

Unsworth, C. and Prosser, P. (2005) A specialised binary constraint for
the stable marriage problem. Lecture Notes in Computer Science
3607:pp. 218-233.

http://eprints.gla.ac.uk/3619/

A Specialised Binary Constraint for the Stable

Marriage Problem?

Chris Unsworth1 and Patrick Prosser1

Department of Computing Science, University of Glasgow, Scotland.
chrisu/pat@dcs.gla.ac.uk

Abstract. We present a specialised binary constraint for the stable mar-
riage problem. This constraint acts between a pair of integer variables
where the domains of those variables represent preferences. Our con-
straint enforces stability and disallows bigamy. For a stable marriage
instance with n men and women we require n2 of these constraints, and
the complexity of enforcing arc-consistency is O(n3). Although this is
non-optimal, empirical evidence suggests that in practical terms our en-
coding significantly outperforms the optimal encoding given in [7] in both
space and time.

1 Introduction

In the Stable Marriage problem (SM) [6, 10] we have n men and n women.
Each man ranks the n women into a preference list. So also do the women. The
problem is then to produce a matching of men to women such that it is stable. By
a matching we mean that there is a bijection from men to women, and by stable
we mean that there is no incentive for partners to divorce and elope. A matching
is unstable if there are two couples (mi, wj) and (mk, wl) such that mi prefers wl

to his current partner wj , and wl prefers mi to her current partner mk. Stable
matching problems occur naturally while matching people to posts [18], such as
the allocation of residents to hospitals in the US [17], Canada [5], and Scotland
[11]. Variants of the problem occur such as the allocation of groups of students
to university accommodation [12], and hard variants have been identified and
studied by Irving and Manlove [16]. The problem has also attracted the interest
of the constraint programming community [4, 7, 9, 8, 14].

Figure 1 is an instance of the stable marriage problem, and has 6 men and
6 women. Figure 1(a) shows the problem initially, with each man and woman’s
preference list. Figure 1(b) shows the intersection of the male and female-oriented
Gale-Shapley lists (GS-lists) [10], where the GS-lists are reduced preference lists.
A man-optimal (woman-pessimal) stable matching can now be found by mar-
rying men (women) to their most (least) preferred choices in there GS-lists.
Conversely, we can produce a woman-optimal (man-pessimal) matching by mar-
rying women (men) to their most (least) preferred choice in their GS-lists. An

? The first author is supported by EPSRC. Software support was given by an ILOG
SA’s academic grant.

2

instance of SM admits at least one stable matching and this can be found via
the Extended Gale-Shapley algorithm in time O(n2), where there are n men and
n women.

Men’s lists Women’s lists

1: 1 3 6 2 4 5 1: 1 5 6 3 2 4
2: 4 6 1 2 5 3 2: 2 4 6 1 3 5
3: 1 4 5 3 6 2 3: 4 3 6 2 5 1
4: 6 5 3 4 2 1 4: 1 3 5 4 2 6
5: 2 3 1 4 5 6 5: 3 2 6 1 4 5
6: 3 1 2 6 5 4 6: 5 1 3 6 4 2

(a)

Men’s lists Women’s lists

1: 1 1: 1
2: 2 2: 2
3: 4 3: 4 6
4: 6 5 3 4: 3
5: 5 6 5: 6 4 5
6: 3 6 5 6: 5 6 4

(b)

Fig. 1. (a) An SM instance with 6 men and 6 women; (b) the corresponding GS-lists.

We present a remarkably simple constraint encoding for the stable marriage
problem. We introduce a specialised binary constraint with only three methods,
where each method is no more than two lines of code. We prove that enforcing
arc-consistency in this encoding results in the male-oriented Gale-Shapley lists.
We then go on to show how we can extend this encoding by introducing a modest
amount of additional code, such that the encoding can be embedded in richer
impure problems where the stability of marriages is only part of a larger problem,
and the male and female oriented GS-lists are produced. Our empirical results
suggest, that although our encodings has O(n3) time complexity, it significantly
outperforms the optimal encoding proposed in [7] in both space and time. In
the presentation that follows we will take a one sided, male-oriented, view of
the problem. Everything that is presented also has an equivalent and symmetric
female-orientation.

2 The Extended Gale-Shapley Algorithm (EGS)

We now describe the male-oriented Extended Gale-Shapley (EGS) algorithm
(shown in Figure 2). In particular, we explain what is meant by a proposal, an
engagement, and for a man to become free. We will use this later to show that
this algorithm and our constraint encoding are equivalent.

The EGS algorithm [10] produces a stable matching between men m1 to
mn and women w1 to wn, where each man (woman) ranks each of the women
(men) into preference order. Via a process of proposals from men to women the
algorithm delivers reduced preference lists, called GS-lists (Gale-Shapley lists),
such that if each man (woman) is paired with his (her) best (worst) partner in
their GS-list the marriages will be stable.1

1 Strictly speaking, the given algorithm produces MGS-lists, the male GS-lists. But
for the sake of brevity we will refer to them as GS-lists.

