

Komolafe, O., and Sventek, J.S. (2007) Analysis of RSVP-TE graceful
restart. In: IEEE International Conference on Communications 2007
(ICC'07), 24-28 June 2007, Glasgow, Scotland.

Copyright © 2007

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

Content must not be changed in any way or reproduced in any format
or medium without the formal permission of the copyright holder(s)

When referring to this work, full bibliographic details must be given

http://eprints.gla.ac.uk/3659/

 Deposited on: 05 December 2008

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

Analysis of RSVP-TE Graceful Restart
O. Komolafe and J. Sventek

Dept. of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK.
femi@dcs.gla.ac.uk, joe@dcs.gla.ac.uk

Abstract—GMPLS is viewed as an attractive intelligent control
plane for different network technologies and graceful restart is a
key technique to ensure this control plane is resilient and able to
recover adequately from faults. This paper analyses the graceful
restart mechanism proposed for a key GMPLS protocol, RSVP-
TE. A novel analytical model, which may be readily adapted to
study other protocols, is developed. This model allows the efficacy
of graceful restart to be evaluated in a number of scenarios. It is
found that, unsurprisingly, increasing control message loss and
increasing the number of data plane connections both increased
the time to complete recovery. It was also discovered that a
threshold exists beyond which a relatively small change in the
control message loss probability causes a disproportionately large
increase in the time to complete recovery. The interesting findings
in this work suggest that the performance of graceful restart is
worthy of further investigation, with emphasis being placed on
exploring procedures to optimise the performance of graceful
restart.

I. INTRODUCTION

It is widely accepted that Generalized Multi-Protocol Label
Switching (GMPLS) is an attractive automated, intelligent
control plane for different network technologies. GMPLS
comprises of IP-based protocols to support routing, signalling
and link management that, when properly orchestrated, will
simplify network operation and offer the possibility of po-
tentially lucrative, novel, on-demand services. Consequently,
there have been significant developments in the standardisation
of GMPLS and the salient parts of the GMPLS architecture
have been well-defined [12], [4]. GMPLS typically comprises
of the use of Open Shortest Path First - Traffic Engineering ex-
tensions (OSPF-TE) [9] for routing, the Resource Reservation
Protocol - Traffic Engineering extensions (RSVP-TE) [1], [3]
for signalling and the Link Management Protocol (LMP) [10]
for link management.

As with any network architecture, resiliency is a key require-
ment of GMPLS controlled networks. Since GMPLS may be
used for a range of different network technologies, most of
the work on data plane resiliency is applicable. However, the
fact that GMPLS typically necessitates a separation of the data
plane and control plane means it is often necessary to consider
control plane resilience independently. Consequently, control
plane reliability and resilience is a topic gaining increasing
attention [11] . While approaches that seek to minimise the
possibility of control plane failures have been proposed [7], the
consensus within the community is that mechanisms to ensure
the GMPLS control plane recovers adequately from failure are
more likely to be deployed and, hence, such mechanisms are
attracting ever-increasing attention [3], [14], [6].

Approaches to ensure that the control plane recovers ad-
equately from faults are mostly based on ”graceful restart”.

Graceful restart mechanisms have been defined for many
routing protocols, exploiting the fact that most modern routers
separate the routing and forwarding processes. Therefore,
since it is possible for the routing process to fail indepen-
dently of the forwarding process, it is desirable for traffic
forwarding to continue in the presence of a routing process
fault and for the routing process to be restored as quickly
and efficiently as possible. Graceful restart techniques define
the procedures that allows these goals to be met. Naturally,
the exact graceful restart procedures are protocol-dependent
but have many common aspects, including the requirements
for the restarting router to inform its neighbours whether it
supports graceful restart, for the neighbours to detect when
it has failed and restarted, for the neighbours to attempt to
minimise data plane disruption and for the restarting router to
resynchronise its database with those of the neighbours after
the restart.

