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Abstract. Space missions force engineers to make complex trade-offs between 
many different constraints including cost, mass, power, functionality and 
reliability.   These constraints create a continual need to innovate.  Many 
advances rely upon software, for instance to control and monitor the next 
generation ‘electron cyclotron resonance’ ion-drives for deep space missions.   
Programmers face numerous challenges.  It is extremely difficult to conduct 
valid ground-based tests for the code used in space missions.   Abstract models 
and simulations of satellites can be misleading.   These issues are compounded 
by the use of ‘band-aid’ software to fix design mistakes and compromises in 
other aspects of space systems engineering.  Programmers must often re-code 
missions in flight.  This introduces considerable risks.   It should, therefore, not 
be a surprise that so many space missions fail to achieve their objectives.   The 
costs of failure are considerable.   Small launch vehicles, such as the U.S. 
Pegasus system, cost around $18 million.  Payloads range from $4 million up to 
$1 billion for security related satellites.  These costs do not include consequent 
business losses.   In 2005, Intelsat wrote off $73 million from the failure of a 
single uninsured satellite.   It is clearly important that we learn as much as 
possible from those failures that do occur. The following pages examine the 
roles that formal methods might play in the analysis of software failures in 
space missions. 

The Challenges of Software Engineering in Space 

Space is unforgiving.   The following sections briefly review some of the challenges 
that complicate software development in this environment. 

The Usual Suspects 

‘Rocket science’ is often seen as the pinnacle of scientific and technological progress.   
For instance, it has been estimated that there are more than 1.5 million lines of code in 
the onboard command and control computers on the International Space Station.  
However, such figures are commonplace in several other industries.   The day-to-day 
reality of maintaining space-related code would also be familiar to other software 
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engineers.  For example, the Expedition 10 crew is on the International Space Station 
as I write this article.   Part of their six-month stay will be used to install software 
upgrades.  These are intended to eliminate the 300 workarounds, ‘Station Program 
Notes’, that are used by ground flight controllers [15]. 
 
The causes of many failures in space missions will also be familiar to software 
engineers.  These include the under-specification of complex systems, lack of 
resources for validation and verification, poor communication between 
multidisciplinary teams and so on.   One consequence of this is that many academic 
computer scientists cite software failures from space missions as warnings to their 
students about what can go wrong in their own programs.  The most familliar 
examples include the Ariane 5 code re-use [14] and the confusion over metric and 
imperial units of thrust in the Mars Climate Orbiter [16].   In contrast, the following 
pages delve a little more deeply into the challenges that distinguish software 
engineering for space systems from a mass of other applications.   

The Remoteness of Space 

One of the first issues to confront a programmer is that many space missions must 
travel thousands of miles from Earth.   This creates a peculiar form of batch 
processing where code will not be executed until months or even years after launch.   
Further complexity is created by the possibility of reprogramming these missions in 
flight.   Such reprogramming is widely acknowledged to be both difficult and error 
prone.  For example, some telemetry configurations may not enable programmers to 
verify that a spacecraft has successfully received instruction sequences.   In other 
words, the target machines are often ‘write-only’.    
 
There are significant pressures associated with recoding a space mission as it travels 
towards a rendez-vous with a distant planet.  In consequence, programming teams 
will often develop coding strategies to reduce the chances for an error.   One 
technique is to program a range of different options before launch.  Once the mission 
is in flight, the team accepts self-imposed limits on the admissible reprogramming 
that may be attempted.  Often the choice will be restricted to one of the pre-scripted 
instruction sequences planned and loaded before launch [19].   Other missions have 
adopted hybrid strategies where programmers can only upload new code after 
multiple reviews and at a small number of key stages in the mission.  At all other 
times, they must rely on prescripted command sequences. 
 
