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Summary. In this paper a time-varying coefficient model is developed to examine the

relationship between adverse health and short-term (acute) exposure to air pollution. This

model allows the relative risk to evolve over time, which may be due to an interaction with

temperature, or from a change in the composition of pollutants, such as particulate matter,

over time. The model produces a smooth estimate of these time-varying effects, which are

not constrained to follow a fixed parametric form set by the investigator. Instead, the

shape is estimated from the data using penalised natural cubic splines. Poisson regression

models, using both quasi-likelihood and Bayesian techniques, are developed, with estima-

tion performed using an iteratively re-weighted least squares procedure and Markov chain

monte carlo (MCMC) simulation respectively. The efficacy of the methods to estimate dif-

ferent types of time-varying effect are assessed via a simulation study, and the models are

then applied to data from four cities which were part of the National Morbidity, Mortality,

and Air Pollution Study (NMMAPS).

Key words: Air pollution; Bayesian hierarchical models; Epidemiology; Penalised splines;

Time-varying coefficient models.

1. Introduction

The potential association between exposure to air pollution and adverse health events has

been a major issue in public health for over fifty years. Numerous studies have shown a link

between a component of air pollution and measures of public health, the majority of which
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have estimated the effects associated with short-term exposure to air pollution. These

studies are typically based on daily data from a specific region and time period, and analysis

is carried out using time series regression methods, such as Poisson linear (McCullagh

and Nelder (1989)) and additive (Hastie and Tibshirani (1990)) models. These models

make a number of, possibly untenable, assumptions about the underlying mechanism that

generates the daily health data, and relaxing these assumptions is an active research topic.

Such assumptions include: the same mean and variance for the health data; independence

of daily health counts; a constant effect of air pollution; and modelling seasonal variation

using fixed parametric functions. Advances in statistical methods have allowed researchers

to relax these assumptions and apply a wider class of regression models to these data.

Recent research has investigated the shape of the air pollution effects, with particular

emphasis on comparing a constant effect with a dose response relationship (Daniels et al.

(2000)). Such a relationship allows the effects of air pollution to depend on the pollution

level, but comparatively little research has investigated the possibility of temporal variation

in the effects of air pollution. This variation may be seasonal, which could result from

an interaction with temperature or with another pollutant exhibiting a seasonal pattern.

Alternatively, it may exhibit a long-term trend, which could result from such interactions, a

change in the composition of individual pollutants over a number of years, or from a change

in the size and structure of the population at risk. In this paper we propose a time-varying

coefficient model, that estimates the temporal variation in the effects of pollution using

a penalised natural cubic spline. Bayesian and quasi-likelihood implementations of this

model are presented, with particular interest in the differences between the two estimates

and associated confidence and credible intervals.

The remainder of this paper is organised as follows. Section 2 describes the models

previously used to estimate the association between health effects and short-term exposure
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to air pollution, and proposes a time-varying coefficient model for such analysis. Section 3

describes a Bayesian analysis with inference based on Markov Chain Monte Carlo (MCMC)

simulation, and a likelihood based alternative, which uses an iteratively re-weighted least

squares procedure. In section 4 a simulation study is carried out to determine if the

models proposed in this paper can accurately estimate different shaped time-varying effects.

Section 5 applies these models to real data from four U.S. cities over a five year period

(1993-1997). Finally section 6 gives a concluding discussion and suggests some future

extensions.

2. Modelling the effects of air pollution on public health

The adverse health effects associated with acute exposure to air pollution are typically

estimated from daily ecological data that relate to a specific region for n consecutive days.

The data comprise counts of adverse health events (such as mortality) y = (y1, . . . , yn)T
n×1,

levels of air pollution x = (x1, . . . , xn)T
n×1, and a matrix of covariates Z = (zT

1 , . . . , zT
n )T

n×q.

The covariates model confounding factors, such as long-term trends, seasonal variation and

serial correlation in the health data, and typically include smooth functions of calendar

time and temperature. Regression models for these data are based on Poisson generalised

linear or additive models, and the overall form depends on the methods chosen to estimate

the smooth functions and the form of the air pollution-health relationship. In this paper

we take a parametric approach to modelling confounders using natural cubic splines, (al-

lowing straightforward estimation in a Bayesian setting) so a common general form can be

expressed as
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yt ∼ Poisson(µt) for t = 1, . . . , n,

log(µt) = xtβt + zT
t δ, (1)

βt = f(t; α).

The effect of air pollution on day t is represented by βt, and the evolution over time is

modelled by a function f with parameter vector α. The covariates include basis functions

for natural cubic splines, and their effects are controlled by the q × 1 parameter vector δ,

the first element of which is an intercept term.

2.1 Specific forms of the air pollution and health relationship

A number of previously used forms for f are discussed below, together with the time-

varying coefficient model proposed here.

(i) βt = α1, for a constant effect of air pollution.

(ii) βt = 1 and xt is replaced with f(xt; λ), for a dose response relationship.

(iii) βt = α0+α1 sin(2πt/365)+α2 cos(2πt/365), for a smooth seasonal time-varying effect

of air pollution.

(iv) βt = βt−1 +ωt and ωt ∼ N(0, α1), for a time-varying effect of air pollution modelled

as a first order random walk.

(v) βt = f(t; α), where f is an arbitrary function that estimates a smooth time-varying

effect of air pollution.

Non time-varying effects (i)-(ii)

The majority of researchers assume the effect of air pollution is either constant (see for
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example Mar et al. (2000) and Moolgavkar (2000)), or varies as a non-linear function of the

quantity of air pollution, a so-called dose-response relationship (see for example Schwartz

(1994) and Daniels et al. (2000)).

Time-varying effects (iii)-(iv)

Other extensions, as considered here, have allowed the relationship between air pollution

and health to change over time. The only known analyses are those by Moolgavkar et al.

(1995) and Peng et al. (2005) (model iii) who proposed seasonal models, and those by

Chiogna and Gaetan (2002) (model iv) and Lee and Shaddick (2005), who adopt an au-

toregressive approach. The seasonal models fix the parametric form of the time-varying

effects a-priori, while the autoregressive models do not force the evolution of the time-

varying effects to be smooth.

2.2 Time varying coefficient models (v)

A time varying coefficient model (TVCM) is a special case of a varying coefficient model

(Hastie and Tibshirani (1993)), for which the effect modifier is time. The model proposed

here is that of equation (1), with the vector of air pollution effects, β = (β1, . . . , βn)n×1,

modelled as an arbitrary smooth function f(t; α). The advantage of this approach, over

those discussed in the previous section, is that β is completely smooth, with its shape

determined from the data and not from the parametric form specified by the investigator.

