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Abstract. We investigate the possibility of using pattern recognition
techniques to classify various disease types using data produced by a new
form of rapid Mass Spectrometry. The data format has several advan-
tages over other high-throughput technologies and as such could become
a useful diagnostic tool. We investigate the binary and multi-class per-
formances obtained using standard classifiers as the number of features is
varied and conclude that there is potential in this technique and suggest
research directions that would improve performance.

1 Introduction

In recent years, microarrays have enabled researchers to measure the expression
of entire genomes simultaneously. Some work has been undertaken to investi-
gate how well classifiers built using microarray data can discriminate between
healthy and diseased samples and samples of differing diseases and disease stages
[1]. However, although this is very interesting from a feature (i.e. gene) selection
perspective, as a general diagnostic tool, it is unlikely to prove useful. There are
several underlying reasons for this. Firstly, the cost of microarray analysis and
the time required to perform the analysis are both currently prohibitive. Sec-
ondly, the mRNA levels measured by a microarray only give a partial picture of
the proteomic activity inside the cell. Finally, samples have to be very localised.
For example, to diagnose a bladder cancer, a sample of bladder tissue would be
required. This is obviously a highly invasive procedure.

In this paper, we consider a new form of biological data (introduced in [2-4])
generated using Mass Spectrometry (MS) and assess whether it has potential as
a diagnosis tool, using various pattern classification techniques. This data can be
obtained very rapidly and inexpensively, suggesting that it may be well suited
for a diagnostic purpose. Also, the data is collected from a urine sample. This
is easily obtained and therefore can potentially be used to diagnose any disease
that will cause a change in the particle content of the urine.

The remainder of the paper is set out as follows. In the next section, we intro-
duce the data generation process. In section 3, we discuss the data pre-filtering



and pre-processing and briefly mention the classification algorithms used. In
sections 4 and 5 we present results and conclusions.

2 CE/MS data generation

Recently, a new MS approach has been investigated that couples capillary elec-
trophoresis (CE) directly to MS enabling detailed analysis to be available quickly
(< 1 hour) and directly from a suitable (e.g. urine) sample [2,4, 3]. Traditionally
MS has been used to identify individual proteins but typically cannot be per-
formed on a sample consisting of various proteins. Separation techniques exist
to isolate individual proteins from such a mixture but these tend to be highly
labour intensive and therefore expensive and slow. Here, the CE takes a com-
plex sample of particles (in this case, the particles can be anything that might be
found in the urine, not necessarily complete proteins) and by applying a charge
differential along the capillary, separates the various particles in time. The out-
put is connected directly to the MS realising a mass profile that evolves with
time. This data is then analysed by MosaiquesVisu software that detects and
outputs intensity values at the unique mass/time peaks (for details, see [4]). The
separation in time means that only a small fraction of the particles are applied
to the MS at any particular time. If the sample was applied directly to the MS
without this stage it would be far more difficult to distinguish between individual
particles.

This method has many possible diagnostic advantages over microarrays.
Firstly, the analysis is quick and non-invasive. Secondly, in the case of using
urine samples, there is the potential to be able to diagnose any diseases that
would result in a variation of the products found in urine. However, there are
drawbacks to this method. Firstly, the data produced is of a very high dimension
(~ 30,000 features) and the number of available samples is relatively small. Sec-
ondly, as no real control is imposed on the sample being analysed, it is possible
that amongst this high number of features, there will be many due to other,
spurious factors.

To date, there has been some research focused on the potential of MS pro-
teomics data as a diagnostic tool, but using serum rather than urine. For exam-
ple, Lilien et al [5] use Principal Components Analysis and a linear discriminant
to distinguish between the MS spectra of serum samples from patients with var-
ious tumours. Similarly, Wagner et al [6] use supervised techniques to try and
create protein profiles from MS analysis of serum samples. These approaches are
all based on identifying whole, specific proteins whereas CE/MS can detect a
much wider range of particles.

3 Method

3.1 Data

The data set we shall use consists of analysis of 632 samples that come from
one of 22 separate classes from individuals with various renal diseases, cancers



and diabetes as well as samples from healthy individuals. We have performed
binary classification with a variety of algorithms on a large number of pairs
of classes from this set, however, in this investigation, we will concentrate on
a group of five classes - Bladder Cancer (BLA - 47 instances), Renal Cancer
(REN - 25 instances), Prostate Cancer (PCA - 8 instances), Benign Prostate
(PB - 12 instances) and Healthy (NK - 41 instances). The total number of
features is 28378. The inclusion of benign prostate samples is interesting as
clinical differentiation between individuals with prostate cancer and those with
a benign growth is challenging and the two different conditions require vastly
different treatment.

