosen
to be one and to demonstrate constraint on variance the rest of constraints was
not taken into the account. Nevertheless, all this modifications do not change
the generality of solution, but they do affect the numerical solution itself.

The control algorithm described above was tested for the pH process with
simulation. The reference trajectory r is defined so that it approaches the set-
point exponentially from the current output value. The coincidence point was
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chosen to be 8 samples and, as already mentioned, the control horizon is one
sample. The results of unconstrained control are given in Figs. Bl and [6.

Plant output (solid line), set-point (dashed line), 95% confidence interval (grey)
7.5 T T T T T T T T

1 1 1 1 1 "
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

Input

1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

Fig. 5. Non-constrained case: response of Gaussian process model based control
(upper figure) and control signal (bottom figure)

Standard deviation
0.3 T T

01F : R

0 I I I I I I I I
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

Fig. 6. Non-constrained case: standard deviation corresponding to the previous
figure

It can be seen from different set-point responses that the model differs from
the process in different regions. It can be clearly seen that the variance increases
as output signal approaches regions which were not populated with enough iden-
tification data. It should be noted however that variances are sum of variances
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that correspond to information about regions where there are varying degrees of
confidence in the model accuracy, depending upon local density of available iden-
tification data and of output response variances. When variances increase too
much, one design option is that the response can be optimized with constrained
control. Results can be seen in Figs. [d and [§

Plant output (solid line), set—point (dashed line), 95% confidence interval (grey)
7.5 T T T T T T T T

1 1 1 1 1 I | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

Input

! ! ! ! ! ! ! !
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

Fig. 7. Constrained case (0mq: = 0.25): response of Gaussian process model
based control (upper figure) and control signal (bottom figure)

Standard deviation

0.1 | | | | | |
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

Fig. 8. Constrained case (omqaz = 0.25): standard deviation corresponding to
the previous figure

It can be seen from Figs. [l and Bl that the closed-loop system response now
avoids the region with large variance, at the cost of an increase in steady-state
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error. This could be interpreted also as trade-off between designed performance
and safety.

A possible alternative selection of cost function that avoids constrained op-
timization and is therefore computationally less demanding would be as follows.

min E{[r(k + P) — (k + P)]*} (17)

U(k)
Using the fact that var{g} = E{§°} — E{§}?, the cost function can be written
as:

Il% [r(k + P) — E{4(k + P)}]*> + var{jj(k + P)} (18)

Results with cost function ({I8)) are given in Figs. @ and 0. It can be again
observed from Figs. @ and [ that the closed-loop system response avoids the
region with large variance, at the cost of increased steady-state error, as was
the case with constrained control, but with less computational burden than the
constrained control case. The control strategy with cost function ([IJ]) is “to
avoid” going into regions with higher variance. The term “higher variance” does
not specify any specific value. In the case that controller does not seem to be
cautious enough, a pragmatic calibration option is that the variance term can
be weighted to enable shaping of the closed-loop response according to variance
information:

Plant output (solid line), set-point (dashed line), 95% confidence interval (grey)

P

1 1 1 1 1 1 I Il
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

Input
16 T

! ! ! ! ! ! ! !
500 1000 1500 2000 2500 3000 3500 4000 4500 5000

Time [sec]

Fig. 9. Response of Gaussian process model based control with “soft constraints”
(upper figure) and control signal (bottom figure)
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Fig. 10. Standard deviation corresponding to the previous figure

min [r(k+ P) = E{j(k + P)}? + Avar{g(k + P)} (19)

NMPC with the second cost function with weight on variance A = 2, using
unconstrained optimization, gives the results depicted in Figs. [1l and [[2Z show-
ing a reduction in the standard deviation of the predictions of the closed-loop
response, compared to Fig. [[Ul and minor changes in the mean behaviour.

Plant output (solid line), set-point (dashed line), 95% confidence interval (grey)
7.5 T T T

1 1 1 1 L L L
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

Input

1 1 1 1 1 1 1 1
500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Time [sec]

Fig.11. Response of Gaussian process model based control with “soft con-
straints” (upper figure) and control signal (bottom figure)
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Fig. 12. Standard deviation corresponding to the previous figure

Beside the difference in the optimization algorithm, the presented options
give also a design choice on how “safe” the control algorithm is. In the case
when it is very undesirable to go into “unknown” regions the constrained version
might be the better option.

5 Conclusions

The principle of Model Predictive Control based on a Gaussian process model
was presented and illustrated with a pH process control example. In the example,
a constraint on model variance was included. This can be complimented also with
other constraints when necessary. The use of Gaussian process models makes it
possible to include information about the confidence in the model depending on
the region.

It was indicated that using Gaussian process models offers an attractive pos-
sibility for control design that results in a controller with a higher level of ro-
bustness due to information contained in the model. It is necessary to stress that
the presented control strategy represents only a feasibility test for Gaussian pro-
cess application for model predictive control and additional efforts are necessary
before this approach will be applicable in engineering practice.

A practical challenge dealing with application of Gaussian process models in
control applications is related to the computational burden associated with the
number of training data (although recent work in [21] has shown how derivative
observations can improve the situation in control contexts). Another interesting
issue that is under investigation is disturbance rejection. Despite these current
challenges, the Gaussian process approach has a number of exciting advantages.
The simple model structure, the reduced sensitivity to the choice of model struc-
ture and the uncertainty information one obtains on the predictions are attrac-
tions of the Gaussian process approach. The principle shown is quite general and
several modifications that accelerate computation can be used and are planned
to be derived in the future.
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