The differences that physical distance impose on the programming of space missions 
can be illustrated by events involving NASA’s Spirit and Opportunity Mars Rovers 
during September 2004 [20].  Programmers had to transfer Spirit and Opportunity 
back from ‘conjunction’ to normal mode.  During a conjunction, communications are 
disrupted because Mars and Earth are on opposite sides of the Sun.   During the 
conjunction, pre-loaded command sequences were used to perform daily science 
missions, for instance using a Mössbauer spectrometer and a magnet array to analyze 
dust particles.  The Rovers transmitted the data from these experiments to the Mars 
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Odyssey orbiter.   Odyssey then retransmitted the data back to Earth each afternoon.   
This link was extremely error prone. This created a bottleneck that reduced Spirit’s 
memory available for science data storage from approximately 400 to 100 megabits.  
The problems were compounded when the mission team began to transmit ‘no 
operation’ commands to test direct communications with the Rovers during the 
conjunction. One of these commands triggered a software ‘reset’ on Opportunity.  
 
Reprogramming arguably offers greatest benefits to programmers when they correct 
for problems with their own code.  For example, Spirit and Opportunity had to be 
reprogrammed shortly after they landed on Mars in January 2004 and have been 
reprogrammed many times since.   Spirit suffered a software fault during its 
navigation of the ‘Columbia Hills’.  The flight software team identified that an error 
occurred within a 3-microsecond window of vulnerability when a ‘write’ command 
was permitted and attempted on a ‘write-protected’ area of RAM [20].   The error was 
subsequently corrected in a software upgrade that was also communicated to 
Opportunity. Significant changes have been made to their code in order to extend 
their mission life beyond Summer 2004.  For example, Spirit was commanded to 
avoid using a faulty brake relay on its steering motor.  Both Rovers have been 
reprogrammed to alternate their drive direction to maintain the long-term health of 
their wheel drives.   
 
Similarly, the Solar and Helioscopic Observatory (SOHO) was reprogrammed in-
flight to de-spin one of its three gyroscopes.   The gyros were identified as a ‘life 
limiting’ factor for the mission as a whole.   Of course, such benefits carry risks as 
well.   The de-spun ‘A’ gyroscope was involved in the SOHO mission interruption as 
controllers tried to work out which one of the three systems was providing reliable 
information [18].     
 

Non-Standard Hardware  

Software development is complicated because many space applications require 
specialist hardware.   As a minimum requirement, processors must be ‘radiation 
hardened’.   For example, the RAD 6000 processor has been tested to demonstrate 0.2 
errors per year GCR – Galactic Cosmic Ray background [6].   If the radiation 
exposure is increased to a level similar to the flare events seen in October 1982 and 
January 1972 then the rate rises to 0.6 errors per flare.   

 
Space programmers are caught between a ‘rock and a hard place’.   They must 
understand the unique features of ‘rad-hard’ processors.   They must also cope with 
reduced tool support.   Specialist devices lack the wide range of software 
development applications that support Commercial Off The Shelf (COTS) processors. 
The limited market for space rad-hard devices often does not justify the development 
of computer-aided software engineering tools.  The additional validation criteria 
imposed on space-rated processors can also exacerbate the ‘generation gap’ between 
the facilities provided by this hardware compared to COTS processors. 
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Many of these problems can be illustrated by the General Purpose Computer 
configuration on the Shuttle.   A five processor redundant architecture is used to 
perform critical guidance, navigation and control functions.  However, the detailed 
analysis and design necessary to approve both the hardware and software on the GPC 
array prevented any updates to the processors for over fifteen years.   During which 
time it became increasingly difficult to find vendors and suppliers for this technology.  
These are not isolated comments.  For example, the minutes of subsystems groups 
reveal similar concerns throughout the Shuttle programme.   The Extra-Vehicular 
Activities equipment board looking at the Caution and Warning System has continued 
to experience difficulties in supplying the “100 pieces of the EEPROM for the CPU 
board, which are becoming obsolete” [21].   It is difficult to underestimate the 
consequences of such supply problems.   Storage and re-commissioning procedures 
must often be considered when utilizing stocks that were not initially acquired by the 
eventual end-user.  Similarly, there are significant training issues associated with 
obsolete and non-standard hardware platforms. 
 
Pilot projects have begun to develop specialist versions of commercial 
microprocessors.  For instance, the US Defence Technology Program has invested 
over $50 million in providing a space-rated version of the PowerPC 750 processor.  
The resulting SCS750 processors can reduce the flare error rate from 0.6 per event, 
cited above, to 0.36 errors per flare.  These individual heavy-ion irradiation errors can 
be detected and mitigated by the SCS750 processor [6].  However, the application of 
these hybrid platforms is still in its infancy.   

