

Johnson, C.W. (2005) The natural history of bugs: using formal methods
to analyse software related failures in space missions. Lecture Notes in
Computer Science 3582:pp. 9-25.

http://eprints.gla.ac.uk/3519/

© Springer-Verlag, http://www.springer.de/comp/lncs/index.html

The Natural History of Bugs:
Using Formal Methods to Analyse Software Related

Failures in Space Missions

C.W. Johnson,

Department of Computing Science, University of Glasgow, Glasgow, G12 9QQ.
johnson@dcs.gla.ac.uk

Abstract. Space missions force engineers to make complex trade-offs between
many different constraints including cost, mass, power, functionality and
reliability. These constraints create a continual need to innovate. Many
advances rely upon software, for instance to control and monitor the next
generation ‘electron cyclotron resonance’ ion-drives for deep space missions.
Programmers face numerous challenges. It is extremely difficult to conduct
valid ground-based tests for the code used in space missions. Abstract models
and simulations of satellites can be misleading. These issues are compounded
by the use of ‘band-aid’ software to fix design mistakes and compromises in
other aspects of space systems engineering. Programmers must often re-code
missions in flight. This introduces considerable risks. It should, therefore, not
be a surprise that so many space missions fail to achieve their objectives. The
costs of failure are considerable. Small launch vehicles, such as the U.S.
Pegasus system, cost around $18 million. Payloads range from $4 million up to
$1 billion for security related satellites. These costs do not include consequent
business losses. In 2005, Intelsat wrote off $73 million from the failure of a
single uninsured satellite. It is clearly important that we learn as much as
possible from those failures that do occur. The following pages examine the
roles that formal methods might play in the analysis of software failures in
space missions.

The Challenges of Software Engineering in Space

Space is unforgiving. The following sections briefly review some of the challenges
that complicate software development in this environment.

The Usual Suspects

‘Rocket science’ is often seen as the pinnacle of scientific and technological progress.
For instance, it has been estimated that there are more than 1.5 million lines of code in
the onboard command and control computers on the International Space Station.
However, such figures are commonplace in several other industries. The day-to-day
reality of maintaining space-related code would also be familiar to other software

2 C.W. Johnson,

engineers. For example, the Expedition 10 crew is on the International Space Station
as I write this article. Part of their six-month stay will be used to install software
upgrades. These are intended to eliminate the 300 workarounds, ‘Station Program
Notes’, that are used by ground flight controllers [15].

The causes of many failures in space missions will also be familiar to software
engineers. These include the under-specification of complex systems, lack of
resources for validation and verification, poor communication between
multidisciplinary teams and so on. One consequence of this is that many academic
computer scientists cite software failures from space missions as warnings to their
students about what can go wrong in their own programs. The most familliar
examples include the Ariane 5 code re-use [14] and the confusion over metric and
imperial units of thrust in the Mars Climate Orbiter [16]. In contrast, the following
pages delve a little more deeply into the challenges that distinguish software
engineering for space systems from a mass of other applications.

The Remoteness of Space

One of the first issues to confront a programmer is that many space missions must
travel thousands of miles from Earth. This creates a peculiar form of batch
processing where code will not be executed until months or even years after launch.
Further complexity is created by the possibility of reprogramming these missions in
flight. Such reprogramming is widely acknowledged to be both difficult and error
prone. For example, some telemetry configurations may not enable programmers to
verify that a spacecraft has successfully received instruction sequences. In other
words, the target machines are often ‘write-only’.

There are significant pressures associated with recoding a space mission as it travels
towards a rendez-vous with a distant planet. In consequence, programming teams
will often develop coding strategies to reduce the chances for an error. One
technique is to program a range of different options before launch. Once the mission
is in flight, the team accepts self-imposed limits on the admissible reprogramming
that may be attempted. Often the choice will be restricted to one of the pre-scripted
instruction sequences planned and loaded before launch [19]. Other missions have
adopted hybrid strategies where programmers can only upload new code after
multiple reviews and at a small number of key stages in the mission. At all other
times, they must rely on prescripted command sequences.

The differences that physical distance impose on the programming of space missions
can be illustrated by events involving NASA’s Spirit and Opportunity Mars Rovers
during September 2004 [20]. Programmers had to transfer Spirit and Opportunity
back from ‘conjunction’ to normal mode. During a conjunction, communications are
disrupted because Mars and Earth are on opposite sides of the Sun. During the
conjunction, pre-loaded command sequences were used to perform daily science
missions, for instance using a Mössbauer spectrometer and a magnet array to analyze
dust particles. The Rovers transmitted the data from these experiments to the Mars

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions 3

Odyssey orbiter. Odyssey then retransmitted the data back to Earth each afternoon.
This link was extremely error prone. This created a bottleneck that reduced Spirit’s
memory available for science data storage from approximately 400 to 100 megabits.
The problems were compounded when the mission team began to transmit ‘no
operation’ commands to test direct communications with the Rovers during the
conjunction. One of these commands triggered a software ‘reset’ on Opportunity.

Reprogramming arguably offers greatest benefits to programmers when they correct
for problems with their own code. For example, Spirit and Opportunity had to be
reprogrammed shortly after they landed on Mars in January 2004 and have been
reprogrammed many times since. Spirit suffered a software fault during its
navigation of the ‘Columbia Hills’. The flight software team identified that an error
occurred within a 3-microsecond window of vulnerability when a ‘write’ command
was permitted and attempted on a ‘write-protected’ area of RAM [20]. The error was
subsequently corrected in a software upgrade that was also communicated to
Opportunity. Significant changes have been made to their code in order to extend
their mission life beyond Summer 2004. For example, Spirit was commanded to
avoid using a faulty brake relay on its steering motor. Both Rovers have been
reprogrammed to alternate their drive direction to maintain the long-term health of
their wheel drives.