We estimate the smooth function with a regression spline because it is fully parametric,

making implementation within a Bayesian framework relatively straightforward. We use

a natural cubic spline because it is visually smooth, and the shape beyond the two end

knots is constrained to be linear, precluding any erratic tail behaviour. An alternative, not

discussed here, is to estimate f(t; α) with a non-parametric function such as a smoothing

spline, with estimation based on the methods discussed by Lin and Zhang (1999). A

regression spline comprises a linear combination of p basis functions, f(t; α) = BT
t α,
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where Bt = (B1(t), . . . , Bp(t))p×1 is a vector of known basis functions evaluated at day t,

and α = (α1, . . . , αp)p×1 is a vector of regression parameters. In this paper we use a B-

spline basis (Eilers and Marx (1996)), because it is numerically stable and implementation

within Bayesian and likelihood frameworks is straightforward.

We use a penalised approach to estimation because it allows the smoothing to be

controlled by a single parameter, rather than by specifying the size and location of a set

of knots. This approach uses an overly large set of knots and penalised excess curvature

in the estimate via a penalty term. The form of this penalty depends on the set of basis

functions, and for likelihood estimation we use the suggestion of Eilers and Marx (1996),

who penalise kth order differences between the coefficients of the spline. For example,

second order differences are given by
∑p

j=3(αj − 2αj−1 + αj−2)
2 = αT Dα, where

D =




1 −2 1
−2 5 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

...
...

...
...

...
1 −4 6 −4 1

1 −4 6 −4 1
1 −4 5 −2

1 −2 1




. (2)

The penalty term is multiplied by a smoothing parameter λ, with larger values leading

to the fitted curve being smoother. Penalised B-splines have been adapted to a Bayesian

setting by Lang and Brezger (2004), who replaced the difference penalty of order k with a

kth order random walk prior, its stochastic analogue. For example, a second order random

walk prior is given by αj|αj−1, αj−2, τ
2 ∼ N(2αj−1 − αj−2 , τ 2) for j = 3, . . . , p, with non-

informative priors for (α1, α2). The smoothing parameter is τ 2, which controls the size of

the differences between the parameters α, with larger values leading to less smoothing.
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3. Statistical inference

This section describes Bayesian and likelihood approaches to estimation.

3.1 Bayesian analysis

The Bayesian model is that of equation (1), with the vector of air pollution effects

modelled by a penalised spline, βt = BT
t α, as suggested in section 2. The penalty takes

the form of a second order random walk prior, αj|αj−1, αj−2, τ
2 ∼ N(2αj−1−αj−2 , τ 2), with

non-informative priors for (α1, α2). The vector of covariate parameters has a multivariate

Gaussian prior, δ ∼ N(m, Σ), and the smoothing parameter τ 2 has a conjugate Inverse-

Gamma prior, τ 2 ∼ Inverse-Gamma(e, f). The hyperparameters (mq×1, Σq×q, e, f) are

known and chosen to make the priors non-informative. Inference is performed via MCMC

simulation using a hybrid Metropolis-within Gibbs approach that updates the parameters

in blocks [δ = (δ1, . . . , δq), α = (α1, . . . , αp), τ
2]. The joint posterior distribution is given

by

p(α, δ, τ 2|y) ∝
n∏

t=1

Poisson(yt|α, δ)

p∏
j=3

N(αj|2αj−1−αj−2, τ
2)N(δ|m, Σ)Inverse-Gamma(τ 2|e, f).

Simulation for this type of regression problem has been developed by Fahrmeir and

Lang (2001), and the simulation algorithm adopted here is based on their work. Details

are given in web appendix A.

3.2 Likelihood based analysis

The likelihood based analysis is based on equation (1), with the vector of air pollution

effects modelled by a penalised spline, βt = BT
t α, as suggested in section 2. The spline

parameters α are subject to the second order difference penalty described in section 2, and

(α, δ) can be estimated using the penalised likelihood approach suggested by Marx and

Eilers (1998). Further details are given in web appendix B.
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4. Simulation study

In this section we describe a simulation study, to assess the effectiveness of the time-varying

coefficient model described in section two. Specifically, we simulate four sets of mortality

data with different types of time-varying effect: (i) constant; (ii) seasonal with a period of

a year; (iii) a quadratic trend; (iv) a smooth cubic spline with 6 degrees of freedom. Each

simulated data set comprises daily counts of mortality for a three year period, which are

generated from a Poisson regression model. The vector of Poisson mean values depends

on air pollution data from Detroit and a set of covariates, the latter of which include an

intercept term, cyclical components with periods of a whole, half and a quarter of a year,

and a natural cubic spline of temperature (also from Detroit) with 3 degrees of freedom.

The time-varying effects of air pollution are chosen to be a similar size to those found in

current studies, with a relative risk around 1% for an increase of 10µg/m3.

4.1 Results

The time-varying effects from the simulated mortality data are estimated using the

Bayesian and likelihood penalised spline models described in section three. We apply our

models to two different sets of covariates: (i) the exact set of covariates used to simulate the

data; (ii) a set of covariates chosen by model building criteria and residual based methods.

We use the first to ensure our models accurately estimate different types of effect, while the

second represents the standard situation where the set of confounders are unknown. The

standard approach to controlling confounding uses smooth functions of calendar time and

temperature, and for these data we use natural cubic splines. We use deviance information

criteria (DIC, Spiegelalter et al. (2002)) to select the degrees of freedom, and end up with

fifteen (five per year) for calendar time and two for temperature. Additionally, we also

include an intercept term. The Bayesian estimates are based on the posterior median from

130,000 samples, which are burnt in for 30,000 iterations and then thinned by five to give
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20,000 final samples. The smoothing parameter for the likelihood estimates is chosen by

generalised cross validation (GCV), although Akaike’s information criterion (AIC) gives

similar results. Figures 1 and 2 show the actual time varying effects (on the relative risk

scale for an increase of 10µg/m3), together with those estimated from the Bayesian and

likelihood methods using the exact covariates and those chosen by model building criteria.

[Figure 1 about here.]

[Figure 2 about here.]

The Bayesian and likelihood methods estimate the underlying time-varying effects well,

showing the correct overall shape for each set of data. The use of the exact covariates im-

proves the estimates of a constant effect (panel (i)), but has little impact on the remaining

three time-varying estimates. Although all the underlying shapes are well estimated, the

seasonal effect is estimated with the least accuracy, suggesting that the proposed models

perform worse if the underlying temporal variation has greater curvature. The Bayesian

(dotted line) and likelihood (dashed line) estimates are very similar for most data sets, but

when the estimates differ, neither is preferable (see for example the quadratic and seasonal

effects using the exact set of covariates). When the covariates are chosen by model building

criteria, the estimates from the constant and spline models are similar, suggesting that in

this standard situation, the models may struggle to distinguish between a constant effect

and a slowly evolving long-term trend.