3.2 Feature pre-filtering

This particular form of data has several important characteristics. Firstly, al-
though the total number of possible features is very high (~ 30,000), in each
sample, only a small proportion of these values are non-zero, indicating that this
particular particle was not present or, and this distinction may be important,
not detected. Therefore, if we call our N (samples) xM (features) dataset X,
the vast majority of the z;; values are zeros. Secondly, those values that are
present take values over a very large range (see figure 1(a) (top)). To overcome
this second problem, we have adopted a log transform?3. Figure 1(a) shows the
binary classification performances for a wide range of pairwise comparisons and
algorithms with and without this transform. We can see that in the vast majority
of problems the log transform improves performance (all points below the y = x
line).

The first problem is not quite so straightforward to address. As an initial
step, we perform a simple pre-filtering. For a given classification problem (i.e.
2 or more classes), we only keep features that appear (i.e. are non-zero) in at
least p% of the data samples for one or more of the classes. Note that we do
not force the feature to be present p% of the time across all of the classes as it
is possible that both presence and absence of a feature as well as presence with
varying magnitude could be indicative of changing condition. We will investigate
the effect of varying p in more detail later.

3.3 Classifiers

In this investigation we limit ourselves to two main classes of classifiers. Naive
Bayes classifiers (NB) and Support Vector Machines (SVM’s). This is by no
means a complete list but serves as a reasonable starting point. Due to limitations
of space, a description of these algorithms is omitted, readers are referred to [7,
8] for more details. When using a NB classifier, it is necessary to determine the
parametric form of the density function that will be used for each feature. Here,
we have considered the following four (defining the data matrix X as before, and

3 specifically, log(z;; 4 1), where the additive term ensures that our zero values remain
at zero



3

0.8

I
S
S

S
S

Occurence Frequency

=

0.5e4 1e4d 15e4 2e4 25e4 3ed
Attribute Value

Log-transformed Data

=
S

Oceurence Frequency
°
Y

o
2

(3
o

i

od
.
%

o
2,

o

4 6 8 10 12 0 0.2 0.4 0.6 0.8 1
Log Attribute Value Raw Data

(a) (b)

Fig. 1. Log transformation example (left, note that due to the wide range of values,
many bars on the top histogram are too small to be visible ) and binary classification
errors with and without log transform

indexing the individual features with m = 1...M and the classes ¢c = 1...C
and defining the M x 1 data vector x)

— Gaussian: Each class is defined by an M dimensional Gaussian distribution
with diagonal covariance. i.e. p(x|c, pic, 0c) = H,A,;IZI N(z™|pm, om)

— Binomial: The data is transformed to a binary representation (i.e. value
present (non-zero) or absent (zero). Each class is then defined by an M di-

mensional vector of probabilities p., where p7* = P(x,, = 1|c). i.e. p(X|c, fte, 0¢) =

M _
[Tz 08)*m (1 = pi)t=om

— Multinomial: As binomial but with > 2 possible states. Each class is now
defined by M vectors of state probabilities.

— Exact-zero Gaussian: This density is intended to capture more accu-
rately the characteristics of the particular problem. For each class, we now
have an M dimensional vector of probabilities as in the binomial case. If
the value is non-zero we then assume it can be modelled by a Gaussian.
Therefore, defining the indicator variable t,, which is 1 iff z,, is non-zero,

M _
P(xle, pe, pre; 0c) = [y BTN (2™ |15 07)) 0 (1 = p) T

In all cases, we define the prior distributions for each class to be the proportion
of training instances from that class and use the standard maximum likelihood
solutions for the parameter values.

As an alternative to the probabilistic, Naive Bayes classifiers, we consider
the SVM. To use an SVM, a kernel function must be defined. We use a linear
kernel (a simple dot product in the input space) after normalising each feature to
have zero mean and unit variance. It may be the case that there are other more
suitable kernels that could be used however, due to the high dimensionality, this
is a reasonable starting point. In addition to this, we set the margin parameter
C to infinity (i.e. a hard-margin).



Multi-class SVM Classifiers Naive Bayes classifiers are naturally multi-class.
SVM’s however can not be naturally generalised to the multi-class setting. How-
ever, various tree based heuristics can be used to split the problem down into a
set of binary decisions. We experiment with two of these here

— Directed Acyclic Graph (DAG): In a C class problem, the DAG SVM
[9] formulates the problem as a tree with (C'(C' —1)/2) nodes. At each node,
an SVM is trained between two of the classes in the problem. When testing
a point, we start by assuming that the point could belong to any of the C'
classes. It then moves through the tree and at each SVM, one class is removed
from the possible solution until only one class remains. For example, in a
3 class problem, we might train our first classifier on class 1 versus class 3.
When testing, if the test point is classified as 1, we remove 3 from the list of
possible solutions and move on to the classifier between 1 and 2.