Similarly, the Solar and Helioscopic Observatory (SOHO) was reprogrammed in-
flight to de-spin one of its three gyroscopes. The gyros were identified as a ‘life
limiting’ factor for the mission as a whole. Of course, such benefits carry risks as
well. The de-spun ‘A’ gyroscope was involved in the SOHO mission interruption as
controllers tried to work out which one of the three systems was providing reliable
information [18].

Non-Standard Hardware

Software development is complicated because many space applications require
specialist hardware. As a minimum requirement, processors must be ‘radiation
hardened’. For example, the RAD 6000 processor has been tested to demonstrate 0.2
errors per year GCR – Galactic Cosmic Ray background [6]. If the radiation
exposure is increased to a level similar to the flare events seen in October 1982 and
January 1972 then the rate rises to 0.6 errors per flare.

Space programmers are caught between a ‘rock and a hard place’. They must
understand the unique features of ‘rad-hard’ processors. They must also cope with
reduced tool support. Specialist devices lack the wide range of software
development applications that support Commercial Off The Shelf (COTS) processors.
The limited market for space rad-hard devices often does not justify the development
of computer-aided software engineering tools. The additional validation criteria
imposed on space-rated processors can also exacerbate the ‘generation gap’ between
the facilities provided by this hardware compared to COTS processors.

4 C.W. Johnson,

Many of these problems can be illustrated by the General Purpose Computer
configuration on the Shuttle. A five processor redundant architecture is used to
perform critical guidance, navigation and control functions. However, the detailed
analysis and design necessary to approve both the hardware and software on the GPC
array prevented any updates to the processors for over fifteen years. During which
time it became increasingly difficult to find vendors and suppliers for this technology.
These are not isolated comments. For example, the minutes of subsystems groups
reveal similar concerns throughout the Shuttle programme. The Extra-Vehicular
Activities equipment board looking at the Caution and Warning System has continued
to experience difficulties in supplying the “100 pieces of the EEPROM for the CPU
board, which are becoming obsolete” [21]. It is difficult to underestimate the
consequences of such supply problems. Storage and re-commissioning procedures
must often be considered when utilizing stocks that were not initially acquired by the
eventual end-user. Similarly, there are significant training issues associated with
obsolete and non-standard hardware platforms.

Pilot projects have begun to develop specialist versions of commercial
microprocessors. For instance, the US Defence Technology Program has invested
over $50 million in providing a space-rated version of the PowerPC 750 processor.
The resulting SCS750 processors can reduce the flare error rate from 0.6 per event,
cited above, to 0.36 errors per flare. These individual heavy-ion irradiation errors can
be detected and mitigated by the SCS750 processor [6]. However, the application of
these hybrid platforms is still in its infancy.

Limitations of Re-Use

There is a surprising degree of re-use in other forms of space engineering. For
example, the design of the heat shields and the parachutes on the Mars Surveyor
missions were based on designs from the Pathfinder missions. This provides
important benefits to engineers in the aftermath of a mission failure. Investigators
quickly dismissed these subsystems as causes of the Polar Lander loss because “the
high degree of heritage to the successful Mars Pathfinder design, fabrication, test, and
flight results (suggests) that the failure of an undamaged heat shield is implausible”
[19]. These arguments can be based on limited evidence “there was not an extensive
qualification program as part of the Pathfinder design phase, the Pathfinder chute did,
in fact, work, thus providing at least one successful occurrence”.

In contrast, space missions offer limited opportunities for code re-use. The loss of
Ariane 5 provided a salient example of the problems that can arise when software is
ported between different space missions. It is important to acknowledge some of the
reasons why code re-use is difficult. Command and control software is typically used
to interface complex sub-systems. Any unidentified interactions between these
components will most often be revealed in the form of software failure. Later
sections will also describe an increasing trend to introduce ‘band-aid’ software that is
intended to fix design deficiencies or to achieve cost savings in the wider engineering

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions 5

of space missions. ‘Band aid’ code necessarily involves bespoke programming
because it provides a short-term fix for underlying problems in the design and
development of complex systems.

Limitations of Ground-Based Testing

Much of the software used in space missions cannot easily be tested on the ground.
For example, no test was made to establish that Ariane 5’s Inertial Reference System
(SRI) would behave as intended under the countdown and flight time sequence for the
expected trajectory. The Lyons investigation found that “for reasons of physical law,
it is not feasible to test the SRI as a ‘black box’ in the flight environment, unless one
makes a completely realistic flight test” [14]. It was possible to conduct a limited
form of ground testing by injecting simulated accelerometric signals based on
predicted flight parameters using a turntable to simulate launcher angular movements.
Only in retrospect was it argued, “Had such a test been performed by the supplier or
as part of the acceptance test, the failure mechanism would have been exposed”.

Similarly, the attempt to deliver two Deep Space 2 high-impact micro-probes into the
surface of Mars, went ahead in spite of concerns by mathematical modelers that they
could not reliably analyze the potential impact forces acting on the devices. Their
concerns were significant because of the problems involved in conducting other forms
of testing. The mission validation exercises relied on an incremental build-test
strategy. However, most of the communications system was only qualified with non-
functioning brass-board and breadboard components. Issues of cost prevented a full
impact test. In addition, delays in the schedule meant that a fully functioning probe
was only available relatively late in the programme. To employ destructive testing
would have involved a delay to the launch window [19].