3

1 assign each person to be free

2 WHILE (some man m is free)

3 DO BEGIN

4 w := first woman on m’s list

5 IF (some man p is engaged to w)

6 THEN assign p to be free

7 assign m and w to be engaged to each other

8 FOR (each successor p of m on w’s list)

9 DO BEGIN

10 delete p from w’s list

11 delete w from p’s list

12 END

13 END

Fig. 2. The male-oriented Extended Gale/Shapley algorithm.

We will assume that we have an instance I of the stable marriage problem,
and that for any person q in I , PL(q) is the ordered list of persons in the original
preference list of q and GS(q) is the ordered list of people in the GS-list for q,
and initially GS(q) equals PL(q). In a proposal from man m to woman w, w

will be at the head of the man’s GS-list GS(m). This leads to an engagement
where m is no longer free and all men that w prefers less than m are removed
from her GS-list, i.e. the last entry in GS(w) becomes m. Further, when a man
p is removed from GS(w) that woman is also removed from his GS-list, i.e. w is
removed from GS(p), consequently bigamy is disallowed. Therefore m and w are
engaged when m is no longer free, w is head of GS(m), and m is at the tail of
GS(w). A man p becomes free when p was engaged to w (i.e. the head of GS(p)
is w) and w receives a proposal from man m that she prefers to p. On becoming
free, p is added to the list of free men and w is removed from GS(p).

The algorithm starts with all men free and placed on a list (line 1). The
algorithm then performs a sequence of proposals (lines 2 to 13). A man m is
selected from the free list (line 2), and his most preferred woman w is selected
(line 4). If w is engaged, then her partner p becomes free. The pair m and w

then become engaged (lines 7 to 12).

3 Preliminaries

We assume that each man and woman’s preference list has been read into two
dimensional integer arrays mpl and wpl respectively. mpl[i] is the preference list
for the ith man where mpl[i][j] is the ith man’s jth preference, and similarly wpl[j]
is the preference list for the jth woman. Using our problem in Figure 1(a), if we
consider our third man he will have a preference list mpl[3] = (1, 4, 5, 3, 6, 2).

We also assume we have the inverse of the preference lists, i.e. mPw and
wPm, where mPw[i][j] is the ith man’s preference for the jth woman and
wPm[j][i] is the jth woman’s preference for the ith man. Again, considering the

4

third man in Figure 1, his inverse preference list will be mPw[3] = (1, 6, 4, 2, 3, 5),
mPw[3][2] is his preference for the second woman, and that is 6, i.e. woman 2 is
in the sixth position of man 3’s preference list.2

We associate a constrained integer variable with each man and each woman,
such that x[i] is a constrained integer variable representing the ith man mi

in stable marriage instance I and has a domain dom(x[i]) initially of 1 to n.
Similarly, we have an array of constrained integer variables for women, such
that y[j] represents the jth woman wj in I . The values in the domain of a
variable correspond to preferences, such that if variable x[i] is assigned the value
j this corresponds to mi being married to his jth choice of woman, and this
will be woman mpl[i][j]. For example, if x[2] (in Figure 1) is set to 3 then this
corresponds to m2 marrying his third choice, w1 (and conversely y[1] would
then have to be assigned the value 5). Again referring to Figure 1(a) our sixth
man’s domain is dom(x[6]) = (1, 2, 3, 4, 5, 6), as is everyone else’s, and in 1(b)
dom(x[6]) = (1, 4, 5). We also assume that we have the following functions, each
being of O(1) complexity, that operate over constrained integer variables:

– getMin(v) delivers the smallest value in dom(v).
– getMax(v) delivers the largest value in dom(v).
– setMax(v, a) sets the maximum value in dom(v) to be min(getMax(v), a).
– removeV alue(v, a) removes the value a from dom(v).

We assume that constraints are processed by an arc-consistency algorithm
such as AC5 [19] or AC3 [15]. That is, the algorithm has a stack of constraints
that are awaiting revision and if a variable loses values then all the constraints
that the variable is involved in are added to the stack along with the method
that must be applied to those constraints, i.e. the stack contains methods and
their arguments. Furthermore, we also assume that a call to a method, with its
arguments, is only added to the stack if it is not already on the stack. We’ll refer
to this stack as the call stack.

4 A Binary Stable Marriage Constraint (SM2)

We now give a description of our binary stable marriage constraint, where arc-
consistency on such an encoding is equivalent to an application of the male-
oriented EGS algorithm. Note that the constraint as described (minimally) can-
not be used within a search process, however we will later show how this can
be done. Our constraint is binary in that it constrains a man and a woman,
such that stability is maintained and bigamy is disallowed. In a stable marriage
problem with n men and n women we will then require n2 of these constraints.
We now start by describing the attributes of the constraint, how to construct the
constraint, and then the three methods that act upon it. We will use a java-like
pseudo-code such that the . (dot) operator is an attribute selector, such that a.b

delivers the b attribute of a.
2 The inverse of the preference lists can be created when reading in the preference

lists such that mPw[i][mpl[i][j]] = j, and this does not affect the overall complexity
of constructing our model.