Since RSVP-TE is a key GMPLS protocol and its graceful
restart techniques are as yet not completely standardised, this
paper studies the graceful restart mechanisms which have been
proposed for RSVP-TE to date, using an analytic method that
may be readily adapted to other protocols. Section II describes
the graceful restart mechanisms proposed for RSVP-TE and
a novel analytical model for evaluating its performance is
developed in Section III. Numerical results are presented in
Section IV and Section V concludes the paper and suggests
avenues for further work.

II. RSVP-TE GRACEFUL RESTART

The RSVP-TE hello extension, defined in RFC 3209 [1],
forms the basis of RSVP-TE graceful restart since it provides
a means for an RSVP-TE node to detect when a neighbour
is unreachable or when it has restarted. The hello extension
requires Hello messages, shown in Figure 1, to be exchanged
at regular intervals (5ms suggested [1], although 3s is a more
practical default) and the failure to receive a Hello message
within a certain interval (default is 31

2 times the hello inter-
val [1]) means a node presumes it can no longer communicate
with its neighbour. In order to detect when a neighbour
has restarted, Hello messages contain a Src Instance field
and a Dst Instance field, as shown in Figure 1. Each node
fills the Src Instance field with a value representing its per
neighbour instance and fills the Dst Instance field with the
Src Instance value most recently received from the neighbour.
Since whenever a node restarts it changes its Src Instance
value, restarts are easily detectable.

RFC 3473 [3] enhances the RSVP-TE hello extension to
specify procedures for detecting and handling control chan-
nel faults and nodal faults. A node that supports RSVP-TE

1-4244-0353-7/07/$25.00 ©2007 IEEE

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2324

C
ap

ab
ili

ty
 O

bj
ec

t
(d

ra
ft-

ie
tf-

cc
am

p-
rs

vp
-r

es
ta

rt-
ex

t-0
5)

Length Class Number Class
Type

Reserved

32 bits

Length Class Number
(22)

Class
Type

Src Instance

Dst Instance

Length Class Number
(131)

Class
Type

Restart Time

Recovery Time

Version Flags Message Type
(20) RSVP Checksum

TTL Reserved RSVP Length

SRT

C
om

m
on

R
SV

P H
eader

(R
FC

 2205)

H
el

lo
 O

bj
ec

t
(R

FC
 3

20
9)

R
estart C

ap O
bject

(R
FC

 3473)

Fig. 1. Format of RSVP-TE Hello Message

graceful restart adds a new Restart Cap object to its Hello
messages. This object includes a Restart Time field and a
Recovery Time field. The Restart Time is the time the sender
takes to restart. If the data plane is unaffected by control plane
failure so that the restart may occur over an indeterminate
time, the sender indicates an infinite Restart Time with the
value 0xffffffff. However, if a finite restart time is specified,
after detecting that communication with the sender is lost,
a neighbour waits for at least the duration specified by the
Restart Time, behaving as if it were receiving the relevant
RSVP-TE refresh messages from the sender for established
data plane connections and sending only Hello messages
with the Dst Instance set to 0 to the sender, as shown in
Figure 2. Eventually, the neighbour receives a Hello message
from the sender. If the Src Instance value is unchanged,
then there has been a control channel failure and the nodes
refresh all shared state. If, on the other hand, the Src Instance
value has changed, the sender must have failed and restarted.
The Recovery Time field in the received Hello message also
indicates whether the restarting node was able to preserve its
forwarding state and, if so, the duration for which it is willing
to participate in the recovery process. The behaviour of a
neighbour thereafter is dependent upon whether it is upstream
or downstream of the restarting node.

An upstream neighbour refreshes all Path state that it shares
with the restarting node. Each Path message contains a Recov-
ery Label object, corresponding to the label value in the most
recently received Resv message from the restarting node. Since
there may be a large number of Path messages produced and it
is essential not to overwhelm the restarting node with a deluge
of messages in a short time interval, it is recommended that
the Path messages be distributed evenly over half the recovery
time. Upon receipt of a Path message containing a Recovery
Label object from its upstream neighbour, the restarting node
searches its forwarding table for the corresponding entry. If
found, the appropriate RSVP state is created and the entry
bound to the associated data plane connection [3].