Limitations of Executable and Abstract Modeling

The problems of software development for space missions are compounded because
abstract models and simulations have often proven to be unreliable. It is common
practice to enter into an iterative cycle where software is first developed and tested on
a satellite or vehicle simulator [10]. The results from these evaluations are then
compared with those results that can be obtained from the eventual platform.
However, any discrepancies are just as likely to result in changes to the simulator as
they are to changes in the command and control software. For example, both NASA
and the European Space Agency operated their own simulators of the joint Solar and
Helioscopic Observatory (SOHO) mission. During the mission interruption it was
realized that the NASA model predicted some of the problems they were
experiencing. However, the results could not be replicated for the ESA models;
“analysis of the differing simulation results (ESA vs. NASA simulators) was
continuing as the timeline execution was in process… this, in itself, was an indirect
factor in the failure scenario since the technical support staff were distracted by the
on-going simulation evaluation rather than focusing on the recovery efforts” [18].

6 C.W. Johnson,

The simulators had not been maintained with all on-board software changes that had
been implemented on the spacecraft.

There has long been a debate in the formal methods communities about whether
executable models can provide an appropriate level of abstraction to support
reasoning about critical properties of complex software systems. However, there are
aspects of space missions that stretch our ability to model interactions even at the
highest level of abstraction. The investigation into the Mars Surveyor mission
failures concluded that the “large modeling effort, however, may have not been
enough to ensure success given the choice in the design phase of some of the system
components, such as the propulsion system and the landing Radar, and given some
aspects of the design of the Guidance and Control algorithms/software, which resulted
in a system that was extremely difficult to model and more sensitive to model errors
than it might have been” [19]. For example, the Polar Lander used pulse-width
modulation (PWM) for controlling the thrust of the descent engines rather than the
more conventional throttle based system. This reduced the costs of the Polar Lander
hardware but greatly increased the complexity of software development for the
programmers who had to calculate the exact duration of each engine pulse during the
descent; “the complexity of the interactions between the feed system, the thrusters,
the structure, the Guidance and Control sensors, and the Guidance and Control
algorithms that the PWM approach creates, practically dictate that the only way of
verifying the system with high confidence is with a full-scale closed-loop test of the
system… this was prohibitive from a cost and schedule point of view and it was not
done” [19].

Organizational Complexity and ‘Band-Aid’ Software

The use of software to compensate for the pulse-width modulation on the Polar
Lander provides an example of ‘band-aid’ software. This code is introduced to fix
design mistakes and compromises in other aspects of space systems engineering.
Software is used to cover over design problems just as some mothers use sticking
plasters to cover a host of injuries sustained by their children. Arguably the best
example of band-aid software comes from the Mars Climate Orbiter mission. As
mentioned previously many software engineers are aware that the probable cause of
this mission failure stemmed from the use of Imperial rather than Metric units in the
calculation of thrust for the rocket motors during the mission cruise phase. Few
software engineers realize that the rockets were fired as part of Angular Momentum
Desaturation (AMD) events. The software was called upon far more often than was
originally intended, some estimates state that there were 10 to 14 times more AMDs
than planned. AMD events were intended to desaturate the momentum that was built
up on an internal flywheel. This momentum was, in turn, used to counteract solar
induced momentum on an asymmetrical solar array. Previous missions had used
symmetrical solar panels. The Climate Orbiter’s novel design again reduced
hardware costs but created problems because solar induced momentum skewed the
cruise trajectory. In this way, the engineering decision to have asymmetrical solar
arrays created the need to counteract the ‘uneven’ effects of solar induced momentum

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions 7

on the panels. This was done by spinning the flywheel in an equal and opposite
direction to the momentum induced on the solar panels. However, the flywheel
could only be used until its momentum threatened the stability of the vehicle. In
order to desaturate the flywheel, programmers had to perform the complex
calculations that controlled the rocket motors [16].

The problems created by band-aid software are increased by the organizational
complexity of many space missions. For example, most of the team that worked on
the software and hardware development of the Mars Climate Orbiter was transferred
to the design of the Mars Polar Lander. The mission staff that then had to operate the
Orbiter during its cruise and orbit acquisition phases, therefore, lacked many of the
insights that might have been provided by the original coders. In other missions,
there are conflicts between the programmers who must maintain the integrity of the
platform and those who have a primary interest in particular scientific objectives.
For instance, the SOHO Flight Operations Team was encouraged to modify the stored
sequences of ground-generated commands. These modifications reduced operational
cost during the extended life of the mission; they also minimized science ‘downtime’
and conserved the gyro life. Some modifications proposed by the Science Team
‘were not necessarily driven by any specific requirement changes’ [18]. The
modifications were not adequately managed, for example not all of them were
considered by a Configuration Board. Many were poorly documented. Verification
relied on the NASA computer-based simulator, mentioned previously. There were no
code walk-throughs, no independent reviews by ESA or any other body not involved
in the implementation of the change. No hard copy of the command procedure set on
the satellite existed at the time of the mission interruption.

Formal Methods in the Development of Space-Related Software

There have been a number of notable attempts to use formal methods to address the
problems of software engineering for space-related applications. SRI have used a
range of theorem provers, such as PVS, and model checking tools, including Murφ to
verify that there are no violations of desired properties in models of a system. One of
the best-known examples of this work includes the analysis of the software for the
Simplified Aid for Extra-Vehicular (EVA) Rescue, known as SAFER. This can be
thought of as a form of jet-pack [17]. Other projects have looked at the Shuttle’s
contingency guidance system [3]. In Europe, the Picgal project has used VDM to
analyze ground-based software for launch vehicles similar to Ariane 5 [4]. Relatively
slow progress has been made towards the introduction of these techniques as tools for
the development of space-related software. One reason for this is the relative
immaturity of contemporary software engineering practices in space applications. A
number of more basic software engineering processes provide greater benefits at
lower costs.
The remainder of this paper looks at an alternate use of formal methods. Rather than
focusing on the constructive use of formal methods during program development,

8 C.W. Johnson,

these techniques can be used to help us analyze the causes of software failures in
space missions.