Limitations of Re-Use 

There is a surprising degree of re-use in other forms of space engineering.   For 
example, the design of the heat shields and the parachutes on the Mars Surveyor 
missions were based on designs from the Pathfinder missions.   This provides 
important benefits to engineers in the aftermath of a mission failure.   Investigators 
quickly dismissed these subsystems as causes of the Polar Lander loss because “the 
high degree of heritage to the successful Mars Pathfinder design, fabrication, test, and 
flight results (suggests) that the failure of an undamaged heat shield is implausible” 
[19].   These arguments can be based on limited evidence “there was not an extensive 
qualification program as part of the Pathfinder design phase, the Pathfinder chute did, 
in fact, work, thus providing at least one successful occurrence”. 

 
In contrast, space missions offer limited opportunities for code re-use.   The loss of 
Ariane 5 provided a salient example of the problems that can arise when software is 
ported between different space missions.   It is important to acknowledge some of the 
reasons why code re-use is difficult.   Command and control software is typically used 
to interface complex sub-systems.   Any unidentified interactions between these 
components will most often be revealed in the form of software failure.   Later 
sections will also describe an increasing trend to introduce ‘band-aid’ software that is 
intended to fix design deficiencies or to achieve cost savings in the wider engineering 



The Natural History of Bugs:                                    Using Formal Methods to Analyse 
Software Related Failures in Space Missions      5 

 

of space missions.  ‘Band aid’ code necessarily involves bespoke programming 
because it provides a short-term fix for underlying problems in the design and 
development of complex systems. 

Limitations of Ground-Based Testing 

Much of the software used in space missions cannot easily be tested on the ground.   
For example, no test was made to establish that Ariane 5’s Inertial Reference System 
(SRI) would behave as intended under the countdown and flight time sequence for the 
expected trajectory.  The Lyons investigation found that “for reasons of physical law, 
it is not feasible to test the SRI as a ‘black box’ in the flight environment, unless one 
makes a completely realistic flight test” [14].    It was possible to conduct a limited 
form of ground testing by injecting simulated accelerometric signals based on 
predicted flight parameters using a turntable to simulate launcher angular movements. 
Only in retrospect was it argued, “Had such a test been performed by the supplier or 
as part of the acceptance test, the failure mechanism would have been exposed”.    
 
Similarly, the attempt to deliver two Deep Space 2 high-impact micro-probes into the 
surface of Mars, went ahead in spite of concerns by mathematical modelers that they 
could not reliably analyze the potential impact forces acting on the devices.   Their 
concerns were significant because of the problems involved in conducting other forms 
of testing.   The mission validation exercises relied on an incremental build-test 
strategy.   However, most of the communications system was only qualified with non-
functioning brass-board and breadboard components.   Issues of cost prevented a full 
impact test.  In addition, delays in the schedule meant that a fully functioning probe 
was only available relatively late in the programme.   To employ destructive testing 
would have involved a delay to the launch window [19]. 

Limitations of Executable and Abstract Modeling 

The problems of software development for space missions are compounded because 
abstract models and simulations have often proven to be unreliable.  It is common 
practice to enter into an iterative cycle where software is first developed and tested on 
a satellite or vehicle simulator [10].      The results from these evaluations are then 
compared with those results that can be obtained from the eventual platform.   
However, any discrepancies are just as likely to result in changes to the simulator as 
they are to changes in the command and control software.  For example, both NASA 
and the European Space Agency operated their own simulators of the joint Solar and 
Helioscopic Observatory (SOHO) mission.   During the mission interruption it was 
realized that the NASA model predicted some of the problems they were 
experiencing.  However, the results could not be replicated for the ESA models; 
“analysis of the differing simulation results (ESA vs. NASA simulators) was 
continuing as the timeline execution was in process… this, in itself, was an indirect 
factor in the failure scenario since the technical support staff were distracted by the 
on-going simulation evaluation rather than focusing on the recovery efforts” [18].   
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The simulators had not been maintained with all on-board software changes that had 
been implemented on the spacecraft. 
 