Procedures for a downstream neighbour have been more
recently defined and are currently being standardised [14],
allowing the restarting node to recover all the necessary state
regardless of its position. These extensions mean the restarting
node can obtain all the information it previously transmitted
in Path messages from its downstream neighbour. A newly
defined RecoveryPath message conveys the information con-
tained in the most recently received Path message to the
restarting node. An ability to send and receive RecoveryPath
messages is indicated by appropriate fields in the newly
defined Capability object included in the Hello messages. The
downstream neighbour sends a RecoveryPath message for each
data plane connection associated with the restarting node for
which it had previously sent a Resv message, spacing the
messages over half of the recovery period to avoid inundating
the restarting node. Upon the receipt of a RecoveryPath
message, the restarting node checks its forwarding table for
the corresponding entry and responds with a Path message,
as shown in Figure 2. The downstream neighbour responds to
this Path message with a Resv message which the restarting
node processes and duly forwards to the upstream neighbour.

The receipt of a Path message containing the Recovery La-
bel object from the upstream neighbour and the RecoveryPath
and Resv messages from the downstream neighbour means
the restarting node is able to reconstruct its RSVP state. It is
desirable to complete graceful restart as quickly as possible.
Consequently, the total time to reconstruct and resynchronise
the appropriate RSVP states for all the relevant connections,
allowing normal control plane operations to resume, is pivotal
since any state that is not resynchronised is typically cleared
at the end of the recovery period and the corresponding data
plane connections removed. An analytical model which may
be used to estimate the time to complete graceful restart, as
a function of the number of connections, durations of the
different constituent stages and message loss probability is
developed in Section III.

III. ANALYTICAL MODEL

The key stages in RSVP-TE graceful restart, described
in Section II, may be modelled using an absorbing Markov
chain. The analytical model used in this paper exploits known
results about absorbing Markov chains [5] and is derived from
a model previously used to study the stability of routing
protocols [15]. The model focuses on exchanges between
the restarting node and its downstream neighbour and allows
the time to complete recovery to be calculated in different
circumstances.

The probabilities of a packet being lost on links towards
the failed node and on links f rom the failed node are pt and
pf respectively. These different values are used because of the
likelihood that the system will behave as if there is a greater
likelihood of message loss on links towards the restarting node
due, for example, to the restarting node being highly loaded
because of a deluge of messages being sent to it. Figure 3
shows a state diagram focusing on the exchanges between
the restarting node and the downstream neighbour during the
recovery period. In addition to the transition probabilities,

