
 

  
  
  
  
  
Shi, J.Q. and Murray-Smith, R. and Titterington, D.M. and Pearlmutter, 
B.A. (2005) Filtered gaussian processes for learning with large data-sets. 
Lecture Notes in Computer Science 3355:pp. 128-139.

 
http://eprints.gla.ac.uk/3728/  
  
  
  
 



Filtered Gaussian Processes for Learning with

Large Data-Sets

Jian Qing Shi1, Roderick Murray-Smith2,3, D. Mike Titterington4, and
Barak A. Pearlmutter3

1 School of Mathematics and Statistics, University of Newcastle, UK
j.q.shi@ncl.ac.uk

2 Department of Computing Science, University of Glasgow, Scotland
rod@dcs.gla.ac.uk

3 Hamilton Institute, NUI Maynooth, Co. Kildare, Ireland
barak@cs.may.ie

4 Department of Statistics, University of Glasgow, Scotland
mike@stats.gla.ac.uk

Abstract. Kernel-based non-parametric models have been applied widely
over recent years. However, the associated computational complexity im-
poses limitations on the applicability of those methods to problems with
large data-sets. In this paper we develop a filtering approach based on
a Gaussian process regression model. The idea is to generate a small-
dimensional set of filtered data that keeps a high proportion of the in-
formation contained in the original large data-set. Model learning and
prediction are based on the filtered data, thereby decreasing the compu-
tational burden dramatically.
Keywords: Filtering transformation, Gaussian process regression model,
Karhunen-Loeve expansion, Kernel-based non-parametric models, Prin-
cipal component analysis.

1 Introduction

Kernel-based non-parametric models such as Splines (Wahba, 1990), Support
Vector Machines (Vapnik, 1995) and Gaussian process regression models (see
for example O’Hagan (1978), and Williams and Rasmussen, (1996)) have be-
come very popular in recent years. A major limiting factor with such methods
is the computational effort associated with dealing with large training data-sets,
as the complexity grows at rate O(N3), where N is the number of observations
in the training set. A number of methods have been developed to overcome this
problem. So far as the Gaussian process (GP) regression model is concerned,
such methods include the use of mixtures of GPs (Shi, Murray-Smith and Tit-
terington, 2002) for a large data-set with repeated measurements, and the use
of approximation methods such as the Subset of Regressors method (Poggio and
Girosi, 1990; Luo and Wahba, 1997), the iterative Lanczos method (Gibbs and
Mackay, 1997), the Bayesian Committee Machine (Tresp, 2000), the Nyström
Method (Williams and Seeger, 2001) and Selection Mechanisms (Seeger et al.,
2003).

R. Murray-Smith, R. Shorten (Eds.): Switching and Learning, LNCS 3355, pp. 128–139, 2005.
c© Springer-Verlag Berlin Heidelberg 2005



Filtered Gaussian Processes for Learning with Large Data-Sets 129

Gaussian process prior systems generally consist of noisy measurements of
samples of the putatively Gaussian process of interest, where the samples serve to
constrain the posterior estimate. In Murray-Smith and Pearlmutter (2003), the
case was considered where the measurements are instead noisy weighted sums of
samples. Adapting the idea of the transformation of GPs described in Murray-
Smith and Pearlmutter (2003), we describe here a specific filtering approach to
deal with the modelling of large data-sets. The approach involves two stages. In
the first stage, a set of filtered data of dimension n is generated, where usually
n � N , the dimension of the original training data-set. The value of n can be
selected such that the filtered data can represent a proportion of the information
of the original whole data-set. This therefore amounts to a question of experiment
design, involving specification of how to design physical filters to generate filtered
data. In the second stage, we carry out model learning and prediction based on
the filtered data. The approach is also extended to online learning where data
arrive sequentially and training must be performed sequentially as well.

The paper is organized as follows. Section 2 discusses the details of the fil-
tering approach. We first discuss an orthogonal expansion of a kernel covariance
function of a GP model based on its eigenfunctions and eigenvalues in Sec-
tion 2.1. Using the results, we develop a filtering approach, the details of which
are given in Section 2.2. Section 2.3 discusses statistical inference based on the
filtered data, including model learning and prediction. Section 2.4 extends the
approach to online learning. A simulation study is given in Section 3 to illustrate
the performance of the method, and some discussion is given in Section 4.