5

4.1 The attributes

A binary stable marriage constraint (SM2) is an object that acts between a man
and a woman, and has the following attributes:

– x and y are constrained integer variables representing the man and the
woman that are constrained.

– xPy is x’s preference for y. That is, if x corresponds to the ith man and y

corresponds to the jth woman then xPy = mPw[i][j].
– yPx is y’s preference for x. If y corresponds to the jth woman and x to the

ith man then yPx = wPm[j][i].

Therefore a constraint between the ith man and jth woman is constructed via
a call to the function SM2(x[i], mPw[i][j], y[j], wPm[j][i]). This will construct
a constraint object c such that c.x = x[i], c.y = y[j], c.xPy = mPw[i][j], and
c.yPx = wPm[j][i]. To construct our constraint encoding we would then make
a call to SM2, as shown, with i and j varying from 1 to n creating the n2

constraints.

4.2 The propagation methods

We now describe three methods that achieve male-oriented arc-consistency be-
tween a man x and woman y across a constraint c.

deltaMin(c) This method is called across the constraint c between x and y
when the lower bound of the domain of x increases. If the lower bound increases
such that the lowest value in the domain of x corresponds to that man’s prefer-
ence for woman y (line 2) then that woman need not consider any man she prefers
less than man x. Consequently we can remove from her domain all preferences
greater than her preference for man x (line 3).

1. deltaMin(c)

2. IF getMin(c.x) = c.xPy

3. THEN setMax(c.y,c.yPx)

deltaMax(c) We now describe the method that deals with the situation when
the upper bound of a woman c.y is reduced. If woman y′s least preferred choice
is better than her preference for man x (line 2) then man x is no longer in y′s
preference list. Therefore we remove woman y from man x′s preference list (line
3).

1. deltaMax(c)

2. IF getMax(c.y) < c.yPx

3. THEN removeValue(c.x,c.xPy)

init(c) The init method is called when the constraint is created, and is simply
a call to deltaMin.

1. init(c)

2. deltaMin(c)

6

5 Comparison to EGS

We now compare the behaviour of our binary constraint model (SM2) to the
male-oriented EGS algorithm. In our comparison we will describe steps in the
EGS algorithm in italics and the SM2 constraint encoding in normal font. For
ease of exposition we may refer to a constraint acting between man m and
woman w as Cx,y, where m and w are people in the SM instance, and x and y

are the corresponding variables in our constraint encoding. Sometimes we will
use m and w as a particular person (rather than mi and wj), and x and y as
particular variables (rather than x[i] and y[j]) for sake of brevity. Additionally,
we assume we have the function fiance(y[j]) and that it delivers the constrained
integer variable z = x[i] where i = wpl[j][max(dom(y[j])], i.e. the least preferred
partner of y[j].

– Initially the EGS algorithm sets all men to be free by adding them to the
free list (line 1). Equivalently, before propagation starts the set of calls
{init(Cx[i],y[j])|1 ≤ i, j ≤ n} is added to the empty call stack.

– EGS picks a man m from the free list and he then proposes to his first choice
woman w (lines 4 to 7). Initially, the constraints on the stack will be revised
using the deltaMin method, called directly via init. When executing the call
deltaMin(Cx,y), if y is not x′s current favourite (i.e. min(dom(x)) 6= xPy)
then no action is taken. However, if y is x′s favourite the equivalent of a
proposal will be made (as described next).

– When m makes a proposal to w all values that appear in GS(w) after the
proposing man are removed (lines 8 to 10), i.e. they become engaged. With
the call deltaMin(Cx,y), when y is x′s favourite, the maximum of dom(y) is
set to y′s preference for x, therefore removing all less preferred men. Effec-
tively, x and y become engaged.

– To maintain monogamy EGS removes the newly engaged woman from the
GS-lists of all men that have just been removed from her preference list (line
11). From the action above, the maximum of dom(y) has been lowered,
consequently the set of calls {deltaMax(Cx[i],y)|1 ≤ i ≤ n} are added to the
call stack. For a call to deltaMax(Cx,y), if y′s preference for x is greater
than the maximum value in dom(y) then y′s preference for x has already
been removed from dom(y), consequently x′s preference for y is removed
from dom(x). Therefore, x and y can never be married.

– In EGS, if m makes a proposal to w, who is already engaged to p, then w′s

previous fiance p is assigned to be free and added to the free list (lines 5
and 6.) On initiating the call deltaMin(Cx,y), y′s fiance corresponds to the
maximum value in dom(y), because all less preferred men will have been
removed (as above). Therefore if y receives a proposal from x via the call
deltaMin(Cx,y), and y prefers x to her current fiance z = fiance(y), the
maximum of dom(y) will be set lower than her preference for z and therefore
the preference for z will be removed from dom(y). Consequently, the set of
calls {deltaMax(Cx[i],y)|1 ≤ i ≤ n} will be stacked, one of which will be
the call deltaMax(Cz,y), and the preference for y will then be removed from

7

dom(z). And because y was z′s previous favourite the preference for y would
have been min(dom(z)). Therefore removing that value will increase z ′s

domain minimum, and the set of calls {deltaMin(z, y[j])|1 ≤ j ≤ n} are
then added to the stack. And this effectively assigns man z to be free.