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2325

Hello
Src Instance = A

Dst Instance = B
Restart Time = P

Recovery Time = Q

Hello Src Instance = B …
Dst Instance = A …

Hello Src Instance = B …
Dst Instane = A …

Hello Src Instance = B …
Dst Instance = 0 …

Hello
Src Instance = C
Dst Instance = B

Restart Time = P

Recovery Time = Q ≠ 0

Hello
Src Instance = F …

Dst Instance = G …

Hello Src Instance = G
Dst Instance = F

Restart Time = P
Recovery Time = Q

Hello
Src Instance = F …

Dst Instance = G …

Hello
Src Instance = F …

Dst Instance = 0 …

Hello Src Instance = H
Dst Instance = F

Restart Time = P
Recovery Time = Q ≠ 0

Hello Src Instance = B …
Dst Instance = C … Hello

Src Instance = F …

Dst Instance = H …

R
estart P

eriod, P
R

ecovery P
eriod, Q

Node
fails

Node
restarts

Upstream
neighbour

Failed
node

Downstream
neighbour

Path Recovery Label RecoveryPath
Path
Resv

Resv

C
onnection

1

Path Recovery Label RecoveryPath
Path
Resv

Resv

C
onnection

N

Path Recovery Label RecoveryPath
Path
Resv

Resv

C
onnection

2

Recovery
complete

T
im

e to C
om

plete R
ecovery

H
ello T

im
eout Interval

Fig. 2. Key steps in RSVP-TE graceful restart

c = THelloInterval

pf

S0
Failed Node
sends Hello

S1
Downstream
Neighbour

receives
Hello

1
c = TProcessHello
 + TGenerateHello

+ TGenerateRecoveryPath

1-pf

c = TPropagation

S10
Recovery
complete

☺

1
c = TProcessResv

c = 0
1

1
c = X

1-pf

c = TPropagation

1-pt

c = TPropagation

1
c = TProcessPath
 + TGenerateResv

1
c = TProcessRecoveryPath

 + TGeneratePath

1-pt

c = TPropagation

1-pf

c = TPropagation

1
c = TProcessResv
 + TGenerateResv

S4-1
Failed Node
sends Path

S5-1
Downstream
Neighbour

receives Path

c = TRetxInterval

pf

S6-1
Downstream
Neighbour
sends Resv

S7-1
Failed Node

receives
Resv

c = TRetxInterval

pt

S2-1
Downstream

Neighbour sends
RecoveryPath

S3-1
Failed Node

receives
RecoveryPath

c = TRetxInterval

pt

S8-1
Failed Node
sends Resv

S9-1
Upstream
Neighbour

receives Resv

c = TRetxInterval

pf

1
c = X

1-pf

c = TPropagation

1-pt

c = TPropagation

1
c = TProcessPath
 + TGenerateResv

1
c = TProcessRecoveryPath

 + TGeneratePath

1-pt

c = TPropagation

1-pf

c = TPropagation

1
c = TProcessResv
 + TGenerateResv

S4-2
Failed Node
sends Path

S5-2
Downstream
Neighbour

receives Path

pf c = TRetxInterval

S6-2
Downstream
Neighbour
sends Resv

S7-2
Failed Node

receives
Resv

c = TRetxInterval

pt

S2-2
Downstream

Neighbour sends
RecoveryPath

S3-2
Failed Node

receives
RecoveryPath

c = TRetxInterval

pt

S8-2
Failed Node
sends Resv

S9-2
Upstream
Neighbour

receives Resv

c = TRetxInterval

pf

1-pf

c = TPropagation

1-pt

c = TPropagation

1
c = TProcessPath
 + TGenerateResv

1
c = TProcessRecoveryPath

 + TGeneratePath

1-pt

c = TPropagation

1-pf

c = TPropagation

1
c = TProcessResv
 + TGenerateResv

S4-N
Failed Node
sends Path

S5-N
Downstream
Neighbour

receives Path

S6-N
Downstream
Neighbour
sends Resv

S7-N
Failed Node

receives
Resv

c = TRetxInterval

pt

S2-N
Downstream

Neighbour sends
RecoveryPath

S3-N
Failed Node

receives
RecoveryPath

c = TRetxInterval

pt

S8-N
Failed Node
sends Resv

S9-N
Upstream
Neighbour

receives Resv

c = TRetxInterval

pfpf c = TRetxInterval

Fig. 3. Markov chain modelling RSVP-TE graceful restart

Figure 3 shows the cost, c, associated with each transition.
This cost is an estimate of the time taken for the corresponding
transition.

The system begins in State S0, where the restarting node
sends an Hello message to the downstream neighbour. Given
that the message loss probability on links from the restarting
node is pf , this Hello message reaches the downstream neigh-
bour with a probability of 1 − pf , the transition probability
from State S0 to S1. The cost of this transition is the cor-
responding time, the propagation delay, TPropagation. On the

other hand, if this Hello message is lost, another Hello message
will be produced after the hello interval, THelloInterval. Hence,
there is a transition from State S0 to itself with a transition
probability of pf and a cost of THelloInterval. In State S1, the
downstream neighbour has received the Hello message from
the restarting node. The downstream neighbour subsequently
processes the Hello message, taking a time of TProcessHello

to do so, generates and sends a response Hello message,
taking TGenerateHello, and creates the RecoveryPath message
for the first connection, taking TGenerateRecoveryPath. The

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2326

summation of these times is the cost of the transition from
State S1 to State S2-1 and the transition probability is 1 since
it is assumed that, after receiving the Hello message, the
downstream neighbour always eventually sends a Recovery-
Path message.