5. Application

The Bayesian and likelihood models described in sections two and three are illustrated by

analysing the relationship between particulate matter and mortality in four U.S. cities.
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5.1 Data

The models presented here are applied to daily mortality and particulate matter data,

which were first analysed in the National Morbidity, Mortality and Air Pollution Study

(NMMAPS, Samet et al. (2000)). The four cities are Cleveland, Detroit, Minneapolis and

Pittsburgh, and we obtain the data from the R package ‘NMMAPSdata’ (Peng and Welty

(2004)). We use the data on these cities from 1st January 1993 until the 31st December

1997, because daily PM10 and weather data have the fewest missing values of all the 108

NMMAPS cities over the fourteen years of available data (1987 - 2000). The response data

y comprise daily counts of total non-accidental mortality for all age groups, and the PM10

data are daily averages across a number of monitors in each city. The weather data include

daily mean temperature and mean dewpoint temperature.

5.2 Statistical models

We compare our Bayesian and likelihood implementations of the penalised spline model

against some of the simpler alternatives discussed in section two. In particular, we apply

five models to each data set.

Model 1 - Bayesian penalised spline model, βt = BT
t α, with estimation carried out as

described in section 3.1.

Model 2 - Likelihood penalised spline model, βt = BT
t α, with estimation carried out as

described in section 3.2.

Model 3 - Constant effect of pollution βt = α1.

Model 4 - Seasonal effect of pollution βt = α0 + α1 sin(2πt/365) + α2 cos(2πt/365).

Model 5 - Cubic effect of pollution βt = α0 + α1t + α2t
2 + α3t

3.
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Analyses for models 3-5 are carried out using Bayesian methods based on MCMC

simulation. The covariates are the same for all five models, and are given by

zT
t δ = δ1 + f(t; 35) + f(temperature0; 6) + f(temperature1−3; 6)

+f(dewpoint0; 3) + f(dewpoint1−3; 3) + DOWδ∗,

in which f(var; df) denotes a natural cubic spline of the variable ‘var’ with ‘df’ de-

grees of freedom. The first term is an intercept (δ1), and the variables ‘t’, ‘temperature’

and ‘dewpoint’ denote calendar time, mean temperature, and mean dewpoint temperature

respectively. The subscripted numbers represent the ‘lag’ used, so that ‘temperature0’ is

the same days temperature and ‘dewpoint1−3’ is dewpoint temperature averaged over lags

one to three. Finally ‘DOW’ denotes six indicator variables for day of the week, with

Monday taken to be the default. The collection of parameters that comprise the splines,

the intercept and the day of the week effects are collectively denoted by δ. The next

subsection describes our model building process which led to the choice of covariates, and

prior distributions.

5.2.1 Model building and justification Model building is carried out using Bayesian

generalised linear models and MCMC simulation. We start by modelling the abundant

seasonal variation and serial correlation in the daily mortality counts using natural cubic

splines of calendar time, temperature and dewpoint temperature. Splines of calendar time,

with a range of degrees of freedom, were fitted to the data, and we use 35 degrees of

freedom (seven per year) as it produces the lowest DIC and little structure in the Bayesian

residuals. After calendar time, we then investigate different lags and moving averages of

temperature and dewpoint temperature, and use the current day and a one to three day
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moving average because they are significant (posterior estimate was significantly different

from zero), and have low DIC for all four cities. We include these variables as natural

cubic splines with low degrees of freedom, because temperature variables typically show a

U-shaped relationships with mortality (see for example Schwartz (1994)). Finally, we add

indicator variables for day of the week to the model as they have a significant effect on

daily mortality. We assign a non-informative multivariate Gaussian prior for the vector

of covariate parameters, with a diagonal variance matrix and mean vector based on data

from earlier years (1990-1992).

After modelling the confounding factors, we add air pollution to the regression model.

We include a one day lag because it has the lowest DIC for three of the four cities and the

most significant posterior estimates. The time-varying effects of pollution are based on 60

basis functions (12 per year), which allows any non-linearity in the time-varying effect to

be captured. Sensitivity analysis shows that the results do not change if we use up to 100

basis functions. Sensitivity analysis also shows that the posterior for τ 2 depends on the

choice of Inverse-Gamma(ε, ε) prior, and we use a non-informative prior on the standard

deviation scale as suggested by Gelman (2006).

5.3 Results

The Bayesian models are implemented using two parallel chains of 165,000 samples,

which are ‘burnt in’ for 40,000 iterations and thinned by 5, resulting in 25,000 samples

from each chain. Convergence is monitored by the methods of Gelman et al. (2003), and

the starting values are generated from overdispersed versions of the priors. Likelihood

based estimation of the smoothing parameter λ is carried out by GCV, although AIC gives

similar answers. Plots of the respiratory mortality data and the median fitted values from

the Bayesian spline model (Model 1) are shown for the four data sets in Figure 3. The fitted

values from Models 2-5 are similar and are not shown. All models capture the underlying
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seasonal trend in mortality well, and the residuals show little structure or correlation

(based on residual plots and the autocorrelation (ACF) and partial autocorrelation (PACF)

functions not shown).

[Figure 3 about here.]

5.3.1 Time-varying effects of PM10 The time-varying effects of PM10 at lag one are

shown in Figures 4 (Cleveland and Detroit) and 5 (Minneapolis and Pittsburgh). The

left columns correspond to Cleveland and Minneapolis, while the right columns represent

Detroit and Pittsburgh. In each column, panels (i) and (ii) show the time-varying effects

and corresponding confidence and credible intervals for the Bayesian and likelihood spline

models (1 and 2), while panel (iii) give the constant (dashed), seasonal (dotted) and trend

models (3,4,5).

[Figure 4 about here.]

[Figure 5 about here.]

The overall relative risks, as measured by the constant model (Cleveland - 1.0049,

Detroit - 1.0046, Minneapolis - 1.0052, Pittsburgh - 1.0045), are similar to those estimated

from previous analyses of these data (see for example Samet et al. (2000)). The estimated

time-varying effects from both spline models (Models 1 and 2) are not consistent over

the four cities, although they all exhibit long-term trends, both increasing (Detroit) and

decreasing (Pittsburgh) over time. In particular, these models show no seasonal pattern

for any of the four cities, which is in contrast to the work of Peng et al. (2005), who used a

model which forced the effects to adopt a sinusoidal shape with a period of one year. The

seasonal model we use is similar to that proposed by Peng et al. (2005), and the estimated
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seasonal effects appear to be spurious because they are not corroborated by either spline

model. The Bayesian and likelihood spline models produce estimates that are similar in

shape, with the Bayesian estimate showing slightly more curvature over the five year period.

The biggest difference can be seen in Minneapolis, where the Bayesian model estimates a

peak in the effects of PM10 in the winter of 1993/94, which contrasts with the steady

increase estimated by the likelihood model. The Bayesian 95% pointwise credible intervals

for the spline models are generally wider than the corresponding likelihood interval, but

the differences are not large. The cubic model (Model 5) estimates are very similar to the

spline models, suggesting that if the time-varying effects exhibit a long-term trend, the

simple cubic model performs as well as the penalised spline approach.

[Table 1 about here.]