There has long been a debate in the formal methods communities about whether 
executable models can provide an appropriate level of abstraction to support 
reasoning about critical properties of complex software systems.   However, there are 
aspects of space missions that stretch our ability to model interactions even at the 
highest level of abstraction.   The investigation into the Mars Surveyor mission 
failures concluded that the “large modeling effort, however, may have not been 
enough to ensure success given the choice in the design phase of some of the system 
components, such as the propulsion system and the landing Radar, and given some 
aspects of the design of the Guidance and Control algorithms/software, which resulted 
in a system that was extremely difficult to model and more sensitive to model errors 
than it might have been” [19]. For example, the Polar Lander used pulse-width 
modulation (PWM) for controlling the thrust of the descent engines rather than the 
more conventional throttle based system.  This reduced the costs of the Polar Lander 
hardware but greatly increased the complexity of software development for the 
programmers who had to calculate the exact duration of each engine pulse during the 
descent; “the complexity of the interactions between the feed system, the thrusters, 
the structure, the Guidance and Control sensors, and the Guidance and Control 
algorithms that the PWM approach creates, practically dictate that the only way of 
verifying the system with high confidence is with a full-scale closed-loop test of the 
system… this was prohibitive from a cost and schedule point of view and it was not 
done” [19]. 

Organizational Complexity and ‘Band-Aid’ Software 

The use of software to compensate for the pulse-width modulation on the Polar 
Lander provides an example of ‘band-aid’ software.   This code is introduced to fix 
design mistakes and compromises in other aspects of space systems engineering.  
Software is used to cover over design problems just as some mothers use sticking 
plasters to cover a host of injuries sustained by their children.   Arguably the best 
example of band-aid software comes from the Mars Climate Orbiter mission.  As 
mentioned previously many software engineers are aware that the probable cause of 
this mission failure stemmed from the use of Imperial rather than Metric units in the 
calculation of thrust for the rocket motors during the mission cruise phase.   Few 
software engineers realize that the rockets were fired as part of Angular Momentum 
Desaturation (AMD) events.  The software was called upon far more often than was 
originally intended, some estimates state that there were 10 to 14 times more AMDs 
than planned.   AMD events were intended to desaturate the momentum that was built 
up on an internal flywheel.   This momentum was, in turn, used to counteract solar 
induced momentum on an asymmetrical solar array.  Previous missions had used 
symmetrical solar panels.   The Climate Orbiter’s novel design again reduced 
hardware costs but created problems because solar induced momentum skewed the 
cruise trajectory.   In this way, the engineering decision to have asymmetrical solar 
arrays created the need to counteract the ‘uneven’ effects of solar induced momentum 
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on the panels.   This was done by spinning the flywheel in an equal and opposite 
direction to the momentum induced on the solar panels.   However, the flywheel 
could only be used until its momentum threatened the stability of the vehicle.  In 
order to desaturate the flywheel, programmers had to perform the complex 
calculations that controlled the rocket motors [16]. 
 
The problems created by band-aid software are increased by the organizational 
complexity of many space missions.  For example, most of the team that worked on 
the software and hardware development of the Mars Climate Orbiter was transferred 
to the design of the Mars Polar Lander.   The mission staff that then had to operate the 
Orbiter during its cruise and orbit acquisition phases, therefore, lacked many of the 
insights that might have been provided by the original coders.   In other missions, 
there are conflicts between the programmers who must maintain the integrity of the 
platform and those who have a primary interest in particular scientific objectives.   
For instance, the SOHO Flight Operations Team was encouraged to modify the stored 
sequences of ground-generated commands.  These modifications reduced operational 
cost during the extended life of the mission; they also minimized science ‘downtime’ 
and conserved the gyro life. Some modifications proposed by the Science Team  
‘were not necessarily driven by any specific requirement changes’ [18]. The 
modifications were not adequately managed, for example not all of them were 
considered by a Configuration Board.  Many were poorly documented.  Verification 
relied on the NASA computer-based simulator, mentioned previously. There were no 
code walk-throughs, no independent reviews by ESA or any other body not involved 
in the implementation of the change. No hard copy of the command procedure set on 
the satellite existed at the time of the mission interruption. 