Understanding Space-Related Software Failures

As mentioned, most previous work has focused on the use of formal methods to
support the design of space-related software. In general terms, this approach relies
upon the following semantic inconsistency:

System, Environment, Requirements |==== false (1)

In other words, we might wish to establish that a particular model of the system and
the environment necessarily involve a violation of safety or liveness properties. This
is the traditional role of model checking. These tools will provide a trace of system
states and properties that violate particular theorems. This approach can be
extremely frustrating. The identification of a semantic inconsistency may provide
analysts with limited insights to guide their search for a system and an environment
such that the requirements hold. This is not the only way in which formal methods
might be used. For example, the following semantic entailment can be used in
theorem proving to establish that a system and its environment satisfy a set of
requirements:

System, Environment |==== Requirements (2)

In other words, a set of theorems can be shown to hold for a given model of a system
operating in a particular environment. These theorems, typically, represent the safety
and liveness properties that we might like to hold for our application. This
framework is a simplification of the high-level approach to environmental
specifications being proposed by Michael Jackson and Pamela Zave [8]. For
instance, they have recently proposed the following formalization of ‘Adequacy’
where e and s represent environment and system models respectively. Environment
models include information about the World and any Requirements. System models
include information about Machines and Programs:

∀ e s . World ∧ Machine ∧ Program � Requirements (3)

In design, these approaches have been used to demonstrate that particular theorems
continue to hold, as system models, in other words programs and machines, are
iteratively refined towards implementation. We can also use these technologies in a
completely different way. For example, after an accident we might like to verify that
we have understood the manner in which a failure occurred. For example, one
hypothesis about the failure of the Mars Polar Lander mission was that it met a
localized meteorological anomaly, such as areas of low pressure, during the parachute
descent to the planet surface. In such a situation we might therefore wish to prove

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions 9

that there exists a revised world model, one in which there are localized low pressure
regions, with a machine and program that implies the requirements do not hold:

∃ e’ s . World ∧ Machine ∧ Program � ¬ Requirements (4)

Equally, an investigation might focus on potential misunderstandings about the
manner in which a program will execute on a particular machine. For example, a
software requirement of the Mars Polar Lander was that thrust should be cut to the
engines if a signal was generated from the Hall effect sensors on each of the legs and
the Doppler radar system detected that the planet surface was in range. However, the
programmers failed to account for a global variable that retained a spurious signal that
was retained once the legs initially deployed from the body of the Lander. In terms
of formula (4) these insights would force us to revise our ideas about how a Program
within the system, s, might perform in a particular environment. The key point here
is that we can use theorem proving and model checking to demonstrate that changes
in our environment or system models will lead to the violation of safety and liveness
properties. If we cannot construct such a proof then we need to search for an
alternate explanation of the reasons why an accident occurred.

This approach to formal accident verification can yield some interesting surprises.
For example, the system and environment models are often correct. In space
missions, considerable time and skill is devoted to understanding these issues. The
need to understand gravitational influences is well known. Similarly, the bespoke
nature of many space missions leads to a detailed understanding of these machines.
Mishaps often occur because the safety and liveness requirements are not well
understood. For example, the Polar Lander had a software sequence that was to be
executed if it remained on the planet surface for 24 hours without receiving a
command. The purpose of this software was to start testing alternate
communications facilities. However, the Lander was placed into a ‘sleep mode’ to
conserve battery resources with an interval of less than 24 hours. Software reset the
timer back to 24 hours each time the Lander awoke and hence the alternate
communications configuration was never used. In this example, the model of the
world, the machine and the program would satisfy the individual requirements for the
backup communications and for the sleep mode. However, the models do not imply
the requirement for the backup communications to work in the presence of the sleep
mode. This illustrates some of the complexities associated with a formal approach
to accident verification by providing an example of the problems associated with the
development of complete requirements. The development of a formal proof to
identify the potential problem before launch is technically feasible. However, the
real challenge is to identify those requirements that are necessary to ensure mission
success. Unless we can first do this, there is little likelihood that we will identify the
corresponding theorems.

There are few examples of this alternate use of formal methods as a tool to assist
accident investigation. Ladkin and Loer have extended theorem-proving mechanisms
as part of their Why-Because Analysis technique [12]. This is deliberately intended

10 C.W. Johnson,

to support accident investigation. There are other notable examples. Zuojun Shen
[22] has used the Murφ procedure in Figure 1 to model the Entry, Descent and
Landing phase of the Mars Polar Lander. The model checker was used to �search for
sequences of states that led to the violation of a Murφ invariant. This stated that the
PWM thrust should always be on above a certain altitude. Although Shen’s work
illustrates the feasibility of the approach, many unresolved questions remain to be
addressed.

Procedure EDL_DESCENT

(freeD_uncnty:FREESECENT_ACC_UNCNTY;supon_uncnty:SUPON_ACC_UNCNTY;
subon_uncnty:SUBON_ACC_UNCNTY;
subon_hshelloff_uncnty:SUPONHSELLOFF_ACC_UNCNTY;
SupPyroSwitchHealth: boolean; AccelerameterHEalth: boolean;
SubPyroSwitchHealth: boolean; AltimeterEalth: boolean);--: EDLstate;

Var ENTRY_OK,state2_OK,state3_OK,state4_OK: boolean;

Begin

ENTRY_OK :=false; state2_OK:=false; state3_OK:=false; state4_OK:=false;
if s = ENTRY then

SupDply(SupPyroSwitchHealth,AccelerameterHEalth,freeD_uncnty);
ENTRY_OK :=true;

End;
if s = state2 & ENTRY_OK then

SupSepr(supon_uncnty);
state2_OK:= true;

End;
if s = state3 & ENTRY_OK & state2_OK then

SubDply(freeD_uncnty);
state3_OK:= true;

End;
if s = state4 & ENTRY_OK & state2_OK & state3_OK then

HeatshellOff(subon_uncnty);
state4_OK:= true;