The posterior distributions of the Bayesian smoothing parameters are summarised in

Table 1. The majority of the posterior mass is close to zero, which represents close to

maximal smoothing. In the limit of maximal smoothing, the estimated time-varying effect

would behave like a low order polynomial, which can be seen by its similarity to the

estimated effect from the cubic model. For the likelihood model, the smoothing parameter

was estimated by generalised cross validation (GCV), and the estimates (not given) result

in near-maximal smoothing.

6. Discussion

The regression models proposed in this paper allow the effects of air pollution to vary

smoothly over time without restricting their temporal shape. These effects may show

a seasonal pattern, which could result from an interaction with temperature, or exhibit

a long-term trend, which could be caused by a change in the composition of individual

pollutants over a number of years. The time-varying effects are modelled using a penalised
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natural cubic spline, with implementation in both Bayesian and likelihood settings. The

adequacy of the models are illustrated by a simulation study, and are subsequently applied

to data from four U.S. cities obtained from the National Morbidity, Mortality and Air

Pollution Study.

The results from the simulation study show that the Bayesian and likelihood penalised

spline models estimate a variety of time-varying effects closely, picking out constant effects,

long-term trends, and cyclical variation. The estimates are more accurate when the exact

set of covariates are used, but retain the correct overall shape in the standard setting where

the set of covariates are unknown. The Bayesian and likelihood estimates are very similar,

and are more accurate if the time-varying effects exhibit less curvature. However, if the

set of confounding variables are unknown, a constant effect may be indistinguishable from

a slowly increasing or decreasing trend.

In the four U.S. cities studied, the overall increase in mortality, estimated as a relative

risk for an increase of 10µg/m3 in PM10, was around 0.5%, which is similar to previous

analyses of these data. The Bayesian and likelihood time-varying estimates are similar,

showing the same pattern of increasing or decreasing long-term trends across the four

cities. However, in light of the simulation study, a constant effect that does not vary over

time cannot be ruled out. The Bayesian estimates exhibit slightly more curvature than

their likelihood counterparts for each city, which is probably a result of the estimation

techniques. The likelihood approach calculates the likelihood for a range of values of the

smoothing parameter, and estimates λ by optimising a data driven criterion. In contrast,

the Bayesian approach averages over the prior for τ 2, which incorporates the possibility of

no smoothing, and thus leads to a less smooth estimate. The cubic model produces similar

results to our penalised spline approach, which suggests if a constant effect or long-term

trend is present, the cubic model is equally good. However, the advantage of our penalised
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spline model is its flexibility (as shown in section 4) to detect a variety of temporally

varying effects, which is beyond the range of the constant, cubic and seasonal models,

which are restricted by their fixed parametric form.

The Bayesian 95% credible intervals are generally wider than the corresponding like-

lihood confidence intervals, which probably results from the estimation of the respective

smoothing parameters (λ, τ 2). The Bayesian model correctly allows the uncertainty asso-

ciated with the smoothing parameter to be incorporated into the model, leading to more

realistic estimates of the variability in the effects of air pollution. In contrast the likeli-

hood confidence intervals are likely to be too narrow, because the smoothing parameter is

assumed to be estimated without error.

At present, the models are applied separately to data from four individual cities. Future

development could extend the methodology to deal with data from multiple cities simulta-

neously, with the aim of estimating regional and national time-varying effects. This could

be achieved within a Bayesian hierarchical model, although the computational burden may

restrict the choice of spatial model. A further avenue of research would be to estimate the

time-varying effects using a non-parametric smooth function such as a LOESS smoother

or smoothing spline, to determine if their increased flexibility compared with a regression

spline produced different estimates.

7. Supplementary materials

All supplementary materials for this article can be downloaded as a single document from

the Biometrics website at http://www.tibs.org/biometrics. This document describes the

MCMC (Web appendix 1) and penalised least squares (Web appendix 2) algorithms, that

were used to implement the Bayesian and likelihood analyses.
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Figure 1. Time-varying effects of PM10 on the relative risk scale (per increase of 10µ/m3),
using the exact set of covariates. The actual effect (solid line) is given together with esti-
mates from the Bayesian (dotted line) and likelihood methods (dashed line): (i) constant,
(ii) seasonal, (iii), quadratic, (iv) spline.
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Figure 2. Time-varying effects of PM10 on the relative risk scale (per increase of 10µ/m3),
using covariates chosen by model building criteria. The actual effect (solid line) is given
together with estimates from the Bayesian (dotted line) and likelihood methods (dashed
line): (i) constant, (ii) seasonal, (iii), quadratic, (iv) spline.
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Figure 3. Counts of respiratory mortality (*) and fitted values from the Bayesian model
(-).

