High pressure studies of hydroxo-bridged Cu(II) dimers

Prescimone, A., Sanchez-Benitez, J., Kamenev, K. K., Moggach, S. A., Warren, J. E., Lennie, A. R., Murrie, M. , Parsons, S. and Brechin, E. K. (2010) High pressure studies of hydroxo-bridged Cu(II) dimers. Dalton Transactions, 39(1), pp. 113-123. (doi: 10.1039/b918287j)

Full text not currently available from Enlighten.

Abstract

A combination of high pressure single crystal X-ray diffraction and high pressure SQUID magnetometry has been used to study three hydroxo-bridged copper(II) dimers. [Cu-2(OH)(2)(H2O)(2)(tmen)(2)](ClO4)(2) (1; tmen = tetramethylethylenediamine), [Cu-2(OH)(2)(tben)(2)](ClO4)(2) (2; tben = di-(t)butylethylenediamine) and [Cu-2(OH)(2)(bpy)(2)](BF4)(2) (3; bpy = 2,2'-bipyridine) have been structurally determined to 2.5, 0.9 and 4.7 GPa, respectively. The application of hydrostatic pressure imposes significant distortions and modifications in the structures of all three complexes. This is particularly true of the bond distances and angles between the metal centres and the bridging hydroxo groups. Compound 1 undergoes a phase transition between 1.2 and 2.5 GPa caused by the loss of a coordinated water molecule. This leads to a loss of symmetry and dramatic changes in the molecular structure of the complex. The structural changes are manifested in changes in the magnetic behaviour of the complexes as seen in dc susceptibility measurements up to similar to 0.9 GPa for 1, 2 and 3: the exchange becomes less antiferromagnetic in 1 and 2 and more ferromagnetic in 3.

Item Type:Articles
Keywords:Anvil binuclear complexes, bond cell complex, complexes, crystal diffraction, high pressure molecular-structure, molecule, phase, phase-transition, single squid, magnetometry symmetry transition x-ray, x-ray-diffraction.
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Murrie, Professor Mark
Authors: Prescimone, A., Sanchez-Benitez, J., Kamenev, K. K., Moggach, S. A., Warren, J. E., Lennie, A. R., Murrie, M., Parsons, S., and Brechin, E. K.
College/School:College of Science and Engineering > School of Chemistry
Journal Name:Dalton Transactions
ISSN:1477-9226

University Staff: Request a correction | Enlighten Editors: Update this record