End;
if s = state5 & ENTRY_OK & state2_OK & state3_OK & state4_OK then
 SubSepr(SubPyroSwitchHealth,AltimeterEalth,subon_hshelloff_uncnty);
End;

End;

Fig. 1. Excerpt from Shen’s Model of the Mars Polar Lander Mishap [22]

Traditional Investigation and Identifying Theorems…

The most obvious limitation of formal methods in accident investigation is that the
benefits may not outweigh any associated costs. Typically, the budgets available to
accident investigation teams are a tiny fraction of those devoted to the development of
space missions. Added to this, there are usually tight deadlines by which a report has
to be presented to the commissioning authorities. These deadlines are dictated by
future launch windows. A number of factors might mitigate these costs. For
example, the use of technology such as Murφ can greatly assist the general application
of formal methods both in design and accident verification. By extension, if
mathematical specification techniques were more widely used in the development of
space systems then this would drastically reduce the costs associated with accident
modeling. In other words, we might already have the program, machine and
environmental models identified in formula (4).

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions 11

There are further problems. The application of formal methods would seem to
require that we already have some idea about the potential failure mode for the space
system. If an existing mathematical model of a program, machine and environment
can be shown to violate safety or liveness requirements then the mission should not
have gone ahead. In practice many missions, including the Mars Climate Orbiter,
have been launched with known bugs in their software. The meta-level point is,
however, that we cannot simply set a model checker loose on a system and
environmental description with the hope that it will identify a sequence of events
leading to an accident. The formalization process necessarily involves a number of
complex decisions about the scope of any models and these circumscribe the range of
possible causal hypotheses. This problem is even more acute for theorem proving
where we must identify the particular safety and liveness properties that are to be
disproved. These theorems represent a significant commitment towards the putative
causes of an accident. Equally, however, the process of formalization can force
developers to ask questions about requirements that might not previously have been
asked. This is especially important in the early stages of development before
requirements can become intractable in the mass of detail that is associated with an
eventual implementation. Unfortunately, the introduction of ‘band-aid’ software
implies that these initial requirements will be subject to constant revision. We are,
therefore, faced with a complex situation in which formalization can help both to
uncover problems that were not anticipated and to reinforce existing prejudices by
modeling those aspects that are already well understood.

It can be argued that a formal model of the symptoms of an accident might be used to
support a form of backwards reasoning from the observed failed state. Such models
help to narrow the search space of possible causes. However, further problems arise
from what has been termed ‘causal asymmetries’ [10]. If we know that an event has
occurred then we can predict its effects with a reasonably degree of confidence.
However, if all we know are the consequences of an earlier event then we typically
have a far worse ability to predict the causes of those effects. By analogy, if we
know a program and its inputs we can reason about the likely outputs. However, if
we have a program and its outputs it can be far harder to reason about the
combinations of input values that led to the observed results.

The previous caveats undermine some of Shen’s achievements in his application of
Murφ to the Mars Polar Lander case study. He already knew what to include in his
finite state model because he was working from the Casani report into the mission
failure. In general, investigations into space mission failure are not so fortunate. It
is worth considering the investigatory processes that did reveal the possible software
failures in this mission. The failure mode in the PWM engine code was not found by
the application of the Murφ model checker. Lockhead Martin engineers identified
the bug during a test run on a second Lander that was intended for a future mission.
An engineer pushed a button to indicate a touchdown too early in the test. He released
the button when he realized his error and “was surprised when thrust termination
occurred prematurely” [19]. This prompted a more formal failure analysis that
uncovered the software problem. Similarly, the bug in the Polar Lander’s uplink

12 C.W. Johnson,

command string was not found during the initial code design walkthrough. The
investigators argued that one reason for this was that logic flow diagrams were not
used; “it is difficult to find logic errors by walking through the code without logic
flow diagrams to help the process” [19]. The uplink design error was discovered after
a fault-tree analysis led to the examination of the code and the preparation of code
descriptions for reviews by outside reviewers. Such observations make it important to
be careful in the claims that are made for the formal analysis of accidents. They can
be used to add confidence in any analysis but, at present, it seems too optimistic to
argue that they will automatically uncover failure modes. It seems likely that the use
of mathematical reasoning will continue to depend upon insights provided by more
traditional forms of software forensics [9].

Material Implication Does Not Represent Causation

The previous section focused on some of the practical limitations to the formal
verification of accident models. There are also a number of theoretical problems
[11]. For example, many people would interpret formula (4) as representing a causal
relationship. Changes in our environmental model can be used to explain why an
accident occurred. Unfortunately, material implication cannot easily be used to
represent and reason about the causes of an adverse event. Several paradoxes,
including circular arguments, can confuse the unwary. The impact of these paradoxes
and other features of material implication should not be underestimated. For
instance, we can introduce an arbitrary true antecedent to implications that may
convince non-mathematicians of causal relationships even though there is no direct
relevance with the antecedent. ‘If NASA’s Faster, Better Cheaper programme
reduced funds for the Mars Surveyor projects then software failures led to the loss of
the Polar Lander’.

A number of logicians, philosophers and linguists have recognised the limitations of
strict implication and have responded by constructing alternative logics, which avoid
the problems of classical logic, or by analysing the ways in which people construct
implicational statements using material conditions. Grice [5] and Jackson [7] have
exploited this latter approach. They argue that material implication remains a valid
form of argument for indicative conditionals. In particular, Grice and Jackson
observe that most people use arguments to communicate information in the most ‘cost
effective’ means possible. They are anxious to avoid the costly repair actions that are
necessary whenever misunderstandings occur. One consequence of this is that
people will not assert weaker forms of a proposition when they can assert a strong
form. In particular, speakers do not say 'If P, then Q' when they know that P is false.
It is simpler and more informative to say 'not P'. Grice and Jackson’s analysis is
important because it can be used to avoid some of the problems that arise from
material implication between two arbitrary false statements. Recall that material
implication would allow a statement of the form 'If snow is black, then grass is red‘ to
be true. Grice and Jackson argue that people do not reject such statements because
they believe them to be ‘false’. Instead, they argue that our reservations stem from

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions 13

the impression that such arguments would misleadingly suggest that we are unsure
about the colour of snow.