*

*

*

*
**
***

*

*

*

*

*

*

*

*

**

**
*
*

*

*

**
*

*
*

***

*

*

*
***
*
*

*

**

*
*

*

*

*

*

*

*

*

*

*

*

*

*

***

*

*

**

**
*
*

*

*

*

*

*
*

*

*

*
*
**
***

*

*

*

*

*

*
*
*
*

*
**

**

**

*

*
*
**

**

*

***

*

*

***

*

**

*

**

*
**

**

*
*
*
*

*

**

*

**

*

*

*

*

*

*

*

*

**
**
*
*

**

*

****
*

*

*

*

*

**

*

*
*
*

*

**

*

**

*
*
*
*

*

*
*

*
*

*
*

*

*

*

*

*

*

*

*
*

*

*
*
**

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

*

*

*

*

*
*

*

*

*

**

**
*

*
***

****
*

*

*

*

*

*
*
*
*
***
***
*
***

**

*

*
*
*

*

*

*

**

*

*

*

*

*

*

*

*
*
*
*
*
**

**

*
*

*

*

*

*

*

**

*

*

*

*

*
**

*

*
**

*

*
*

*

*
*

*

**

*
*

*

*

**

*

*
*

***

**
*

*

*

*

*

*

*
*
**
*

*

*

*

*
*

*

*

**
*

*

**

*

*

**
*
***
**

*

*

*
***

**

*
*

*

**

*
*
***

*

***

*

*
*

*

*

*

*
***
*
**

*

*

*

*

**

*

*

*

*

*

*
*

*

*

***

*

*
*
*

*

*

**

*

**

*

*
*

*
*

*

*

*
*

*

*

*

*
*
*

*

*

*

*

*
*

*

*

*
*

*

*

*

*
*

*
**

*

**

**
**

*

**

***

**

**
**

*
*

**

*

*

*

*

*

*

*

*
*
*

*

*

*
*

*

****
*
*

**
*

*
*

*

*

*

**
*

**

*

*

*

*

*

*
*

*
**
*
*

*

*

*

*

*
**

*****
*

*
*
*
*

*

*

**

*

*

*

*
*
*

*
**

*

*

*
*

*

*

*

*
*

*

*
*

*

*

***

*

*
*
*
**

**

*
*
**

*

*
*

**
**
*

*

*

**
*

**

*
*

*

*

*
*

*

*
*
*
*

*

*

*
**

*
*
*

*

*

*
*
*

*

*

*

*

**
*

*
*
*
*
*

*

*

*

*

*
*

**

**

****

*

***

*

*
*

***

*

**

*

*

**

*
****
*

*
*
*

*

*

***
*
**

*

*
**

*

**

*

*
**
*

*

**
*
***

***

*

*

*

*

*

*

*
***
*
*
**

*
**

*

*
*
*
*

*

*
*
*
*

*
*
*

*

*
*
**
*
*

**
*

*
*
*
*
**
*
*

*

*

*

*

*
*

*
**
*

*

*

*

*

***

*

**
*

*

**

*
*

*

*

*
*

*

*
**

*

*
*
***

**

*
*

*

*

*
*

*

*

*

**

**

*
*

*

**
**

*

*

*

*
*

*

*

*

***
**

*

*
*

*

*
*

*

**

*

**

*

**

*

**
*
*
***

**
***

*

*

*

*

*

**
*

*
*
*
**

*
*

**

*
*

***

*

**
*

*

*

*

***

*
*
*

*

*

*

**
*
*
**
*

*

*

**

*

*

*

*

***

*
**
*

*
*

*

********

**

*

**
*

**
****
*

*

*

**

*

**

**

******
*
*

*

*

**

**

*

*

*

****

**
**
*
*

*

*
*

*
*

*
*

*
*

*

*
*
*
**

*

*
*
*

*

*

*
*

*
*
*

*

***
*
*

**
*

*

*

*

*

**
*
*

*
**

**

*

*
*

*

*
*

*

*

*
*
**

*

*
*

*
*

*
*
**

*

**

*
*

*

**
*

****

*
*

***
*

*

*
**
*

*

*

*
*

*

*

*

**

*

*

*

*

*

*

*
*
**

**

***

****

*

**

***
*
***

*

**

**
*

*

*

*

*
*

*

*

*
*
**

*

**
*

*

*

*

*

*

*
*

*****
*

*

*
*

**
**
*

**

**

*

*

**

*

*
**
*

*

*

*
**

**

*
***

*

*

*

*

*

*
*

*

*

*
*
*

*

***
*

*
*
*

*

*
*

**
*

*
**
*
*

*
**
**

*
*

**

**

*

*

*

*

*

*

*

*
**
***
*

*

*

*

*
*

***
*

*
*

*

*

*

*
*

*

**
*

*
***

*

*

***

*

*
*

*
*

*

*
***

*

*
*

*

*

*

*

*
*

**

*
**
*

*

*

*

**

**

**
*
**

*
**
**

*

*
*

*

*

*
*
*

*

*
*

*

*

*

*
*

**

*

*
*
*
**

*

*
*
*
*

*
*
**
*

*

**
*

*

***
**

*

*

*

*

**
*
*

*
*

**

*

*

*
*
*

**

*

*

**

*

*
*

*

*
*

*

*
*
*

*
*

*

**

*

***

*

*

*
*

*

*

*
*

*

*

*

*

**
**
*
**
*

*

**

*

*
*
*
*

*

*

*

**

*

*
*

*
*

*
**

*

*
*

*

*

*

*

**
*
**
*

*
**

*

*

*
**

*

*

**

*

*

*

**

*

*

***

*

*
*
**
**
*

*

**

*

*

**

*
**
**

*
*
*
*

*

*
**

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*

***
*

*
**
*

*

***

*
*

*

**

*

*

*

**

*

**

*
*

*

**
*

*

*

*

*

*

***
*

**
*
**

*

*

**

*

*

*

*

*

***

**
*

*

*

**

*

*

*
*

*

**
***

*

*

*

*

*

*

*
*

*

*
*

*

*

*
****
*

**

*
**

*

*

*

*
*

*

*
*
*

*
*

*

*

*
*
*
***
*
*
*
*

*
**

*
*
*

*
*
*
*
**

*

*

*

*

*

*
**

*
*
*

*

*

*

*

**

*

**

*

*
*

*

*

****
**
*

**

*

*

*

*

*

*

*
*

**
*
*

*

**

*

*

*

*

*

*

*
*

*

*

*
*
*
*

*

*

*

*
*

*

*

*

*
*
*
*

*

**

*

***

*

*

*

*

***

*
*
*
****

*

*

**

*

*

*

***

*
*
*
**
*
*

*

***
*

*
**
**

**

*

*

*

*

*
*

*
*
**

*

*

*

*
*

*

*

*

*
**

***

*

**

*
*

*

*

**
*

*

*

**

*

*

*
*

*

**

*

**
*

*

*

**

*
*
*

*
*

*

*

*

20
30

40
50

60

01/01/1993 01/01/1995 01/01/1997

Cleveland

Time in days

C
ou

nt
s 

of
 m

or
ta

lit
y

*
****

*

*

*
**

*

**

*
*
*

*

**
*

*

*

**
*
*

*
*

*

**
*

**

*
*
*
*
*

*
*

*

*
*
*

*
*

*

*

*
**

*

*

*

*
*

**
*

*

*

*

*

*

*

*
*
*

*

***

*
*
***
*

*
*
*
*
**

**

*