6 Proof that GS-lists are produced by the SM2 encoding

In order to prove that EGS and our SM2 constraint encoding are equivalent we
will first show that if EGS removes a value then so does SM2. Conversely, we
then prove that if SM2 removes a value then so does EGS. To help make these
proofs more readable we will first give some definitions of terms and phrases that
will be used.

– x[i] proposes to y[j] when the method deltaMin(Cx[i],y[j]) is called, where
y[j] is x[i]’s favourite potential partner, i.e. j = mpl[i][k] where k = min(dom(x[i])).

– x[i] is said to be removed from the domain of y[j] when k is removed from
dom(y[j]) where k = wPm[j][i]. Conversely y[j] is said to be removed from
the domain of x[i] when l is removed from dom(x[i]) where l = mPw[i][j].

– x[i] is free when there is a call deltaMin(Cx[i],y[j]) on the call stack, where
y[j] is x[i]’s favourite potential partner. Therefore, to make x[i] free the set
of calls {deltaMin(Cx[i],y[j])|1 ≤ j ≤ n} is added to the call stack, although
only one of these calls will have an effect, and that is when y[j] is x[i]’s most
preferred partner.

– x[i] is engaged to y[j] if and only if x[i] is not free and j = mpl[i][k] and
i = wpl[j][l], where k = min(dom(x[i])) and l = max(dom(y[j]).

– x[i] is rejected by y[j] if k has been removed from dom(y[j]), where k =
wPm[j][i].

Proof that if EGS removes a person from a GS-list then SM2 will
remove the corresponding value from the corresponding variable We
use a proof by cases, considering the situations where EGS can remove people
from GS-lists, and the situation where men can become free. There are 3 cases
to consider. First we prove that if a proposal in EGS causes people to be re-
moved from GS-lists, then the corresponding proposal in SM2 will result in the
same corresponding values being removed from the relevant constrained integer
variables. We then prove that if an event in EGS causes a man to be placed on
the free list then a similar event in SM2 will add calls to deltaMin to the call
stack. Finally we prove that because the order in which the proposals are made
does not effect the resulting domains, if EGS removes a person from a GS-list
then SM2 will have a corresponding effect.

Lemma 1 In EGS, when a man proposes to a woman and removes values from
her GS-list, the constraint encoding will remove the corresponding set of values
from the domain of the corresponding variable.

8

Proof In EGS a proposal is made from mi to wj when mi is free and wj is
the first entry in GS(mi), i.e. wj is mi’s favourite potential partner. All men in
GS(wj) that wj prefers less than mi are then removed from GS(wj), and for
each removed man p, wj is removed from GS(p) thus preventing bigamy.
The proposal is made in SM2 via a call to deltaMin(Cx[i],y[j]), where x[i] and y[j]
correspond to mi and wj , and the smallest value in dom(x[i]) is x[i]’s preference
for y[j] (see line 2 of deltaMin), i.e. y[j] is x[i]’s favourite potential partner.
All values greater than wPm[j][i] will be removed from dom(y[j]) (line 3 of
deltaMin). Consequently all values in dom(y[j]) corresponding to men she likes
less than x[i] will be removed. Since the maximum value in dom(y[j]) has de-
creased the set of calls {deltaMax(x[k], w[j])|1 ≤ k ≤ n} are added to the call
stack. When a call to deltaMax(x[k], y[j]) is executed and wPm[j][k] is greater
than the maximum value in dom(w[j]), mPw[k][j] will then be deleted from
dom(x[k]). 2

Lemma 2 If circumstances occur that cause EGS to assign mi to be free then
the same circumstances will cause SM2 to assign x[i] to be free

Proof The EGS algorithm adds men to the free list under two conditions. The
first is when the algorithm is initiated and all men are set to be free. The second
is when mi is rejected by a woman he was previously engaged to, wj .
When SM2 is initialised the set of calls {init(Cx[i],y[j])|1 ≤ i, j ≤ n} will be
added to the empty call stack. This will in turn make a call to each method in
the set {deltaMin(Cx[i],y[j])|1 ≤ i, j ≤ n}. This effectively assigns all men to be
free.
If man x[i] is rejected by woman y[j], then the value mPw[i][j] will be removed
from dom(x[i]). Because x[i] previously proposed to y[j], the minimum value in
dom(x[i]) must have been mPw[i][j]. Therefore when mPw[i][j] was removed
from dom(x[i]), the minimum value in dom(x[i]) must have increased and thus
caused the set of calls {deltaMin(Cx[i],y[k])|1 ≤ k ≤ n} to be put on the call
stack, thus effectively assigning x[i] to be free. 2

Lemma 3 If EGS removes a person from a GS-list then SM2 will remove the
corresponding value from the relevant variable’s domain.