Lewis [see Lewis and Langford, 13] goes beyond the material implication of classical
logic to develop the notion of strict implication. This is based upon the idea that a
proposition strictly implies all others, which are true, in all possible circumstances
where it is true. The semantics for this form of strict implication is based around that
of modal logics. Hence, we have that A->> B is true at world w if and only if for all
w' such that w' is accessible to w, either A fails in w' or B obtains there. However, the
Lewis semantics for strict implication still permit an antecedent that is irrelevant to
the consequent. Logicians have responded by developing what are known as
relevance logics. One approach builds on a notion of ‘relevant’ proof [1]. This
requires that premises and conclusion must share a variable in valid conditionals.
This requirement can help to ensure that the antecedent and consequent refer to the
same object in an assertion. Alternatively, the proof theory of relevance logics can
require that conclusions can be directly derived from a premise without the
introduction of arbitrary antecedents and consequents. This is intended to ensure that
any premises really are used to obtain a valid conclusion.

Further problems also arise because the material implication of classical logic cannot
convey different and varied interpretations of causal information. For example,
mishap investigators often distinguish between necessary and sufficient causes. A
necessary cause is often identified using counter-factual arguments of the form ‘the
mishap would not have occurred if this cause(s) had not also occurred’. A sufficient
cause can be distinguished by arguments of the form ‘the mishap could have occurred
if this cause(s) had taken place irrespective of any other of the other circumstances
surrounding the incident’. Similarly, many causal arguments are constructed using a
form of subjunctive conditional that is not characterized by material implication. In
particular, counterfactual conditionals rely upon an antecedent, which represents a
past tense subjunctive sentence of the form "If X had been the case …then Y would
have happened. These sentences are known as counterfactuals because there is an
assumption that the antecedent is false. In other words that X is known not to have
been the case. For example, an investigator might assert that ‘If he had been further
away, then he would not have been hurt’. There is an implication that he was NOT
further away and also that he was, in fact, hurt. Most incident investigation
guidelines explicitly recommend that investigators use counterfactual arguments to
guide their analysis [11]. The Lewis semantics for strict implication can be used to
form counterfactual arguments. However, the interpretation of the accessibility
relation between possible worlds still relies on the subjective judgment of domain
experts. In other words, disagreements can arise over whether it is plausible that an
accident would have been avoided if only a cause had been prevented.

The key meta-level issue here is that many of the logics that are used to support the
formal analysis of complex systems have serious limitations if they are to model the
causes of incidents and accidents. Instead, we have been forced to rely on modal
logics and non-standard proof techniques. The identification of a tractable alternative

14 C.W. Johnson,

to first order classical logic remains a topic of considerable debate amongst the small
number of researchers in this area. It also remains the focus of several funding
initiatives from the potential end-users of this technology.

Can We Model the System and the Environment?

The opening sections of this paper described how many academic software engineers
use space mission failures to warn students about the hazards of programming. Many
of these talks omit critical details. For example, they focus on the confusion between
imperial and metric units in the Mars Climate Orbiter code. They overlook the ways
in which software was used as a ‘band aid’ for the asymmetrical solar arrays.
Similarly, I have attended research talks where software engineers construct elaborate
counterfactual arguments of the form ‘if only ESA/NASA/ISRO had followed
software engineering technique X then the mishap would have been avoided’. Such
counterfactuals are by their very nature non-truth functional. We have no accessible
world in which the mishap did not occur so we can never really be sure that the
software engineering technique X would have prevented the mission failure.

In contrast, I would urge software engineers to watch more natural history
programmes on television. These programmes help to show how the animals’
environment helps to shape behavior. By analogy, in order to understand the causes
of software failure in space missions we need to look beyond the immediate causes of
bugs to look at the organizational context that created them. It is extremely
fashionable to talk about accidents as the result of ‘emergent properties’ or
unanticipated outcomes from interaction between subsystems. I do not support this
view. All of the failures mentioned in this report had precursors; the agencies either
had experienced previous similar failures or their own employees and sub-contractors
had described potential concerns through incident reporting systems.

It is also important to stress that analytical techniques can be applied to represent and
reason about the environment in which bugs occur. For example, Figure 2 represents
an Event and Causal Factor (ECF) analysis for the pre-launch phase of the Mars Polar
Lander [10]. The US National Transportation Safety Board and the US Department
of Energy pioneered ECF for use in accident investigation. Rectangles denote events
while ellipses are used to represent those causal factors that make events more likely.