The transitions between State S2-1 and State S9-1 are
repeated once for each data plane connection; i.e. States 2-
2 to 9-2 refer to the second connection and so on, up to
States 2-N to 9-N which correspond to the N th connection.
In State S2-1, a hello adjacency has been formed between
the downstream neighbour and restarting node and so the
downstream neighbour sends a RecoveryPath message for the
first connection. This message may be lost with a probability
of pt, the loss probability on links towards the restarting node.
If lost, a retransmission occurs after an appropriate interval,
TRetxInterval, and so there is a corresponding transition from
State S2-1 to itself. On the other hand, the RecoveryPath
message reaches the restarting node with a probability of
1−pt. Therefore, the transition probability from State S2-1 to
State S3-1 is 1−pt and the associated cost is TPropagation, the
propagation delay. Upon receiving the RecoveryPath message,
the restarting node processes the message and generates an
appropriate Path message, taking TProcessRecoveryPath and
TGeneratePath respectively. Summing these values gives the
costs associated with the transition from State S3-1 to State
S4-1; the transition probability is 1 since it is assumed the
restarting node always processes the received RecoveryPath
message and generates a Path message. The remaining tran-
sitions up to State S9-1 may be readily understood from the
message exchanges depicted in Figure 2.

In State S9-1, the upstream neighbour has received the Resv
sent by the restarting node and so the recovery is complete
for the first connection. Recovery for the second connection
commences with the transition from State S9-1 to State S2-2
with a probability of 1. The cost of this transition, the interval
between the end of recovery of the first connection and start
of recovery of the second connection, is X. In the ”worst case”
scenario, the message exchanges pertaining to each connection
are carried out serially, hence X is the time taken for the
upstream neighbour to process the Resv it received from the
restarting node for the last connection and for the downstream
neighbour to generate the RecoveryPath message for the next
connection, i.e. X = TProcessResv + TGenerateRecoveryPath.
On the other hand, it is likely that some pipelining will occur.
In an attempt to expedite the recovery process, neighbours
may send recovery messages for subsequent connections with-
out waiting for the previous connections to be completely
recovered. If it is assumed that the time to recover each
connection is independent of the total number of connections
being simultaneously recovered, pipelining may be modelled
by having X < 0. Since X refers to the time taken for the
transition, it may appear strange for X to have a a negative
value, however, X < 0 simply means an attempt is made
to recover the subsequent connection before the previous
connection is completely recovered. The Markov property
means the value of X will not affect the behaviour of the rest
of the system. Hence, by setting X appropriately, the impact
of pipelining the recovery of connections can be investigated.

Two of the main approximations necessary to reduce com-
plexity and ensure the model remains tractable are:

• RFC 2961 [2], which defines the Ack message and the
retransmission algorithm for RSVP messages, suggests
the use of an exponential back off algorithm for un-
acknowledged trigger messages. The suggested defaults
were an initial default retransmission interval of 0.5s
(or the round-trip time, if known), doubling this in-
terval between successive retransmissions and limiting
the number of retransmissions to three. In the system
depicted in Figure 3, it is evident that the retransmission
interval, TRetxInterval remains fixed and the number of
retransmissions is unrestricted. Furthermore, the impact
of sending or losing Ack messages is not incorporated
in the model. These approximations, essential to make
the model tractable, mean that the model will slightly
outperform an implementation adhering to the suggested
default values.

• Pipelining the recovery of the connections will incur
some additional overhead (e.g. due to resource contention
and sharing) which may result in an increase in the
recovery time as the number of connection being simul-
taneously recovered rises. However, for simplicity, the
model assumes that the time to recover each connection
is independent of the total number of connections being
simultaneously recovered. This assumption means the
model will likely outperform a real-life implementation.