Proof EGS only removes people from a GS-list as a direct result of a proposal
(the WHILE loop in Figure 2). From lemma 1 when EGS removes a person from
a GS-list SM2 removes the corresponding values from the domain of the relevant
variable. From lemma 2, when EGS causes a man to be free so too does SM2.
Consequently when EGS removes a person from a GS-list then SM2 will remove
the corresponding value from the relevant variable’s domain. 2

Proof that if SM2 removes a value from a variable then EGS will
remove the corresponding person from the relevant GS-List As above
this proof will be split into three parts. First, if in SM2 a value is removed from

9

a variable’s domain as a result of a proposal then the same proposal in EGS will
cause the corresponding person to be removed from the relevant GS-List (i.e.
the converse of lemma 1). Second, if SM2 assigns a man to be free then EGS in
the same circumstances will also assign the same man to be free (the converse of
lemma 2). The third combines the previous two to say if SM2 removes a value
from the domain of a variable then EGS will remove the corresponding person
from the relevant GS-List (similar to lemma 3).

Lemma 4 If in SM2 a value is removed from a variable’s domain as a result of
a proposal then the same proposal in EGS will cause the corresponding person
to be removed from the relevant GS-List.

Proof In SM2 only two types of domain reductions can occur. The maximum
value of dom(y[j]) can be set to wPm[j][i] in a call to deltaMin(Cx[i],y[j]) or
mPw[i][j] could be removed from dom(x[i]) in a call to deltaMax(Cx[i],y[j]).
Therefore all values removed by SM2 as the result of a proposal must be one of
these two types. Because deltaMin only alters the domains of y variables it can
only cause calls to deltaMax, and likewise deltaMax only removes values from
the domains of x variables so can only cause calls to deltaMin. And because
a call to deltaMin is classed as a proposal the only propagation effect from
deltaMax is further proposals.

When a proposal is made in SM2 by a call to deltaMin(Cx[i],y[j]) The maxi-
mum value of dom(y[j]) will be set to wPm[j][i], thus removing all men y[j] likes
less than x[i]. The resulting set of calls {deltaMax(Cx[k],y[j])|1 ≤ k ≤ n} will
then remove mPw[k][j] from dom(x[k]) for all x[k], where wPm[j][k] is greater
than the maximum value in dom(y[j]), thus removing y[j] from the domains of
all men she likes less than x[i].
In EGS when a proposal is made from man mi to woman wj all men in GS(wj)
corresponding to men she likes less than mi are removed. Then wj is removed
from GS(mk) for all mk where mk was removed from GS(wj). 2

Lemma 5 If circumstances occur that cause SM2 to assign man x[i] to be free
then the same circumstances will cause EGS to assign the same man mi to be
free.

Proof In SM2 there are only two events that will cause man x[i] to be placed
on the free list. The first is when the set of calls {init(Cx[i],y[j])|1 ≤ i, j ≤ n}
is placed on the stack. This will in turn call {deltaMin(Cx[i],y[j])|1 ≤ i, j ≤ n}.
This effectively assigns all men to be free.
The other is when the minimum value of dom(x[i]) is increased and thus causes
the set of calls {deltaMin(Cx[i],y[j])|1 ≤ j ≤ n} to be placed on the stack. This
can only be due to a call to deltaMax(Cx[i],y[j]) where mPw[i][j] is the mini-
mum value in dom(x[i]). If mPw[i][j] was not the minimum value in dom(x[i])
when the call to deltaMax(Cx[i],y[j]) was made then removing mPw[i][j] from
dom(x[i]) won’t cause any further propagation. If mPw[i][j] is the minimum
value in dom(x[i]) then x[i] will either be engaged to y[j] or will have not yet

10

proposed and thus be already assigned free. Because y[j] can only be engaged to
one man at a time, however many values are removed from dom(y[j]) as a result
of a call to deltaMin(Cx[k],y[j]) (a proposal from some other man x[k]) only one
man x[i] can be placed on the free list that was not already there, where x[i]
was previously engaged to y[j].
The EGS algorithm adds men to the free list under two conditions. The first is
when the algorithm is first started and all men are set to be free. The second is
man mi is placed on the free list if he is rejected by a woman wj , where mi and
wj were previously engaged. 2

Lemma 6 If SM2 removes a value from a domain then EGS will also remove the
corresponding person from the relevant GS-List.

Proof SM2 only removes values as a direct result of a proposal. From lemma 4 if
in SM2 a value is removed from a variable’s domain as a result of a proposal then
the same proposal in EGS will cause the corresponding person to be removed
from the relevant GS-List. From lemma 5 if circumstances occur that cause SM2
to assign x[i] to be free then the same circumstances will cause EGS to assign
mi to be free. Consequently, if SM2 removes a value from a domain then EGS
will remove the corresponding person from the relevant GS-List. 2

Proof that GS-Lists are produced This section simply pulls together the
previously presented lemmas to prove that the GS-Lists are produced.

Theorem When a SM instance is made arc consistent using SM2, the resulting
domain values will be the equivalent of the GS-Lists produced by EGS from the
same SMP.