2 Filtering Approach for Large Data-Sets

2.1 Expansion of a Gaussian Process and Its Transformations

Consider a Gaussian process y(x), which has a normal distribution with zero
mean and kernel covariance function k(x, u), where x is a vector of input vari-
ables. The related observation is t(x) = y(x) + ε(x), where ε(x) ∼ N(0, σ2) and
ε(x)’s for different x’s are assumed independent. The Gaussian process y(x) can
be decomposed, according to the Karhunen-Loève orthogonal expansion, as

y(x) =
∞∑

i=1

φi(x)ξi, (1)

and the covariance kernel function k(x, u) can be expanded as

k(x, u) =
∞∑

i=1

λiφi(x)φi(u), (2)

where λ1 ≥ λ2 ≥ · · · ≥ 0 denote the eigenvalues and φ1, φ2, · · · are the related
eigenfunctions of the operator whose kernel is k(x, u), so that

∫
k(u, x)φi(x)p(x)dx = λiφi(u), (3)



130 Jian Qing Shi et al.

where p(x) is the density function of the input vector x. The eigenfunctions are
p-orthogonal, i.e. ∫

φi(x)φj(x)p(x)dx = δij .

In (1) ξi is given by

ξi =
∫

φi(x)y(x)p(x)dx. (4)

Given a random sample {xi, i = 1, · · · , N} of inputs, independent and iden-
tically distributed according to p(x), we have the discrete form of y(x); that
is, Y ′ = (y(x1), · · · , y(xN )). From (2), the covariance kernel k(x, u; θ) can be
expanded into a feature space of dimension N as

k(x, u; θ) =
N∑

i=1

λiφi(x)φi(u), (5)

where θ is a vector of unknown parameters of interest. Typically N is very large,
so that the above expansion is a good approximation to (2). The discrete form
of (4) is

ξi ≈ 1
N

N∑

j=1

φi(xj)y(xj). (6)

Let Σ(N) be the covariance matrix of Y , λ
(N)
i be an eigenvalue of Σ(N) and

φ
(N)
i be the related N -dimensional eigenvector, where λ

(N)
1 ≥ λ

(N)
2 ≥ · · · ≥ 0.

Then (φi(x1), · · · , φi(xN )) ≈ √
Nφ

(N)
i and λi ≈ λ

(N)
i /N for i = 1, · · · , N ; for

details see Williams and Seeger (2001).
We will now assume that instead of observing the Y ’s directly, we observe a

transformation z of the latent vector Y , given by

zk =
N∑

j=1

Kkjy(xj) = KkY (7)

for k = 1, · · · , n. In other words, for the vector of latent variables Y we observe
outputs Z = KY , where K is an n × N known matrix and ZT = (z1, · · · , zn).
The above transformations define n data filters, and usually n � N . Each of n
physical filters can be designed by the values of each row of K.

A special case corresponds to constructing K from the first n eigenvectors of
Σ(N). When the kth row of K consists of the eigenvector φ

(N)
k , zk is calculated

by (7). Comparing (7) with (6), we have that ξk ≈ zk/
√

N . The n filtered
observations z correspond to the n largest eigenvalues. Therefore, if we use the
n-dimensional filtered data, we approximate the covariance kernel in (5) by

k(x, u) ≈
n∑

i=1

λiφi(x)φi(u). (8)



Filtered Gaussian Processes for Learning with Large Data-Sets 131

Then the subspace spanned by the n-dimensional transformed data contains the
‘best’ n-dimensional view of the original N -dimensional data. If the remaining
eigenvalues are very small in comparison, (8) should be a good approximation
to (5). This idea is used to develop a filtering approach, the details of which are
given in the next subsection.

2.2 Filtering Approach

If we have N observations, the related N ×N covariance matrix is calculated by
the covariance kernel function Σ(N) = (k(xi, xj; θ)). Following the discussion in
the above section, K is constructed from the n eigenvectors of Σ(N)(θ) which
are associated with the first n largest eigenvalues. Since θ is unknown, we need
to use an estimate θ̂ based on those N observations. A standard method (see for
example Williams and Rasmussen, 1996, and Shi, Murray-Smith and Tittering-
ton, 2002) can be used to calculate θ̂. Then Σ(N) is approximated by Σ(N)(θ̂).
The related eigenvalues and eigenvectors are calculated from Σ(N) and are used
to construct filtered data. Since the complexity of obtaining the estimate θ̂ and
calculating eigenvalues is O(N3), it is very time consuming for large N . Fortu-
nately, the Nyström method (Williams and Seeger, 2001) can be used to calculate
the n largest eigenvalues and the associated eigenvectors approximately. It is a
very efficient approach, especially when n � N .