Given the Markov chain illustrated in Figure 3, known
properties of absorbing Markov chains [5] may be used to
compute the average time to absorption in State S10. This
time, T , is given in Equation 1.

T = TGenerateHello + TProcessHello

+TGenerateRecoveryPath

+(N + 1)TProcessResv + (4N + 1)TPropagation

+(N − 1)X +
pfTHelloIntveral

1 − pf

+N [
2pfTRetxIntveral

1 − pf
+

2ptTRetxIntveral

1 − pt

+TProcessRecoveryPath + TGeneratePath

+TProcessPath + 2TGenerateResv] (1)

Equation 1 means that the time for graceful restart to
be completed may be readily computed for a given number
of connections and packet loss probabilities, provided the
duration of the key constituent processes are known. Obtaining
Equation 1 is a key contribution of this work since it sug-
gests that an appropriate analytical model may be applied to
investigating the performance of graceful restart. This model
may be readily adapted to different implementations of RSVP-
TE graceful restart or to other protocols. Section IV assigns
reasonable exemplar values to parameters in Equation 1,
allowing the performance of RSVP-TE graceful restart to be
evaluated in a number of scenarios.

IV. EXEMPLAR NUMERICAL RESULTS

Some of the parameters in Equation 1 have default values
suggested which are initially used in this section; the hello

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2327

interval is set to 5ms [1] and the retransmission interval is
set to 500ms [2]. Some previous work has measured the time
taken by an exemplar RSVP-capable router to process different
RSVP messages in a number of scenarios, finding typical
durations being a few milliseconds [13]. Hence, it is assumed
that it takes 2ms to generate and process Hello messages. Since
Path, RecoveryPath and Resv messages are larger and contain
more RSVP objects than Hello messages, it is assumed that the
time taken to generate these messages is 10ms . Upon receipt
of a Path, RecoveryPath or Resv message, the restarting node
must search its forwarding plane, create corresponding RSVP
state and so on, hence the time to process these messages, is
assumed to be a relatively large 40ms. Lastly, the propagation
delay is set to a moderate value of 0.1ms. It should be noted
that the values assigned to the different processes in this
section are merely exemplar values; the form of Equation 1
means alternative values may be easily entered and results
obtained.

When these values are entered into Equation 1 with the
probability of message loss being equal in either direction
(i.e. pt = pf) and with the connections being recovered
serially (i.e. X = TProcessResv + TGenerateRecoveryPath), the
results obtained for a range of packet loss probabilities and
different number of connections is shown in Figure 4. Figure 4
shows that, unsurprisingly, a rise in the packet loss probability
leads to an increase in the time to complete recovery, an
increase attributable to more retransmissions due to the higher
packet loss. It is also evident that increasing the number of
connections leads to a rise in the time taken to complete
recovery, for any given packet loss probability, due to the
fact that exchanging the control messages and creating the
appropriate RSVP state for the connections are carried out
sequentially.

The retransmission interval is a configurable parameter in
Equation 1 and the impact of reducing it from 500ms to
50ms is shown in Figure 5. Figure 5 shows that decreasing
the retransmission interval typically leads to a significant
decrease in the time to complete recovery for any given
packet loss probability and, furthermore, the impact of the
number of connections is diminished. The hello interval is
another configurable parameter and it was increased from the
5ms default value in RFC 3209 [1] to the more realistic
value of 3s. The results, omitted for brevity, were similar
to Figure 4. Taken together, these two observations suggest
that the retransmission interval is more consequential than
the hello interval. This finding may be explained by noting
that the number of critical Hello messages in the graceful
restart process is small in comparison to the number of critical
RecoveryPath, Path and Resv messages (a discrepancy that
rises with increasing number of connections), hence, unsur-
prisingly, the configurable parameter that affects these three
messages is of greater significance. This observation suggests
that, during the recovery period, more emphasis should be
placed on reducing the time taken for events which are affected
by the number connections. So, for example, increasing the
hello interval while decreasing the retransmission interval by
a commensurate amount is likely to improve the overall per-
formance, without affecting the message processing overhead