Proof From lemma 6 if SM2 removes a value from a domain then EGS will also
remove the corresponding person from the relevant GS-List, therefore the values
removed by SM2 must be a subset of the values removed by EGS. From lemma 3
if EGS removes a person from a GS-list then SM2 will remove the corresponding
value from the relevant variable’s domain, therefore the values removed by EGS
must be a subset of the values removed by SM2. Therefore the set of values
removed by SM2 must be the equivalent of the set of people removed by EGS,
and thus the remaining values will be equivalent. Therefore SM2 produces the
equivalent of the GS-Lists. 2

7 Complexity of the model

In [10] section 1.2.3 it is shown in the worst case there is at most n(n − 1) + 1
proposals that can be made by the EGS algorithm, and that the complexity
is then O(n2). We argue that the complexity of our SM2 encoding is O(n3).
First we claim that the call to our methods deltaMin() and deltaMax() is of
complexity O(1).

11

When the lower bound of a man m′s domain is increased (or is initially given)
this will result in the n calls {deltaMin(m, woman[i])|1 ≤ i ≤ n}. Only one of
these will result in the reduction of a woman w’s domain, and this single event
will result in the n additional calls {deltaMax(man[i], w|1 ≤ i ≤ n}. This then
amounts to O(n) steps. We assume that a lower bound can change at most n−1
times, and that this can happen to all n men. Therefore in total we have at most
O(n3) steps performed.

8 Enhancing the model

The full GS-Lists are the union of the male and female Gale-Shapley lists re-
maining after executing male and female oriented versions of EGS. It has been
proven that the same lists can be produced by running the female orientated ver-
sion of EGS on the male-oriented GS-lists [10]. Because SM2 produces the same
results as EGS the full GS-Lists can be produced in the same way. But because
of the structure of this specialised constraint it is also possible to combine the
male and female orientated versions of SM2 into one constraint. This combined
gender free version of SM2 will then produce the full GS-List with only one run
of the arc-consistency algorithm.

The SM2 constraint as presented so far has only considered domain values
being removed by the constraint’s own methods. If we were to use the constraint
to find all possible stable matchings, unless arc consistency reduces all variable
domains to a singleton, it will be necessary to assign and remove values from
variable domains as part of a search process. Therefore, we need to add code
to SM2 to maintain consistency and stability in the event that domain values
are removed by methods other than those within SM2. It is important to note
that these external domain reductions could also be caused by side constraints
as well as a search process.

There are four types of domain reduction that external events could cause:
a variable is instantiated; a variable’s minimum domain value is increased; a
variable’s maximum domain value is reduced; one or more values are removed
from the interior of a variable’s domain. We now describe two new methods, inst

and removeV alue, and the enhancements required for deltaMin. We note that
deltaMax does not need to change, and describe the required enhancements for
incomplete preference lists.

inst(c) The method inst(c) is called when a x variable is instantiated.

1. inst(c)

2. IF getValue(c.x) = c.xPy

3. THEN setValue(c.y,c.yPx)

4. ELSE IF getValue(c.x) > xPy

5. THEN setMax(c.y,c.yPx - 1)

6. ELSE removeValue(c.y,c.yPx)

If x prefers to be matched to y (line 2) then y must be instantiated to her
preference for x to maintain consistency (line 3). However, if x is matched to

12

someone that he prefers less than y (line 4) then in order to maintain stability
y can only marry people that she prefers to x (otherwise x and y will elope).
Consequently we delete all less preferred men, including x, from her domain (line
5). Finally, if x would not prefer to be matched to y than his current partner then
we simply deny y the opportunity of marrying x (line 6). Note that getV alue(v)
delivers the integer value that has been assigned to variable v, setV alue(v, a)
instantiates v to the integer value a, and these methods are of O(1) complexity.

removeValue(c,a) This method is called when the integer value a is removed
from dom(x), and this value is neither the largest nor smallest in dom(x).

1. removeValue(c,a)

2. IF a = c.xPy

3. THEN removeValue(c.y,c.yPx)

If the value a corresponds to x’s preference for y (line 2) then the corresponding
value must be removed from dom(y), and that is yPx (line 3), and this must be
done to prevent bigamy.

Enhancements to deltaMin(c) Up till now we have assumed that all values
removed from the head of dom(x) are as a result of x being rejected by some
y variables. We now drop this assumption. We add a new conditional (line 4
below) to address the situation where x would prefer to be matched to y than
to his current best preference, consequently y must only consider partners she
prefers to x (line 5), and this is done to avoid instability.

1. deltaMin(c)

2. IF getMin(c.x) = c.xPy

3. THEN setMax(c.y,c.yPx)

4. ELSE IF getMin(c.x) > c.xPy

5. THEN setMax(c.y,c.yPx - 1)

No enhancements to deltaMax(c) We now consider the situation where
some process, other than a proposal, removes values from the tail of a woman’s
preference list, i.e. when the maximum value of dom(y) changes. The deltaMax

method will be called, and the instance continues to be stable as y can still
marry partners. However, we need to prevent bigamy, by removing y from the
domains of the corresponding x variables removed from the tail of dom(y), and
this is just what deltaMax does. Therefore, no enhancement is required.