The procedure for generating a filtered data-set is as follows.

Step 1. Select a subset of training data of size m at random from the N ob-
servations. This m may be much less than N . We use a standard method

to calculate an estimate θ̂
(m)

using those m observations. The covariance
matrix of those m observations is estimated by the covariance kernel func-

tion Σ(m) =
(
k(xi, xj ; θ̂

(m)
)
)
, which is an m×m matrix. We calculate its

eigenvalues λ1 ≥ · · · ≥ λm ≥ 0 and the related eigenvectors v1, · · · , vm.
Step 2. By the Nyström method, the first m largest eigenvalues of Σ(N) can be

approximated by
N

m
λi,

for i = 1, · · · , m, and their associated eigenvectors are
√

m

N

1
λi

ΣN,mvi, (9)

where ΣN,m is the appropriate N × m submatrix of Σ(N).
Step 3. We select the first n (≤ m) eigenvectors in order to construct the trans-

formation matrix K in (7), and thereby generate an n-dimensional filtered
data-set.

In the above procedure, we need to select m and n. We first discuss how to
select n. The basic idea of the filtering approach is to use (8) to approximate (5).
In the extreme case where λi = 0 for all i > n, the filtered data are equivalent



132 Jian Qing Shi et al.

to the original data, in terms of the covariance kernel. This typically does not
happen in practice. However, if the values of λi for all i > n are very small
compared to the first n eigenvalues, (8) is a good approximation of (5). Though
it is difficult to compare (8) and (5) directly, we can compare the values of
eigenvalues and choose n such that the remaining eigenvalues are very small in
comparison to the largest eigenvalue. Alternatively, we might select n such that

∑n
i=1 λi∑m
i=1 λi

≥ c,

where c is a constant, such as c = 0.99. More discussion will be given in Section
3 in the context of the simulation study.

The other problem is how to select m. In Step 1, we select m observations
and use them to learn the eigen-structure of the covariance kernel k(x, u). It is
obvious that a larger value of m should lead to a more accurate approximation of
eigenvalues and eigenvectors. However, we usually just need to learn the eigen-
structure once. It can then be used repeatedly in similar systems. It will not
increase the computational burden very much if we select a relatively large value
of m. On the other hand, since the eigenvectors are used to generate a ‘best’
n-dimensional view of the original data, the accuracy of the ‘design’ in the first
stage will not have much influence on carried out in the second stage. Some
numerical results will be presented in the next section.

2.3 Model Learning and Prediction Using Filtered Data

The procedure proposed in the last subsection is used to generate a filtered
data-set. Here we discuss how to carry out inference based on the filtered data.

The filtered data are defined via a linear transformation Z = KY , which
can be used to design a set of filters. The observed filtered data may be obtained
through those filters, so for generality we can consider observed errors. The
observed filtered data are assumed to be

sk = zk + ei, for i = 1, · · · , n,

where Z = (zk) = KY and the ei are independent and identically distributed
as N(0, σ2

s) which is the random error when the filtered data are observed. In
matrix form, the filtered data S = (s1, · · · , sn)T are distributed as

S ∼ N(0, Σs),

where Σs = KΣKT + σ2
sIn, and K is a known matrix which is designed in

the first stage. We still use θ to denote the unknown parameters involved in Σs,
which includes σ2

s and the unknown parameters in kernel covariance function.
Then the log-likelihood of θ is

L(θ) = −1
2

log |Σs| − 1
2
ST Σ−1

s S − n

2
log(2π).

Maximizing L(θ) leads to a maximum likelihood estimate of θ.



Filtered Gaussian Processes for Learning with Large Data-Sets 133

Suppose that we wish to predict z∗ = K∗T Y ∗, where Y ∗ = Y (X∗) is q-
dimensional, and X∗ represents q test data points of input. K∗ is a known
q-dimensional vector, which can be thought of as a filter. Given the filtered data
S, the conditional mean and variance of z∗ are

µ̂∗ = K∗T ΣX∗XKT Σ−1
s S

σ̂∗2 = K∗T ΣX∗X∗K∗ − K∗T ΣX∗XKT Σ−1
s KΣXX∗K∗,

where ΣX∗X =
(
k(x∗

i , xj; θ̂)
)

is the q × N covariance matrix between X∗ and

X evaluated at θ̂ which is an estimate using S, and so are the other similar
notations.