*
*

*
***

*

*

*
*
*
**
*
*

*
*

*

*

*
**

**

*

**
*
***

*

*

*

*

*

*

**

*

*

*

*
*

**
*
*

*

*

*

*
*

*

*

*
**
*

*

*

*
*
**
*
***
*

*
*
*
*

*

*

*

*

***
*
*
****

*

*
**
*
*
*
*

*
*

**
*

*

*

*

*

*
*

**

*

*
*

*

*

**
*
*
*

**

**

*

*

*
**

*

*
*
*

**

*

*

**

*
**
*
*
**

**

*
*

*
*
*
*

*

**
*
*
*

*

*
**
*
**
*
*
*
*

**
**

*

*

*

*

*

*
*

**

*

*

*
*
*
**
*

*
*
*

*

*

**
*
*

*

*
**
**
*

*
*

*

*
**
*
*

*
*

*
*
*

*
*
***

*
*

*
*
*
*

*

*

**
**
**
*
*
*

*

*

**
**

*
*

*

*

***

*

*

*

*
*

***

*

*

*

*
*

*
***
*
*

**
*

*

*
*
*
*

**

*

*
***

*

*

*
**
*

*
*

*

*

*
*

*

*
*

*

*

*

*

*

*
*
*
*

*

*

*

*
*
*

**
*
*

*
*

*

*

*

**
*

*

*

*

*

**

*

*

*
*

*
*

*

*

*

*

**
***
**

*

*

*****
*

*

*
*

**

*

*

*

*

*

**
**

**

*

*
*

*

*

*
*

*
*
*

*

*

*

*
*

*
*

*

*

*

**

*
*
*

*

**
****
*

*
*

*

*

*

*

*

*

*

*

*
*

*

*
*

*

*

*

*
*
*
*
*

*

*
**
*

*

*

*

*

*
*
*

*

*

**

*

*
**

**
*

*

*

*

*
***
****
*

**

*
*
*
*

*
**
***

*

*

*
*
*
*

*
*
*

*

*
*
*
*

*

*

*

*

*

**

*
*
*
**

*

*

*

*

*
*
*

*
*
*
*

*

**

*
*

*

*
*
*
*
**

*

**

*

**
**

*
*
*

*
*

*
*

*****

*

**
**
*
*

*

*

*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

*
*

*

*

*

*
*

*
*
**

*

*
*
*

*

**
*

*

*

*

*
*

*

*

*
*

*

*
*
*
*

*

**

*

*

**

*

*

*

*

*
**
**
*

*

*
*

*
*
*

*

*

**

*
**

*

**

*

*

**

*

*
*

*

*
**

*

**
*

*

*
*
**

*

*

*
*

*

*
*

*
****

**
*

*

***

*

*

*
*
**

*

*
**

*

*
*

*

*
*

*
*
**

*

*

*
*
*
*
**
**

*
*

*
*
****

*
**

*
*
*
**
*

*
*

*

**

*
*

*
*
*
*

*

*

*

*

*

*
**
*

**

**

*
*
**
*

*
*

*
**
*
*
*

*
*

**

*
*

*
*

**
*

*

*

*

*
*

*

*
*

*
*

**

*

*

**

*

**

*

***
*

*

*
*

*

*
*

*

*

*

**

*
*
*

*
*

*

**

*

*

*

**

*

*

*
*
***
*
**
*
*
********
*

*

**

*

*

*
*
*
*

*

*
*

*

*

*

*

*
*

*
*

*

**
*

*

*

**
*
*
**
**

**

*
*

*
*
*
*

*

*

*

*
*
**

**

*

*
*

*

*

*

*

*

*
**

***

*

*

**
*
*
*
*

**
*
*
*

*

*

*

**

*
*
*

*

*

*

*

*

*
**
*

*

*

*

*
*

*
*
**

*

*

**

*

*
***

*

*

*

*

*

*

*

*

**

*

*
*
*
**
*

***

*

*

*

*
*

*

**

*

*

*

*

*

*
*
**

*
*

***
*

*

*

*
*

*

*
*

*
**
*
**

*

*

**
**

*
*

*

*

*

*
*

*

****
*
*

*
**

*

*

*
*

*
*
*

*

**

*

*

*

*

*

*
*
*
***
*

*

*

*

*

*
*

**

*
*

*
**

*

*

*
*

*

*
*

*

*
*
*
*
*
*
**

*

*

*
**

*

*

*

*

*
**
*

*

*
*
**

*
*
*
*

*

*

*

*
*

*
*

*

*

*
*

*

**

*
*
*
*

*

*

*
*
*

*
*

*

*

***
*
*
*
*
**
*
*

**

*

*

*

*

*
**

*

*
*

*

*
**

*
*

**

*

***

*

*

*

*

*
*
*

*

*

***
*
*
*

*
*
*

*

**

*

*

*
*

**
**

***

**

*

*
*

*

*

*
**

*

*

*

**

**

**

*

*
*

*

*
*

*

*

**

*

*

**

*

***

*

*
***
*

*
*****
***

***

*

*

*

*

**
**
*

*

*

*

**

*
*
*
*
**
*
*
*

*
****

*
**
*

*

*

*

*
*
**
*

*

**

*

*

*

**

*

***
**
*
*
**
**

*

*

*

*
*
*

*

*

*
*
*

**

*
*

*

***

*

*

*

**

*

*

*
*
**

*

*
*
***
*
**
*
*

*

*

*

*

*
*

*

*

*

*

*

*

*
*

*

**

*

*
*

*

*

*

*

*

*
**

*
*
*

*
*

*
*

**
*

*
*

*
*

*

*

****

*

**
**
*

*

*
*
*
*

*

*
*

*

*
*

*

*

***

*

**
*
*

*

*
*

*

**
*
*

*

*

*
*

*

*

*

*

*

*
***
*
*
**
*

*
*

**

*

**

**
***
*

*

*

*

*

*
*
*

*

*

*
*
**
*
*
*

*

*

*
*

*

*

*
*
*

*
*

*

*
*
**
*

*

*

*

*

*
**
*
*

*

*

*

****

*
*

**

*

*

***

**
****
*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*
*

*
*
*

*

*
*

*

*

*
*

*

*

*

*
*

*

*
**

*

*
*
**

*
*

*

*

*
*
*
*
*
*
*
*****

*

*
*
*

*

*
*
*
**
*
*

**
***
**

*
***
*
**
*
*
*

**

*

*
*
*

**
*

*

*
*

*

*

***

*

*

*

*
*
*

*

*
**

**

**
*

*
*
*
*

*

*

**

*

*
*

**

*

*
*

*

*

*

*
*
*
*
*

*
*
*

**

*

*

**

*

*

*

*

*

*

*

*

*

**

*
*

*
*
*
*
*

*

*
***

*

**

*

*

*
*

*

***
**
*
*
*

*

*

*

*
*
*

*

*
**
**

30
40

50
60

70
80

01/01/1993 01/01/1995 01/01/1997

Detroit

Time in days

C
ou

nt
s 

of
 m

or
ta

lit
y

*

***

**

*
*

*

*
*

*
***
*
***

**
*
*

*

*
*****
*

*

*

*

*
*

*

*

*

*
*

*

*

*

*

*

***

**
*

*

*

***
*
**
**

*

*

*

*

*

**

*

*
***

*

**

*

**

*

*

*

*

*
*
*

*
*
*
*
*

*

*

*
*

*
*

*

*

*

*

*

*

*

*

*

*
*

*
**
***

*

*

**

*

*
**
*

*

***
*

*

*

*

*

*
**
*
*
*
*

*
*

*
***
*

*
*

*

*

*

**

*

*
*

**
*

*

**

*

**

*

*

***
*
*

***

*

*

*