excessively.
Figure 6 shows that, if the loss probability of messages

sent to the restarting node is a 1000 times that of messages
it sends (i.e. pt = 1000pf), there is a drop in the time
to complete recovery when compared to the results in Fig-
ure 4. However, it is somewhat surprising that the decrease is
relatively small, suggesting that the ”request and response”
nature of the exchanges during graceful restart means that
the performance of the worse party is often the determining
factor in the overall performance. An example of a scenario
in which this asymmetric behaviour may arise is when the
restarting node is highly loaded (due to performing recovery
with multiple nodes simultaneously) and so fails to receive
and process the messages sent by the downstream neighbour
yet the downstream neighbour is able to receive and process
any messages it receives. This observation suggests that the
message processing capacity of the restarting node is likely to
be a performance bottleneck during graceful restart.

Thus far, the worst case scenario in which the connections
are recovered sequentially has been considered. In order to
investigate the impact of pipelining the recovery of the con-
nections, the value of X was chosen to model the case when
an attempt is made to begin recovery of the next connection
20ms after the start of the attempt to recover the previous
connection. The results are presented in Figure 7. As would
be expected, there is a significant drop in the time to complete
recovery, when Figure 7 is compared to Figure 4. Furthermore,
the impact of the the number of connections on the recovery
time is diminished. Hence, pipelining is likely to significantly
improve the overall performance. Nevertheless, it is pivotal
that a judicious spacing the of the recovery process for the
connections is undertaken, to minimise any resource sharing
and contention which will degrade the performance.

0

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Packet Loss Probability

T
im

e
to

 C
om

pl
et

e
R

ec
ov

er
y

(s
)

1 connection
20
40
60
80
100
500
1000

Fig. 4. Impact of packet loss on time to complete recovery when connections
recovered serially (TRetxInterval = 500ms, THelloInterval = 5ms &
pt = pf)

Arguably the most striking feature of Figures 4 to 7 is
that, in most cases, the time to complete recovery rises
exponentially with the packet loss probability. Consequently,
at some threshold, there is a great increase in the time to
complete recovery for a relatively small change in the packet
loss probability. Admittedly, it is unlikely that the packet loss
probabilities in the control plane will be as large as these
threshold values for a prolonged duration. Nevertheless, the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2328

0

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Packet Loss Probability

T
im

e
to

 C
om

pl
et

e
R

ec
ov

er
y

(s
)

1 connection
20
40
60
80
100
500
1000

Fig. 5. Impact of packet loss on time to complete recovery when connections
recovered serially (TRetxInterval = 50ms, THelloInterval = 5ms &
pt = pf)

0

50

100

150

200

250

300

350

400

450

500

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Packet Loss Probability Towards Restarting Node

T
im

e
to

 C
om

pl
et

e
R

ec
ov

er
y

(s
)

1 connection
20
40
60
80
100
500
1000

Fig. 6. Impact of packet loss on time to complete recovery when connections
recovered serially (TRetxInterval = 500ms, THelloInterval = 5ms &
pt = 1000pf)

existence of these trends suggest that studying the effect of
non-ideal behaviour during graceful restart is worthwhile since
they suggest that the effect of additional errors on the already
degraded control plane may be severe.

V. CONCLUSIONS AND FUTURE WORK

This paper has studied the graceful restart mechanism
proposed for RSVP-TE, a key GMPLS protocol. A novel
analytical model, which may be readily adapted to study other
protocols, has been developed. This model allows the impact
of the duration of the key constituent stages, the loss of
control messages and the number of data plane connections
on the efficacy of graceful restart to be evaluated. It was
found that, unsurprisingly, increasing control message loss and
increasing the number of connections increased the time to
complete recovery. It was also discovered that a threshold
exists beyond which a relatively small change in the message
loss probability causes a disproportionately large increase in
the time to complete recovery.