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions 15

���������	
��������	��

��	����	������������������	�����

����������	�������
���

�����������

����	������

� 		������	�

������ � !�

������	��

�"�#�!�

�������

������	���
� 	�	���$ 	���

��$ ��	�	���

��	��$ ����
��	�����

�	��	% ���	���������
�

�	������	���$ 	�

������$ $ 	����&���

' �����	��$ 	���������&��

��������		�����% �����

#() �$ ����$ �������

�����	$ 	������������

$ �����	���������������&�

$ �����������

* ����$ +���,�-./ ��

���	�����	������������	���

0 ��
��	$ ���������	���

' �����&�����
��������

���	���������	�% 		��

����������1���	�$ ���0 �

������������
��	$ ���

����% ��	����������$ 	�����

�	+	�������������	�������&�

���
������������������		�

���	��$ �������������

��	$ ����	������	�����

�������% ������% ��	�

�����������������		�����

���������	�����������

2 	�����������������������

�����������������������

���	���	$ ��������	��	��

�	�	���$ 	���	�������

� 	������������	�

����	�$ ��	�

���������

� 	������������	�

���+��	+��	���

	����	�����3 �4�" �

���������������

5 �	��	����	���������$ ��

���+��	+��	������	���	��

�	�������

��$ ��������	������

����	��	6���	���������	���

&��% �������	$ ���

5 �	�$ ��	�������

�����	��	�����	������	�

������	����	�����
7 ����������/ �������

������������$ ��������	6���	$ 	����

% ������������	��	�����	���

�	�����	�&�������

������	����������$ ������

8 ������9	�����

*�	�&��% ������

���	�+��������$ $ ������������

:	
��	���������

��	��������	���
��������	�

������������
��/ ��	�	����������

$ ������	���$ 	����

��$ ��	�	����	���	��

; ����������$ ��	�

���$ ��	���������	������

$ ���������

<,���	�1�*	��	�1�

.�	��	�����������	��

����������	��

Fig. 2. Events and Causal Factor Overview of the Mars Polar Lander, Pre-Lauch [10]

The ‘Faster, Better, Cheaper’ initiative placed the entire Surveyor programme under
pressure to push the boundaries of cost and technology. This in turn led to a number
of contextual factors that helped shape the programming effort. It was hard for
contractors to meet the mission requirements with the available resources. As we
have seen, opportunities for testing and validation were restricted as tight deadlines
prevented access to hardware platforms and costs prevented many forms of
destructive testing. Analysis and modeling were proposed as lower cost alternatives
and so on. These influences led to the decision to use pulse mode control and a 4 by 3
array of off the shelf engines in preference to previous missions that had used a more
gradual form of throttle control. The outcome of these decisions was to increase the
complexity of software development to control the platform. At the same time,

16 C.W. Johnson,

management focused on the problems of mass reduction so that the Polar Lander
would meet the performance profile of the launch vehicle and cruise resources. This
arguably took their attention away from the wider engineering risks created by cost
reduction across the programme. The contextual factors at the bottom of Figure 2
show that fault tree analysis revealed the hazard from premature shutdown of the
Lander engines, possibly triggered by a software bug. However, this risk was not
adequately guarded against.

Figure 2 characterizes the growing pressures on investigators to look beyond the
immediate or catalytic events that lead to mission failures. It has been argued by
government organizations, by researchers and by a mass of other public bodies that
accident and mishap analysis should instead look for root causes [10]. Unfortunately,
software engineering has a tendency to focus on the immediate events that trigger
particular failures. We remember the code re-use in Ariane 5 or the metric and
imperial confusion with the Mars Climate Orbiter or even the uplink timer commands
on the Polar Lander. Instead, we should look at the underlying causes. For instance,
the Faster, Better Cheaper initiative arguably fostered a culture in which engineers
took considerable risks to innovate with new design. These included the
asymmetrical solar arrays on the Climate Orbiter and the pulse controlled engines on
the Polar Lander. These innovative engineering decisions saved costs but relied on
‘band aid’ software. Programmers were forced to calculate the de-saturation
parameters that would compensate for momentum induced by the innovative solar
arrays. Programmers had to develop control software for the pulse times needed by
the Polar Lander.

Conclusions and Further Work

The rise of ‘systemic’ approaches to accident investigation has clear implications for
the use of formal methods in mishap analysis. One option is to follow the route taken
by many others in the formal methods communities by looking for niche applications.
Mathematical reasoning might be confined to the early stages of an investigation
where it is important to understand precisely what happened. In this view, techniques
such as model checking would provide simple extensions of their more conventional
role in software engineering following the model outlined by Shen’s use of the Murφ �
system. The challenges of this work should not be underestimated. In particular, we
must find ways of using the results from theorem proving and model checking to
inform the wider analytical techniques, such as ECF analysis, that will retain the
primary role in identifying the managerial and organizational root causes of any
mishap. This use of formal methods in forensic software engineering raises a host of
further technical barriers. Space-related software continues to become more complex
as it controls increased functionality and provides a vehicle for highly integrated
systems, including satellite arrays.

An alternative future is one in which the scope of formal methods is expanded to
reason about the root causes of software-related failures. Such a route follows the

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions 17

vision of Jackson and Zave where we begin to model many features of the
environment that are not traditionally considered within formal areas of software
engineering. Again this poses enormous technical challenges. A key question is
what might be included within a formal model of a mishap. For interactive systems,
such as the Shuttle’s General Purpose Computing system, our model may be forced to
consider cognitive, perceptual and physiological attributes of the crew. This, in turn,
raises profound questions about the abstractions that might support such modeling.
There has been work on formal aspects of human computer interaction but the results
are limited and can often be disappointing when applied to applications such as the
Shuttle or Rovers. Even if formal modeling were expanded in this way, it would still
not capture the organizational and managerial issues that are increasingly being
identified as the root causes of software failure. The use of epistemic and deontic
notations to model such decision-making now forms part of the heritage of formal
methods. Studies in the 1980s and 1990s showed how these techniques might be
used, for instance to model legislative requirements. Again, however, the results do
not seem to scale well and there are considerable problems in developing suitable
proof theories. These problems are compounded when one remembers the host of
problems in developing discrete mathematics to provide a satisfactory model of causal
arguments.

To summarize, this paper has introduced some of the demands that are created by
software development for space-related applications. These include the usual
suspects that complicate all forms of software engineering. However, the physical
properties of space environments create novel problems. For example, data and
software updates must often be communicated over vast distances and this creates
novel forms of batch processing. High-levels of radiation as well as mass and power
limitations also create problems because they typically force programmers to rely on
specialist hardware. Additional verification requirements and the limited sales of
these processors often imply that they are obsolete in terms of mass-market
applications long before they reach the launch pad. Later sections have also
described the problems created by ‘band aid’ software. There is a growing tendency
to rely on code to mitigate problems created by engineering decisions that are made
elsewhere in the development of a space mission. One consequence of this is that
software seems to be playing an increasingly prominent role in space-related mission
failures.