*
**

**

*

*

*
*
*
*
*
*

**

*
*

**
*
**
*
*

*
*

**
*

**

*

*
*
*

*

*
*
*

*
*
*

*

*

*
**

*

*
*

*

*

**

**
*

**
**

*
*
*
*

**
*
*
**

*

**

*
*

*

*

*

*
*
*
**

*

*

*

*

*

**

*

*
**

*

**

*

**
*

*
*
*

*
*

*

*
***

*

**
*

*

*
*

*

*

****

*

*

*

*

*

*

*

*

*

*

*

**
*

*

*

*
**

**

*
*
*
*

*

*

*

**
**
*

*

*
*

*

*

*

*

*

*

*

*

**
**

*
*
**

*

*
*

*

*
*

*

*

**

**
*
*
*

****

**

**

*

*

*

*

*

*

*

*

*
*

**
*

*

*

*

*

*

*

*

*
*
*

*

*

*

*

*
**
*

*
***
*
*

*

*

**
*

*

**

*

*
*
*

*

*

*
*

*

**

**
*

*
*

*

*
*
*

*
**

*

*

*
*

*
*
*
**
*

*

*

*

**
*
*

*

*
*

**
*
**
*

*
**
*
*
*

***

**

*
*

*

******

*
**
*

*

*

**
*****

*

*

*
*

**

*

***
*
*
*

*

*

**

*

**

*

**

*
*

*

*
***

*
*

*
*

*
**

*
***
***

*

*

*
*
*

**

*
**
**

*

*

**

*

*

*
*
*

**

***
*
*
**

*
*

*

*

***
**
*

*

*

*
*
**

*

*

*
*

*

*

**

*
*
*

*

**

*

*

*
*

*
*

*
*

*
**

*

*

*
*

*

*

***

*

*

*
**

**
**
*

*

*
**
**
*

*

*

*
*

*
**
**

**
*

*

*

*
*

*

*

*

*

*

**

*

*

*

*

*

*
***
*
*
****

**

**

*
*

**
*

**
*
*

*

*
**

*

*

*

*

*

*

*

*

*

**
**
**
*

*
*

*

*
*
*

*
*

**
*

*

**

**

**
*
*

*

*

**

**
*
*
*

*
*

*

*
*

*

*

*

***

*
*

*

*

*

*

*

*
*

***

*

*

*
*

*

*
*
**

*

*

***

*
*

*

*
*

*
*

*

*

**
*

*

*
*

*
**
**
**
*

*

***

***

*

*
*****

*
*
*

*

*
*

**

***

*
**

*

*

*

**
**

*
*
*
*

**
*

***
*
**

*
**
**

*

*

*

*

*

**
**
*
*

**
**

*

*

*

***

*

*
*

*
**
*

******
*
*

*

*

**

*

****

**
*******

*

*
*
*
*

*

*

*

*
*
****
*

*
*

*

*

*

*

*****
*
*

*

***

*

*
*

*

*

*

*
*

*
***
****

*

*
*
*
*

*

***

****
***

*

**

*
*

*

*

*

*

*

*

*

*
*
*
*

**

**
*

*

***
***

*

*
***
*
*

*

***
**

*

*
*****

**

***

*

*
*

*

*

*
*
*

*

**

*

*

*

*
*

*

**

*

**

*
**

*

**

*
*

**

*
*

*

*

*
*

*
*
*

*

*

*

*
**

**
*

**

*

*
*

*

*

*

****

*

*
*

*

*

*
*

*

*

***
*

*
**

**

*

*
*

*

*
*

*

*

***
*

*

*
*
*

*

*
**

***
*
**

*
*

*
**
**

**

*

*
*

*

*

*
***

*

*

*

*

*

*

*

*
***
****

*
*

**
**

*

*

*

*
*

***
**

*

**

**

**

*
*
*

*****

**

*

*
*
*

*

**
*

*

*
**

*
***

*

***
*
*

*

*

*

****
*

*

*

*
**
*

*

*
*

*
*
*

*

*

*

*

*
***
*
**
**

*

*

*
**
*

*

*

*
*

*
*

*
*
*
*

*

*

**
*
**

*

***
*
*
**
*
**

*

**

*

*

*
*
*

*

**
**

*
*
****

*
*

*

**

*

***

*

*
*

**

*

*
*

*
*
**
****
*
**
*

*

*

**
*
*

*

*
**

*

*

**
*

*

*
*

*

***
*

**
***
***
**

*
***

*

*

**
**

*

*

*

*
*

*

*

*

*

*
*
*
**
*
*

*

*
*

***
*

*

*
****

*
*
*

*
*
*
*
*
*

*

*

*
*
**

*
*

*

*

**
**

**

*
*

*
*

*

**

*

**
*
*
**

***

*

*

**
***

*

*

*
*
*
**

*
*
*

**

**

*
**
***
*

*
*
***

*

*

*
*
*
*

*

*

*

**

*

*

*
*
*

*

**

***
*

*

*

*

*

*

*
*
*

*
*

*

*
*

*
**
*
**
*

*

*
**
**
*

***

*
*

**
*

*
*

*

*

*

**
*

*

*

**
*

*

*
*
**

*

*

*

*

*
**

***
*

*

*
*
*

*
*
**

*

**

***

*
*
*

*

**

***
*

*
*

*

*
*
*
*

*

**

***

**
**
*
*
***

**

*
**
*

*

**
**
*

**
**

*
**

*
*

*

*

**

***
*

*

*

*

*

*

**

*
*
*

*

*

*
*

**
*

*
**

*

**

*

***

*

**
*

**

*
*

**
*

*

*
*

****

**

******

**

**
*
*

*

**
*

*
***

**
*
*

*

*

*

*

***

*

*

*
*

*

**
*

*

**
*

**

*

*
*
*
*

*

**

*

*

*
*

*

*

****

*

*

*
*
*
***

*

*

*

***

**

*

*
*

*

*
*

*

*

*
*

*

*

*
*
*
*

*
*

*

**
**
*
**
*

*

*
*

*
*

**
***

*

*
**
*
***

*

*

*

**
*

20
30

40
50

01/01/1993 01/01/1995 01/01/1997

Minneapolis

Time in days

C
ou

nt
s 

of
 m

or
ta

lit
y

*

***
*
*
*

*
*

*

*
*

*

*

*
*
*

*

*
**
*

*

*
*

*
*
*

*

*

*
*
**
****
*

*

**

*

**
*

*
*

*

*
**

*

*
*

*

**
*
*

*

*
*

*

*

*

*

*

**
**
*

*

*

*
*

*

*
*
*

*
*
*

**

*

*

**

*

*

*

*
*
*
**

*
*
*
*

*

*

*

***

*

*

*
*

***
*

*

*
*
***
*
*
*
*
*
*
*
**
*

*
*
*
*

*
*

*

**
*
*

*
*

*

*

**

*
*

*

*
**

*

*

*

*
*

*

*
*

*

*

*

*
*
*
*
*
*

*

*

*

*

*

*

*

*
***
*
*
*

*
*
*
**
*

*

*

**

*
*

**
**
*
*

*
*
*

*

*
*

*

*

**
*

*

*
*

*
*
**
*
*
*

**
**

*

*
*
*

**

*

*
*
***
*

*

*

*****
*

*
***

*

*

*

*

*

*
***

**
*

*

**

*

**
*

*

*

*
*
**
***

*
*

*

**

*

*

*

*
*

*

*
*
*
*

*

*

*
*
*

*

*

*

**
*

*

*
*

*
*

*

*
*
*
*
*

*
*
**
*

*

**

*

*

****
*

*
**

*

*
***

*

*
*
*
*

*
**

*
*

*

**
*
*

*
**

*