Incomplete Lists (SMI) The encoding can also deal with incomplete pref-
erence lists, i.e. instances of the stable marriage problems with incomplete lists
(SMI). For a SM instance of size n we introduce the value n+1. The value n+1
must appear in the preference lists mpl[i] and wpl[j] as a punctuation mark, such
that any people after n + 1 are considered unacceptable. For example, if we had
an instance of size 3 and a preference list PL(mi) = (3,2) we would construct

13

mpl[i] = (3, 2, 4, 1) and this would result in the inverse mPw[i] = (4, 2, 1, 3).
Consequently x[i] would always prefer to be unmatched (assigned the value 4)
than to be married to y[1]. We now need to modify the init method such that it
sets the maximum value in dom(x[i]) to be mPw[i][n + 1]. These modifications
will only work in the full implementation (i.e. it requires the above enhance-
ments).

9 Computational Experience

We implemented our encodings using the JSolver toolkit [1], i.e. the Java version
of ILOG Solver, and also the Koalog [3] and JChoco [2] toolkits. All three imple-
mentations performed similarly, therefore we present only our JSolver results. We
implemented four constraint encodings for SM. The first two are those presented
in [7], namely the O(n4) forbidden tuples model (FT) and the optimal O(n2)
boolean encoding (Bool). In the FT model there are n2 binary table constraints
and 2.n variables with domains 1 to n. The constraints explicitly list the disal-
lowed tuples that correspond to unstable or bigamous assignments. In the Bool
encoding there are 2.n2 0/1 variables, where a variable corresponds to a specific
man or woman being matched with a given preference. Implication constraints
act between 0/1 variables to simulate the topping and tailing of preference lists.
The minimal encoding from section 4 (and referred to as SM-lite) produces the
intersection of the male and female GS-lists, but cannot be used in search. The
full encoding, referred to as SM2, is the full implementation that can be used
in search and allows us to enumerate all solutions in a failure-free manner as
in the [7] encodings. Our experiments were run on a Pentium 4 2.8Ghz proces-
sor with 512 Mbytes of random access memory, running Microsoft Windows XP
Professional and Java2 SDK 1.4.2.6 with an increased heap size of 512 Mbytes.

size n

model 45 100 200 300 400 500 600 700 800 900 1000

FT 8.94 - - - - - - - - - -

Bool 0.25 1.2 4.4 - - - - - - - -

SM2lite 0.16 0.22 0.45 0.89 1.72 2.79 3.96 5.62 7.48 9.46 11.94

SM2 0.16 0.23 0.5 0.94 1.82 2.95 4.21 5.95 8.02 9.82 12.47

Fig. 3. Average computation times in seconds to produce the GS-lists, from 10 ran-
domly generated stable marriage problems each of size n

Our first experiment measures the time taken to generate a model of a given
SM instance and make that model arc-consistent, i.e. to produce the GS-lists.
Figure 3 shows the average time taken to produce the GS-lists for ten randomly
generated instances of size 45 up to 1000. Time is measured in seconds, and an
entry − means that an out of memory error occurred. We can see that the SM2-

14

lite and SM2 versions perform much the same, and dominate the other models.

size n

model 45 100 200 300 400 500 600 700 800 900 1000

FT 9.32 - - - - - - - - - -

Bool 0.36 2.02 6.73 - - - - - - - -

SM2 0.21 0.47 1.97 5.43 10.13 19.22 27.27 43.04 54.98 77.89 124.68

Fig. 4. Average computation times in seconds to find all solutions to 10 randomly
generated stable marriage problems each of size n

This second experiment measures the time taken to generate a model and find
all possible stable matchings. Figure 4 shows the average time taken to find all
solutions on the same randomly generated instances used in the first experiment.
Again it can be seen that the SM2 model dominates the other models.

FT bool SM2

time O(n4) O(n2) O(n3)

constraints O(n4) O(n2) O(n2)

variables O(n) O(n2) O(n)

Fig. 5. a summary of the complexities of the three constraint models

Figures 3 and 4 raise the following question, if the Bool encoding is optimal
then why is it dominated by the SM2 encoding? The main reason for this is
that there is no significant difference in the space required to represent variables
with significant differences in domain size, because domains are represented as
intervals when values are consecutive. Considering only the variables, the Bool
encoding uses O(n2) space whereas the SM2 model uses O(n) space. For example,
with n = 1300 the Bool encoding runs out of memory just by creating the 2.13002

variables whereas the SM2 model takes less than 0.25 seconds to generate the
required 2600 variables each with a domain of 1 to 1300. As can be seen in Figure
5 theoretically the space complexity of the constraints used by SM2 and Bool are
the same. In practise this is not the case as SM2 requires exactly n2 constraints
to solve a problem of size n whereas Bool requires 2n+6n2 constraints. Therefore
the Bool encoding requires more variables and more constraints, resulting in a
prohibitively large model.