— Divide-by-2 (DB2): The DB2 [10] classifier operates by repeatedly split-
ting the C' class problem into binary problems. For example, in a four class
problem, the first classifier might split the data into the meta-classes (1,2)
and (3,4). If a test point is classified as belonging to the first class, it is then
applied to a classifier between 1 and 2 etc.

In either of these systems, the particular form of SVM can vary between nodes.
Presently, we have kept them all the same (linear kernel, C' = o) but employing
different ones for different classifications is an obvious next step. This is partic-
ularly promising for the DB2 model where it may be sensible to have different
classifiers built from different features at different levels in the hierarchy. We will
discuss this further below.

4 Results

4.1 Binary Classification

Initially, we have investigated the pairwise classification performance between
relevant pairs of classes in the dataset. This has been performed for many pair-
wise combinations but due to space limitations we will only consider those be-
longing to the cancer subset here. Table 1 shows the results for our five binary
classifiers (SVM and 4 different NB). Each value is the best leave-one-out (LOO)
performance obtained when varying p, the feature filtering threshold. In some
cases the best performance was obtained for several different values of p. In
these cases, we have shown the minimum and maximum p values. We can see
from the table that generally, the performance is reasonably good with low val-
ues LOO error. The highest errors obtained are for the classification between
Prostate Cancer and benign Prostate with a minimum of 10% LOO error ( = 2
data points). This is to be expected, partly due to the difficulty of the problem
and partly due to the fact that there is such a small number of samples in each
class (8 and 12 in PCA and PB respectively). We also note that no-one classifier
out-performs the others although the best performance can generally be found



from an SVM or Naive Bayes with Gaussian or binomial densities. This is es-
pecially interesting as it suggests that in some cases, the magnitude of a value
(if it is non-zero) does not improve performance whereas in other cases it does.
The relatively poor performance of the exact-zero system seems to suggest that
it is not necessary to use both presence and absence information and magnitude
information at once. It is worth mentioning that the exact-zero mixture requires
the fitting of considerably more parameters than the individual Gaussian and
Binomial models and it will be interesting to see if this error rate can be im-
proved as more data becomes available. The results are promising and suggest
that discrimination is possible using CE/MS data. However, further validation
will be acquired through a planned blind test.

[ Classes [Class Sizes] SVM [ NB Gauss | NBBin [ NB Mult [ Exact Zero |
PCA vPB| 8v 12 |15.00 (90)] 15.00 (95) | 10.00 (90) ]20.00 (55— 95)|25.00 (15 — 85)
PCA v NK| 8v 41 |0.00 (85) [4.08 (25—95)| 0.00 (95) |12.24 (50—85)| 6.12 (40—05)
PB v NK | 12v 41 | 1.80 (65) |0.00 (10—20)|5.66 (30—85)|11.32 (55—75) | _ 7.55 (70)
REN v NK| 25v 41 |1.52 (75)| 1.52 (20) 6.06 (15) | 7.58 (35—50) | 6.06 (10—65)
BLA v NK| 47 v 41 | 2.30 (65) |4.55 (156—20)| 7.95 (5) | 6.82 (45—80) | 3.41 (10—15)

Table 1. Binary LOO performances (errors are percentages and the value in brackets is value for p
for this particular level of performance)

4.2 Multi-class Classification

Binary classifications are interesting but are limited from a diagnostic point
of view. One of the possible benefits from CE/MS data from urine samples is
that any number of different diseases could be identified. Therefore, we turn our
attention to multi-class schemes. As discussed above, the various Naive Bayes
classifiers can be naturally expanded to a multi-class scenario. For the SVM’s, we
have used two tree based approaches, DAG and DB2. For DB2, it is necessary to
define the hierarchy - i.e. how we want to perform the successive partitions of the
C classes to create a series of binary problems. In this example, we have decided
on a hierarchy that is sensible from a clinical point of view. The hierarchy is
shown in figure 2(a). At the top level, we split NK from everything else (i.e.
healthy versus unhealthy). If the point is classified as unhealthy, we perform a
further split into (PCA, PB) v (BLA, REN) and then perform a standard binary
classification on whichever of these pairs is chosen. The best results (again, as
p is varied) can be seen in table 2. A plot of the number of features retained
against p can be seen in figure 2(b). In this case, we see that the two SVM
schemes out-perform the various Naive Bayes classifiers. This may be due to the
fact that the two SVM schemes do a series of more simple binary classifications,
rather than one more complicated multi-class one (as is the case with the Naive
Bayes). The DB2 SVM defines a hierarchy over the possible diseases and so is
able to classify at varying levels of abstraction. For example, at the top level of
the tree (i.e. simply classifying between healthy and unhealthy) there is just one
misclassification (a NK) and at the next level (ignoring the 1 wrong NK from the
previous classification), there are no errors, suggesting that the errors all occur
in the most specific, lowest level. This shows the power of a possible hierarchical