*
*

**

*
*

*
*

*

*
**

**

*
*

*

*

*

**
*

*
*

*

*

*

**

*
*

*

**
*

*

*

**
**

*

*
*

*
*

*
****

**

**
*

*
*
*
*
*

*

*

*

*
*
*

*

*

**

*

**

*

*
*

*
*

*

*

*****

*

*

*
*
*

*
**

*
*

*

*

*

*

*

*

*
*

*

*

**
*

*
*
**
*
*

*

*
***
*
*

*

*
**
**
*
*
*

*
*
*
*

*
*
*
*

*

*

*

**

*

*

*
***

*

**

*

**
*

*
**

*

*

**

**
*
*

***

*

*

**
*
**

*

**
*
*
*
*
*

*

*

*

*
*

*

*

**

*

*

*
*
*
*

*
*

*
*
*
*
**

*
*
*
*
*
*
**
*

*

*
**
*
**

*

*

*
**

*

**
*
*
**

*

*
**
*

*

**
**

*
**
*
*

*
*
*

*

*

*
**

*
*
*
*

*

*
*
*
*

**

*

*

*

**

*
*

*

**
*

*
*

*

*
*
*
*
*

*
*
*

*

*

*

*
**

*
*
*
*

*
*

*

***
*
*
**

*

*

**

*

*

*

*
*
*

*

*
**
*
*
*
*
*
*

**

*
***

*

*

*

*
*
*

**

*

*

*
**

**

**
*
***

*

**

*

*

*

*

*
*

*
**
*

*

*

*
*
*
*

*

**
*

*

*
**

*
*

***

*

*

*
**
****

*

*

*

*

*

*

*

*

*

*

*

**

*

*
*
*
**

*

*

**
*
*

**

*

*

*

**
***
**
*
**
**

*

*
*

*
*
**

*

***

*
*

*

*

*

**
***

****
**
***
*

*

*

**

*

*

*

*

*

*

*

*
*

***

*

*

*

*
*

*

**

*
*

*

*

*

*
*

*

*
*
**
*
*
*
**

*
*

**

*

**

*

*
*

*
*
***
**
*
*
*

*

*

**
*

*

*

**

*

**
*

*

*
**

*

***
**
*

*

**
*****

*

**
*

*

*
**
*
*
*

*

*
*

*

*
*

*
**

*

*

*
***
*
**

*

*

*

*

*

*

*

**

*

*

*
****
*

*

*
*
*
*
*

*

**
*

*

*
**
*
**

**

*
*

***

**

*

*

*

*
*

*

*

**

**
**
**
*

*
*

**

*

*

*

*
****

**
*
***

*

*
**

*
*

*

*

*

*
*

*

*
*

*

*
*
*
*

**

*

*

*

*
**
*
*
**
*
*
*

*
*
**
*
*

*

*

*

*
**
**
*

*

**

**

*

*

*

**

*

*

*
*
*
*
**

*

**
*
*

*
*
*
**

*

*
**

*
*
*
***
*
*
*
***

*

*

**

*

*

*

**
***

*
*

**
***

*

*
*

*

*

**
**

*

*

**
*

*
*

*
*

*

*
*

*****

**

*

*

*
*
*

*
*

*

*

*
***
**
*

*

*
*
*

***

**
*
*

*

*

*
**

*
**
*

**
*

*
*

*
*

*

*
**

*
*
**
*
*
*
**
*

*
*
***
*
*

*

*
***
*

*
*

*
*
*
*
*
*
*

*
*
*

*
**
**
*

***
**
*
*

*
*

*

*

*
*
*

*

*

*
******
*
**

*

*
*

*

***

*
*

*

*

*
**

*

*
*

*

*

**
***
*

*

**
*
*
*
****

*

*
*

*

*
**

*

*
*

*

*

*

**
**

*

***
*

*

*
*

***
*
***
**

*

*

*

*

*
**
**

*

*
**

*
*

*

*
*
*

*
**

*

*

*
*
***

**

*
*

*
**

**

**

*
*

**
*

***

*

*

*

****

**

*
*
*

**
*

*
*

*

*
*

*

*

*

**

*

*
**

*

*

*
***
*
**

*
*

*
*

*

**
**

*

*
*
*

*

*

*

*

*

***

**

*

*

*
*

*

*

*

*
**
*
*

*
*
**
*
*
*
*

*

*
***
*
*

***

*
*
*
*

***
*

*

*

*
*
**

*

**

**

*
*
*

*
*
*

*
*
*
*
*
*
*

*
*
*

*

***
**
*
*

*

*

*

*
**

**

**
*

*
*

*
*****

*

**

*

*

*

*
*

*
*
*

*

*

*
*

*
*

*

***

*

*

*
**
*

*

*

*

*

*

*
*
**

*

***

***

*

****

*
**
*

*
*
*

**
*

*
*

*

*
*

**
***

*

*

*
****
*

*
*

***
*

*

*

*

**

**

**
*
****

*

**
**
*
*
*
*
**
*
*

*

**

*

****

*

*

*

**

*

*

*
*
**
*

****
*

*
*

*

*

*

*
**

*

*

*
*

*

*

*
*

*
*
*
*
*
*

*
*
**

*
*

*

*

*
*

*

*

**

*
*
*

*

*

*

*
*
*
*
*

*

*

*

*
**

*

**

*
**

*

**
*
*

*
*

*
*

**
**
*
*

**

*
*
*

*

*

*
****
*

*
*

*
*

*****
**
*

*

*

*

*

*
*
*
*
*

*

*

*

**

**

*

*
*

*

**
*
***

**

*

*

*
*
*

**

20
30

40
50

60
70

01/01/1993 01/01/1995 01/01/1997

Pittsburgh

Time in days

C
ou

nt
s 

of
 m

or
ta

lit
y

22



Figure 4. Time-varying coefficients for Cleveland (left) and Detroit (right). Panel (i)
shows the Bayesian spline model, while panel (ii) shows the likelihood spline model. The
shading represent 95% confidence / credible intervals, and the dashed line is a constant
effect (model 3). Panel (iii) show the constant (dashed), seasonal (dotted) and trend
models.
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Figure 5. Time-varying coefficients for Minneapolis (left) and Pittsburgh (right). Panel
(i) shows the Bayesian spline model, while panel (ii) shows the likelihood spline model. The
shading represent 95% confidence / credible intervals, and the dashed line is a constant
effect (model 3). Panel (iii) show the constant (dashed), seasonal (dotted) and trend
models.
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Table 1
Quantiles of the posterior distributions for τ 2 (Model 1)

City Posterior quantiles
2.5% 25% median 75% 97.5%

Cleveland 2.06−08 3.26−07 1.13−06 3.92−06 0.040
Detroit 1.17−08 1.56−07 5.32−07 1.63−06 1.35−05

Minneapolis 2.28−08 4.88−07 1.69−06 5.06−06 2.86−05

Pittsburgh 7.98−09 1.78−07 6.08−07 1.83−06 1.12−05
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