If we want to make a single prediction at a new y∗ = y(x∗), we just need to
take q = 1 and K∗ = 1. Bayesian inference can also be used. The implementation
is similar to the methods discussed in Rasmussen (1996) and Shi, Murray-Smith
and Titterington (2002).

2.4 Online Filtering Approach

We assume that data arrive sequentially. Let Da = (Y a, Xa) denote the data
collected between time t(a) and t(a − 1). We can apply the filtering approach
online and adapt the predictive distribution for test data point. For each subset
of data Da, we have a set of filtered data sets,

Sa = Za + ea, Za = KaY a

for a = 1, 2, · · · , A, where A is the number of data sets up to time t(A). The
transformation matrix Ka can be constructed by Step 2 of the filtering approach
discussed in Subsection 2.2. We assume that the eigenstructure of the covariance
kernel for the new data is similar to the previous data, so we just need to learn
the eigenstructure once. It can be used repeatedly for new data sets, so the
computation to generate a new filtered data-set is therefore very efficient. An
estimate of θ based on filtered data Sa is obtained by the method discussed in
the last subsection, and is denoted by θ̂a. If we are interested in prediction at a
new y∗ = y(x∗), the predictive mean and variance based on the filtered data are

µ̂∗
a = Σ∗

aKT
a Σ−1

s,aSa (10)

σ̂∗2
a = k(x∗, x∗; θ̂a) − Σ∗

aKT
a Σ−1

s,aKaΣ∗T
a (11)

where Σ∗
a =

(
k(x∗, xj,a; θ̂a)

)
, and all the other quantities are defined in the

last subsection but evaluated at θ̂a.
Therefore, we have

µ̂∗
a ∼ N(µ∗, σ̂∗2

a )

for a = 1, · · · , A. Here, µ̂∗
a’s are correlated with each other with covariance

σ̂∗
ab = cov(µ̂∗

a, µ̂∗
b)

= Σ∗
aKT

a Σ−1
s,a(KaΣab

s KT
b )Σ−1

s,bKaΣ∗T
b , (12)



134 Jian Qing Shi et al.

where Σab
s are the covariance matrix between Y a and Y b. The correlation is

calculated by ρ∗ab = σ̂∗
ab/σ̂∗

aσ̂∗
b . The overall mean of prediction based on A data-

sets can be calculated by

µ∗ = 1T Ω−1µ̂∗/(1T Ω−11)

and the variance is
σ2
∗ = (1T Ω−11)−1,

where Ω is the covariance matrix of µ̂∗ = (µ̂∗
1, · · · , µ̂∗

A)T , with the diagonal
element σ̂∗2

a and off-diagonal element σ̂∗
ab, and 1 = (1, · · · , 1)T .

If the correlation ρ∗ab is not very large, we may approximate the predictive
mean by

µ∗ =
∑

a µ̂∗
a/σ̂∗2

a∑
a 1/σ̂∗2

a

,

and the variance is

σ2
∗ =

∑
a 1/σ̂∗2

a + 2
∑

a�=b ρ∗ab/(σ̂∗
aσ̂∗

b )
(
∑

a 1/σ̂∗2
a )2

.

This approximate method can be replaced by an iterative method. Each time we
have a new data-set, we calculate the predictive mean (10), variance (11) and
the covariance (12). Then, we can define the following iterative method:

u(a) = u(a−1) + µ̂∗
a/σ̂∗2

a ,

v(a) = v(a−1) + 1/σ̂∗2
a ,

w(a) = w(a−1) + 2
a−1∑

j=1

ρ∗aj/(σ̂∗
aσ̂∗

j ),

µ̂∗(a) = u(a)/v(a),

σ̂∗(a)2 = (v(a) + w(a))/(v(a))2.

We can therefore maintain a much smaller set of training data, and can subse-
quently update the predictions online, as new data becomes available.

3 Applications

3.1 Learning with Large Data-Sets

As we have discussed in Section 1, a major limiting factor in the use of Gaussian
process models is the heavy computational burden associated with large training
data-sets, as the complexity grows at rate O(N3). Some methods have been
proposed for overcoming this. Murray-Smith and Pearlmutter (2003) argued that
the complexity is O(n3) + O(N2n) for the model learning and prediction based
on the filtered data, which corresponding to the second stage in this paper. In
our first stage, the complexity associated with generating filtered data is O(m3),



Filtered Gaussian Processes for Learning with Large Data-Sets 135

and therefore the overall complexity is O(m3) + O(n3) + O(N2n). Since n ≤ m
and usually m � N , the complexity is generally dominated by O(N2n), and thus
the filtering approach results in substantially decreased computational burden.