approach - currently we are unable to reliably classify between PCA and PB but
it appears that we can reliably classify that something is either PCA or PB from
other classes. The ability to visualise the decreasing certainty as we move down
the hierarchy is a great bonus to such an approach; something that is lacking
from a flat structure such as a simple Naive Bayes classifier.

10000

8000

6000

4000|

No. Features Retained

2000

PCA PB BLA REN

Fig. 2. Example hierarchy (left) and number of features retained in multi-class problem
as p is increased (right)

[SVM(DAG)[SVM(DB2)[NB Gauss| NB Bin [NB Mult|Exact Zero]

|

(AU (%) | 602 | 677 [ 1429 | 19.55 | 2481 | 16.45 |

[7 (No.Feat)| 10 (5411) | 25 (2366) |40 (1287) |25 (2366)]60 (720) | 60 (720) |
PCA 0/0 375 /3 | 375/3 ]25.0/2|100/8 ] 500/ 4
PB 333/4 | 167 /2 |41.67/5|41.67/5|91.7/11] 66.7/38
REN 2.0 /3 80/2 | 80/2 |16.0/4|320/8]| 200/5
BLA 21/1 00/0 | 64/3 |128/6|20/1| 2.0/ 1
NK 00/0 49/1 |146/6 |22.0/9|122/5| 9.8/4

Table 2. Multi-Class LOO errors. Top line shows overall percentage, second line shows p with the
actual number of features in brackets, lower rows give the percentage of errors in each particular
class / absolute number of errors in each class.

5 Conclusions and Future work

In this paper, we have described CE/MS a new rapid, high-throughput form of
proteomic data and have performed several simple experiments to try to give
some indication of the diagnostic capabilities of the data. The data has several
advantages over other similar data formats such as microarray data. It can be
produced very rapidly in a non-invasive manner (normally through analysis of
a urine sample) and has the potential to be able to diagnose many diseases.
However, like microarray data, it is noisy and the number of features is far
greater than the number of collected samples - this latter problem is likely to
improve as the data generation process is a fraction of the cost of a microarray
experiment and obtaining samples for analysis is much more straightforward.
Results presented suggest that pattern recognition techniques combined with
CE/MS data has potential as a diagnostic tool. In these basic experiments low



LOO errors were observed with only a very basic choice of classifiers and very
crude feature pre-filtering. Although results have been presented for only 5 of
the 22 available classes, the same general level of performance is observed across
other subsets that have been investigated. As might be expected, multi-class per-
formances are worse than binary performances but the performance of the two
tree-based SVM approaches is promising. Particularly, the DB2 SVM enables us
to classify in a hierarchical manner, revealing where the errors are made and giv-
ing a more useful diagnosis. Such an approach isn’t limited to SVM classifiers -
any particular classifier could be used at each node and it would be expected that
by tuning classifiers to the different hierarchical problems performance could be
considerably improved. i.e. by extracting relevant features at each level. This is
something for future investigation. The only feature selection considered here
has involved the initial pre-filtering step. Examining the results, we see that the
value of p for best performance varies dramatically. This suggests that for some
problems, there are a small number of features that are consistently varied for
the different diseases, whereas for others, we are obtaining useful information
from features that are very rarely present. In these latter cases, it should be re-
membered that it is possible that several different features could correspond to
the same particle that has undergone some small change. This suggests that per-
formance may be improved by combining features or developing more applicable
kernel functions, possibly including the mass and time information available for
each detected peak. It may also be beneficial to include extra meta-data in the
decision making process. This could be clinical history or more general observa-
tions (e.g. the gender of the individual). This would be particularly interesting
in the hierarchical classifier as different meta-data could be incorporated at each
level.

Of the multi-class methods investigated, the hierarchical SVM methods look
to be the most promising and it is likely that the performances considered pre-
sented here could be improved by careful selection of the classifier at each level.
This would involve more careful selection of kernels and a more rigorous feature
selection stage.

Finally, the diseases that have been investigated so far have all been chosen
due to the fact that they are very likely to produce a change in the urine profile. It
would be interesting in future work to investigate whether or not such techniques
could be used to diagnose diseases without such an obvious effect or in other
testing circumstances.
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