The analytical model presented in this paper is viewed as
a first step in the evaluation of RSVP-TE graceful restart.
Naturally, simplifications had to made when developing the
model, implying the results presented in this paper are likely
to be somewhat idealistic. Hence, an interesting avenue of
future work is to enhance the analytical model, or to employ
other performance evaluation techniques (e.g. simulation or

0

5

10

15

20

25

30

35

40

45

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Packet Loss Probability

T
im

e
to

 C
om

pl
et

e
R

ec
ov

er
y

(s
)

1 connection
20
40
60
80
100
500
1000

Fig. 7. Impact of packet loss on time to complete recovery when connections
recovery pipelined (TRetxInterval = 500ms, THelloInterval = 5ms &
pt = pf)

measurement), to study graceful restart thoroughly. Interesting
open issues include quantifying the impact of the heavy load
on the restarting node, identifying the optimal spacing of
the recovery process for different connections, determining
the most expedient recovery period in different circumstances
and studying the impact of multiple nodal/link faults on the
graceful restart.

VI. ACKNOWLEDGMENTS

The authors wish to thank the UK Engineering and Physical
Sciences Research Council for their support of this research
through grant EP/C004442/1. The authors also thank Adrian
Farrel for helpful comments on the paper.

REFERENCES

[1] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, G. Swallow, “RSVP-
TE: Extensions to RSVP for LSP Tunnels’, RFC 3209, Dec. 2001.

[2] L. Berger, D. Gan, G. Swallow, P. Pan, F. Tommasi, S. Molendini, ”RSVP
Refresh Overhead Reduction Extensions” RFC 2961, April 2001.

[3] L. Berger (Ed.), ”Generalized Multi-Protocol Label Switching (GMPLS)
Signaling Resource Reservation Protocol-Traffic Engineering (RSVP-TE)
Extensions” RFC 3473, Jan. 2003.

[4] A. Farrel, I. Bryskin, ”GMPLS Architecture and Applications”, Morgan
Kaufmann, 2006.

[5] C. Grinstead, J. Snell, ”Introduction to Probability”, AMS, 1997.
[6] A. Jajszczyk and P. Rozycki, ”Recovery of the Control Plane after Failures

in ASON/GMPLS Networks”, IEEE Network, pp.4-10, Jan/Feb 2006.
[7] Y. Kim, ”Requirements for the Resilience of Control Plane”, draft-kim-

ccamp-cpr-reqts-01.txt, Oct. 2005.
[8] K. Kompella (Ed.), Y. Rekhter (Ed.), ”Routing Extensions in Support of

Generalized Multi-Protocol Label Switching (GMPLS)” RFC 4202, Oct.
2005.

[9] K. Kompella (Ed.), Y. Rekhter (Ed.), ”OSPF Extensions in Support of
Generalized Multi-Protocol Label Switching (GMPLS)” RFC 4203, Oct.
2005.

[10] J. Lang (Ed.) ”Link Management Protocol (LMP)” RFC 4204, Oct.
2005.

[11] G. Li, J. Yates, D. Wang, C. Kalmanek, ”Control Plane Design for
Reliable Optical Networks”, IEEE Communications Magazine, pp. 90-
96, February 2002.

[12] E. Mannie (Ed.), ”Generalized Multi-Protocol Label Switching (GM-
PLS) Architecture”, RFC 3945, Oct. 2004.

[13] A. Neogi, T. Chiueh, P. Stirpe, ”Performance Analysis of an RSVP-
Capable Router”, IEEE Network, pp.56-63, Sept./Oct. 1999.

[14] A. Satyanarayana (Ed.), R. Rahman (Ed.), ”Extensions to GMPLS RSVP
Graceful Restart”, draft-ietf-ccamp-rsvp-restart-ext-05.txt, Oct. 2005.

[15] A. Shaikh, A. Varma, L. Kalampoukas, R. Dube, ”Routing Stability
in Congested Networks: Experimentation and Analysis”, Proc. ACM
SIGCOMM 2000.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings.

2329

	citation_temp.pdf
	http://eprints.gla.ac.uk/3659/