The traditional role of formal methods can be expanded beyond design to analyze
software failures. Existing models of software development, such as that proposed
by Jackson and Zave, can easily be adapted to support this endeavor. Others have
used a range of theorem proving and model-checking technology to represent and
reason about space-related software failures [10, 22]. However, there are many
technical and conceptual challenges that remain to be addressed. In particular,
software bugs often form part of more complex problems that permeate through many
different aspects of the engineering of space missions. The technical challenges also
include basic issues with the representation of causal arguments given the limitations
of classical material implication. The conceptual issues relate to the scope of the

18 C.W. Johnson,

modeling activity. Do we focus narrowly on the behavior of a machine and its
program? Or do we consider the managerial and organization precursors that are the
root causes of software failure? Until these issues are resolved we remain even less
equipped to identify the causes of software failure than we are to support the
development of space related systems.

References

[1] A.R. Anderson and N.D. Belnap, Entailment: The Logic of Relevance and Necessity,
Princeton, Princeton University Press, Volume I, 1975.

[2] J.Blum, Intelsat Loses Use of Satellite: Spacecraft Failure Could Jeopardize Sale of

Company, Washington Post, Tuesday, January 18, 2005; Page E01.

[3] J. Crow and B. L. Di Vito. Formalizing space shuttle software requirements. In Proceedings

of the ACM SIGSOFT Workshop on Formal Methods in Software Practice, pages 40-48,
January 1996.

[4] L. Devauchelle, PICGAL: Process Improvement Experiment of a Code Generator to the

ARIANE Launcher, ESSI Project 21 710, Final Report, Aerospatiale, November 1997.
http://www.esi.es/VASIE/Reports/All/21710/Report/21710.pdf

[5] H.P. Grice, Studies in the Way of Words. Harvard University Press, Cambridge MA, 1989.

[6] R. Hillman, M. Conrad, P. Layton, C. Thibodeau, G.M. Swift and F. Irom, Space Processor

Radiation Mitigation and Validation Techniques for an 1800 MIPS Processor Board,
Maxwell Technologies and Jet Propulsion Laboratory, California Institute of Technology,
2003. http://parts.jpl.nasa.gov/docs/radecs03_swift.pdf

[7] F. Jackson, On Assertion and Indicative Conditionals. Philosophical Review, (88):565-589,

1979.

[8] M. Jackson and P. Zave, Deriving Specifications from Requirements: An Example,

Proceedings of the 17th International Conference on Software Engineering, pages 15-24,
ACM Press, 1995.

[9] C.W. Johnson, Forensic Software Engineering: Are Software Failures Symptomatic of

Systemic Problems? Safety Science (40)9:835-847, 2002.

[10] C.W. Johnson, A Handbook of Accident and Incident Reporting, Glasgow University

Press, Glasgow, 2003. http://www.dcs.gla.ac.uk/~johnson/book

[11] C.W. Johnson and C.M. Holloway, A Survey of Causation in Mishap Logics, Reliability

Engineering and Systems Safety, (80)3:271-291, 2003.

[12] P. Ladkin and K. Loer, Why-Because Analysis: Formal Reasoning About Incidents, RVS-

Bk-98-01, Technischen Fakultät der Universität, Bielefeld, Germany, 1988.

[13] C.I. Lewis and C.H. Langford, Symbolic Logic, The Century Co. New York and London,

1932.

The Natural History of Bugs: Using Formal Methods to Analyse
Software Related Failures in Space Missions 19

[14] J.L. Lyons. Report of the inquiry board into the failure of Flight 501 of the Ariane 5

rocket. Technical report, European Space Agency, Paris, France, July 1996.

[15] NASA, Expedition 10: Paving the Road for the Return to Flight, International Space

Station, Science Operations, Oct. 2004. http://www.scipoc.msfc.nasa.gov/expedition10.html

[16] NASA. Mars Climate Orbiter: Mishap Investigation Board, Phase I Report. Technical

report, Mars Climate Orbiter, Mishap Investigation Board, NASA Headquarters,
Washington DC, USA, 1999. ftp://ftp.hq.nasa.gov/pub/pao/reports/1999/MCO_report.pdf.

[17] NASA, Formal Methods Specification and Verification Guidebook for Software and

Computer Systems, Report NASA-GB-002-95, NASA Office of Safety and Mission
Assurance, Washington DC, 1995. http://eis.jpl.nasa.gov/quality/Formal_Methods

[18] NASA/ESA, SOHO Mission Interruption Joint NASA/ESA Investigation Board Final

Report, 1998. http://umbra.nascom.nasa.gov/soho/SOHO_final_report.html

[19] NASA/JPL. Report on the loss of the Mars Polar Lander and Deep Space 2 Missions (The

‘Casani’ Report). JPL D-18709, NASA/Jet Propulsion Laboratory, 2000.

[20] NASA/JPL, Sol 243-262: Spirit Back to Normal Operations, Mars Exploration Rover

Mission, NASA/Jet Propulsion Laboratory, California Institute of Technology, 29
September 2004, http://marsrover.nasa.gov/mission/status_spiritAll.html#sol243

[21] NASA/JSC EVA Project Office, EVA Equipment Board (EEB) Minutes of Meeting

September 19, 2001, http://www.spaceref.ca/news/viewsr.html?pid=3821

[22] Z. Shen, Model Checking for the MPL Entry and Descent Sequence, Technical Report,

Department of Aerospace Engineering, Iowa State University, December 2001,
http://www.public.iastate.edu/~zjshen/ProjectReport.pdf

	citation_temp.pdf
	http://eprints.gla.ac.uk/3519/