An example is used here to illustrate the filtering approach discussed in
this paper. The original 500 training data (dots) and the m = 50 randomly
selected data points (circles) are presented in Figure 1(a). The true model used
to generate the data is yi = sin((0.5xi)3) + εi, where the εi’s are independent
and identical distributed as N(0, 0.012) and xi ∈ (−5, 5). The 50 selected data
points are used to calculate the eigenvalues, and the related eigenfunctions and
eigenvectors using the method described in Step 1 in Section 2.2. We take the
values of c as 0.99, 0.999 and 0.9999, obtaining the values of n as 27, 33 and 39
respectively. The predictions and 95% confidence intervals for a test data set are
presented in Figures 1(d) to 1(f).

There are several interesting findings from these figures. Figure 1(e) gives
the best results in terms of the value of root of mean squared error between
the true test values and the predictions. Though it involves just n = 33 filtered
data, the results are better than the results in Figure 1(b), obtained from 50
randomly selected data points. Figure 1(f) gives the results obtained from n = 39
filtered data points. The performance is slightly worse than Figure 1(e), based
on only 33 filtered data points, though the difference is very small. This in fact
coincides with the theory we discussed in Section 2.1. The filtering approach
always chooses the largest eigenvalues and the related transformed data. It will
not add much information to add more filtered data associated with relatively
small eigenvalues. Comparing Figures 1(e) and 1(f), six more filtered data points
are added. The associated eigenvalues are range from λ34 = 0.0056 to λ39 =
0.0009 and, relative to the largest eigenvalue λ1 = 2.5365, the valuess ranged
from 0.0022 to 0.0003, which are extremely small. In contrast, the numerical
error may increase because the covariance matrix deteriorates due to those small
eigenvalues. Thus it is not surprising that the performance of 1(f) is slightly
worse than Figure 1(e). It shows that only a certain small number of filtered
data points are needed to provide a good representation of the whole data set
of N observations.

Figure 1(d) gives the results based on only n = 27 filtered data points. If we
just use a randomly selected subset of 27 data points, the results are presented
in Figure 1(c). The former is obviously much better than the latter. The other
problem of using subset of data points is the sensitivity of the method to the
choice of the data points. Our simulation study shows that the performance may
be improved if those 27 data points are advantageously distributed over the whole
range. For this, the training set must be located in all parts of the range, and
there must be enough training data in regions where the mean response changes
rapidly, such as near the two ends of the range in this example. Obviously, it is
not easy to guarantee this. The performance will be poor when the data points
are concentrated in certain areas. However, the filtering approach is quite robust.

In our Step 1, an m-dimensional subset is selected for the calculation of the
eigenvalues and eigenvectors. The accuracy depends on the value of m. For more



136 Jian Qing Shi et al.

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) 500 original data points
(dots) and m = 50 selected
data points (circles)

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) with 50 random selected
points; rmse=.1438

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(c) with 27 random selected
data points, rmse=.4263

−5 −4 −3 −2 −1 0 1 2 3 4 5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(d) with n = 27 filtered data,
rmse=.2063

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

(e) with n = 33 filtered data,
rmse=.0945

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

2

(f) with n = 39 filtered data,
rmse=.1019

Fig. 1. Simulation study with m = 50: plot of true curve (solid line), prediction
(dotted line) and 95% confidence intervals.



Filtered Gaussian Processes for Learning with Large Data-Sets 137

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) with 100 random selected
points; rmse=.0695

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

(b) with n = 30 filtered data,
rmse=.1139

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

(c) with n = 39 filtered data
rmse=.0611

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

(d) with n = 46 filtered data,
rmse=.0293

−5 −4 −3 −2 −1 0 1 2 3 4 5
−1.5

−1

−0.5

0

0.5

1

1.5

(e) with n = 56 filtered data,
rmse=.0291

Fig. 2. Simulation study with m = 100: plot of true curve (solid line), prediction
(dotted line) and 95% confidence intervals.