We now investigate the unweighted sex equal optimisation problem. In the
(NP-Hard) sex equal stable marriage problem (SESMP) [10, 13] both men and
women are to be equally well matched. In an unweighted SESMP scores are the
same as preferences, therefore we find the matching that minimises the abso-

15

lute difference between the sum of the men’s preferences and the sum of the
women’s preferences. In the SM2 model the values in the domains of variables
are preferences, consequently it is straight forward to model the SESMP. All that
is required is to add a search goal to minimise the absolute difference between
the sum of all x variables and the sum of all y variables. However it is difficult
to model the same problem using the Bool constraints. This is because we now
have to introduce 2.n additional variables with domains 1 to n and an additional
O(n2) channelling constraints to set those variables. Figure 6 gives the average
run time to find the unweighted sex equal matchings to 100 random problems
using the SM2 and Bool models.

size n

model 100 200 300 400 500 600 700 800 900 1000

Bool 1.9 6.95 - - - - - - - -

SM2 0.4 1.2 2.87 5 9.15 14.49 20.86 28.65 38.25 52.64

Fig. 6. Average computation times in seconds to find a sex equal solution to 100
randomly generated stable marriage problems each of size n

As can be seen, again the SM2 encoding solves problems faster and can
extend to larger instances. The Bool encoding fails to model problems of size
300 and above, whereas the SM2 encoding can solve problems of size 1000 in
less than a minute.

10 Conclusion

We have presented a specialised binary constraint for the stable marriage prob-
lem. We have demonstrated that the constraint can be used when stable mar-
riage is just a part of a larger, richer problem. Our experience has shown that
the constraint is simple to implement in a constraint programming toolkit, such
as JSolver, JChoco, and Koalog. The complexity of the constraint is O(n3),
and does not compare well to the theoretically optimal O(n2) complexity of the
boolean encoding in [7]. However, our constraint is more practical than those in
[7], typically being able to solve larger problems faster. For example, we have
been able to enumerate all solutions to instance of size 1000 in minutes, whereas
in [8] the largest problems investigated were of size 60. It is obvious that our
model wastes considerable effort. The arc-consistency algorithm typically adds
n − 1 redundant calls to the revision stack whenever a change takes place, and
it is trivial to detect those redundancies. This suggests that it would be easy to
design a space efficient n-ary SM constraint that is of complexity O(n2).

16

Acknowledgements

We are grateful to ILOG SA for providing us with the JSolver toolkit via an
Academic Grant licence. We would also like to thank our reviewers.

References

1. ILOG JSolver. http://www.ilog.com/products/jsolver/.
2. JChoco constraint programming system. http://choco.sourceforge.net/.
3. Koalog Constraint Solver. http://www.koalog.com/.
4. B. Aldershof and O. Carducci. Refined inequalities for stable marriage. Constraints,

4:281–292, 1999.
5. Canadian Resident Matching Service. How the matching algorithm works. Web

document available at http://www.carms.ca/matching/algorith.htm.
6. D. Gale and L. Shapley. College admissions and the stability of marriage. American

Mathematical Monthly, 69:9–15, 1962.
7. I. Gent, R. Irving, D. Manlove, P. Prosser, and B. Smith. A constraint programming

approach to the stable marriage problem. In CP’01, pages 225–239, 2001.
8. I. Gent and P. Prosser. An empirical study of the stable marriage problem with

ties and incomplete lists. In ECAI’02, 2002.
9. M. Green and D. Cohen. Tractability by approximating constraint languages. In

Proceedings of CP ’03, volume 2833 of Lecture Notes in Computer Science, pages
392–406. Springer-Verlag, 2003.

10. D. Gusfield and R. W. Irving. The Stable Marriage Problem: Structure and Algo-
rithms. The MIT Press, 1989.

11. R. Irving. Matching medical students to pairs of hospitals: a new variation on a
well-known theme. In Proceedings of ESA ’98, volume 1461 of Lecture Notes in
Computer Science, pages 381–392. Springer-Verlag, 1998.

12. R. Irving and D. Manlove. The stable roommates problem with ties. Journal of
Algorithms, 43:85–105, 2002.

13. A. Kato. Complexity of the sex-equal stable marriage problem. Japan Journal of
Industrial and Applied Mathematics (JJIAM), 10:1–19, 1993.

14. I. Lustig and J. Puget. Program does not equal program: constraint programming
and its relationship to mathematical programming. Interfaces, 31:29–53, 2001.

15. A. K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8:99–118, 1977.

16. D. Manlove, R. Irving, K. Iwama, S. Miyazaki, and Y. Morita. Hard variants of
stable marriage. Theoretical Computer Science, 276:261–279, 2002.

17. N. R. M. Program. About the NRMP. Web document available at
http://www.nrmp.org/about_nrmp/how.html.

18. A. Roth. The evolution of the labor market for medical interns and residents: a
case study in game theory. Journal of Political Economy, 92(6):991–1016, 1984.

19. P. van Hentenryck, Y. Deville, and C.-M. Teng. A generic arc-consistency algorithm
and its specializations. Artificial Intelligence, 57:291–321, 1992.

	citation_temp.pdf
	http://eprints.gla.ac.uk/3619/