138 Jian Qing Shi et al.

accurate results, we should obviously select a relatively larger value of m. Figure
2 presents results when we take m = 100. We get quite similar results to those in
Figure 1. For example, the value of rmse for n = 30 with m = 100 is between the
values of rmse for n = 27 and n = 33 with m = 50 in Figure 1. When we added
more filtered data, moving from the case of n = 46 in Figure 2(d) to n = 56
in Figure 2(e), the performance did not improve further. Of course, there is no
surprise that we obtain more accurate results in 2(d) with n = 46 and m = 100,
compared to Figure 1(e) with m = 50.

3.2 Inverse Problems

Suppose we want to transfer an image, which typically corresponds to a very
large data-set, across a communication channel. One method is to compress
the image into a data-set of much smaller size. On receipt of the compressed
data-set, the original image is estimated. We can use the method discussed in
Murray-Smith and Pearlmutter (2003). If the filtered data are represented by Z,
the transformation matrix used to construct the filtered data is K, and the the
original data-set Y can be estimated by

Y = ΣKT (KΣKT )−1Z.

However, here we construct K in advance by selecting m data points from the
original N data points using the method discussed in Section 2.2. There are two
distinguishing features of this method. First, the filtered data provide approx-
imately the ‘best’ n-dimensional view of the original N -dimensional data-set.
Secondly, KΣKT is approximately a diagonal matrix diag(λ1, · · · , λn), so that
numerically the inversion of KΣKT is well conditioned.

4 Conclusions

In this paper we have developed the work in Murray-Smith & Pearlmutter (2003),
and have proposed a filtering approach based on approximate eigendecomposi-
tions of the covariance matrix, for dealing with large data-sets. There are two
stages. The first stage is to generate a small-sized filtered data-set, which is a
good representation of the original data-set so far as the covariance kernel is
concerned. The second stage carries out model learning and prediction based on
the filtered data. The method can be used in multi-scale learning, the solution
of inverse problems and other areas.

References

1. Gibbs, Mark and MacKay, D. J. C. (1997). Efficient implementation of Gaussian
processes.

2. Luo, Z and Wahba, G. (1997). Hybrid adaptive splines. J. Amer. Statist. Assoc.,
92, 107-116.



Filtered Gaussian Processes for Learning with Large Data-Sets 139

3. Murray-Smith, R. and Pearlmutter, B. A. (2003). Transformations of Gaussian pro-
cess priors. TR-2003-149, Department of Computing Science, University of Glas-
gow, Scotland, June.

4. O’Hagan, A. (1978). On curve fitting and optimal design for regression (with dis-
cussion). Journal of the Royal Statistical Society B, 40, 1-42.

5. Poggio, T. and Girosi, F. (1990). Networks for approximation and learning. Pro-
ceedings of IEEE, 78, 1481-1497.

6. Seeger, M., Willians, C. K. I., and Lawrence, N. D. (2003). Fast forward selection
to speed up sparse Gaussian process regression. In Bishop, C. M. and Frey, B. J.,
editors, Proceedings of the Ninth International Workshop on AI and Statistics.

7. Rasmussen, C. E. (1996). Evaluation of Gaussian Processes and Other Methods
for Non-linear Regression. PhD Thesis. University of Toronto. (Available from
http: //bayes.imm.dtu.dk)

8. Shi, J. Q., Murray-Smith, R. and Titterington, D. M. (2002). Hierarchical Gaus-
sian Process Mixtures for Regression, DCS Technical Report TR-2002-107/Dept.
Statistics Tech. Report 02-7, University of Glasgow, Scotland.

9. Tresp, V. (2000). The Bayesian committee machine. Neural Computation, 12, 2719-
2741.

10. Vapnik, V. N. (1995). The Nature of Statistical Learning Theory. Springer Verlag,
New York.

11. Wahba, G. (1990). Spline Models for Observational Data. SIAM, Philadelphia, PA.
CBMS NSF Regional Conference series in applied mathematics.

12. Williams, C. K. I. and Rasmussen, C. E. (1996). Gaussian process for regression.
in D.S. Touretzky et al (eds), Advances in Neural Information Processing Systems
8, MIT Press.

13. Williams, C. K. I. and Seeger, M. (2001). Using the Nyström method to speed up
kernel machines. Advances in Neural Information Processing Systems, 13. Eds T.
K. Leen, T. G. Diettrich and V. Tresp. MIT Press.

http: //bayes.imm.dtu.dk

	Introduction
	Filtering Approach for Large Data-Sets
	Applications
	Conclusions
	citation_temp.pdf
	http://eprints.gla.ac.uk/3728/