Formal Methods in the Development of Space-Related Software 

There have been a number of notable attempts to use formal methods to address the 
problems of software engineering for space-related applications.  SRI have used a 
range of theorem provers, such as PVS, and model checking tools, including Murφ to 
verify that there are no violations of desired properties in models of a system. One of 
the best-known examples of this work includes the analysis of the software for the 
Simplified Aid for Extra-Vehicular (EVA) Rescue, known as SAFER.  This can be 
thought of as a form of jet-pack [17].  Other projects have looked at the Shuttle’s 
contingency guidance system [3].  In Europe, the Picgal project has used VDM to 
analyze ground-based software for launch vehicles similar to Ariane 5 [4].  Relatively 
slow progress has been made towards the introduction of these techniques as tools for 
the development of space-related software.   One reason for this is the relative 
immaturity of contemporary software engineering practices in space applications.  A 
number of more basic software engineering processes provide greater benefits at 
lower costs.   
The remainder of this paper looks at an alternate use of formal methods.  Rather than 
focusing on the constructive use of formal methods during program development, 
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these techniques can be used to help us analyze the causes of software failures in 
space missions. 

Understanding Space-Related Software Failures 

As mentioned, most previous work has focused on the use of formal methods to 
support the design of space-related software.   In general terms, this approach relies 
upon the following semantic inconsistency: 

 
System, Environment, Requirements |==== false   (1) 
 

In other words, we might wish to establish that a particular model of the system and 
the environment necessarily involve a violation of safety or liveness properties.   This 
is the traditional role of model checking.   These tools will provide a trace of system 
states and properties that violate particular theorems.   This approach can be 
extremely frustrating.   The identification of a semantic inconsistency may provide 
analysts with limited insights to guide their search for a system and an environment 
such that the requirements hold.  This is not the only way in which formal methods 
might be used.   For example, the following semantic entailment can be used in 
theorem proving to establish that a system and its environment satisfy a set of 
requirements: 

 
System, Environment |====  Requirements    (2) 

 
In other words, a set of theorems can be shown to hold for a given model of a system 
operating in a particular environment.   These theorems, typically, represent the safety 
and liveness properties that we might like to hold for our application.   This 
framework is a simplification of the high-level approach to environmental 
specifications being proposed by Michael Jackson and Pamela Zave [8].   For 
instance, they have recently proposed the following formalization of ‘Adequacy’ 
where e and s represent environment and system models respectively.   Environment 
models include information about the World and any Requirements.   System models 
include information about Machines and Programs: 

 
∀ e s . World ∧ Machine ∧ Program � Requirements  (3) 

 
In design, these approaches have been used to demonstrate that particular theorems 
continue to hold, as system models, in other words programs and machines, are 
iteratively refined towards implementation.   We can also use these technologies in a 
completely different way.  For example, after an accident we might like to verify that 
we have understood the manner in which a failure occurred.  For example, one 
hypothesis about the failure of the Mars Polar Lander mission was that it met a 
localized meteorological anomaly, such as areas of low pressure, during the parachute 
descent to the planet surface.   In such a situation we might therefore wish to prove 
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that there exists a revised world model, one in which there are localized low pressure 
regions, with a machine and program that implies the requirements do not hold: 
 

∃ e’ s . World ∧ Machine ∧ Program � ¬ Requirements (4) 
 

Equally, an investigation might focus on potential misunderstandings about the 
manner in which a program will execute on a particular machine.   For example, a 
software requirement of the Mars Polar Lander was that thrust should be cut to the 
engines if a signal was generated from the Hall effect sensors on each of the legs and 
the Doppler radar system detected that the planet surface was in range.   However, the 
programmers failed to account for a global variable that retained a spurious signal that 
was retained once the legs initially deployed from the body of the Lander.   In terms 
of formula (4) these insights would force us to revise our ideas about how a Program 
within the system, s, might perform in a particular environment.   The key point here 
is that we can use theorem proving and model checking to demonstrate that changes 
in our environment or system models will lead to the violation of safety and liveness 
properties.   If we cannot construct such a proof then we need to search for an 
alternate explanation of the reasons why an accident occurred. 
 
This approach to formal accident verification can yield some interesting surprises.   
For example, the system and environment models are often correct.   In space 
missions, considerable time and skill is devoted to understanding these issues.   The 
need to understand gravitational influences is well known.   Similarly, the bespoke 
nature of many space missions leads to a detailed understanding of these machines.   
Mishaps often occur because the safety and liveness requirements are not well 
understood.   For example, the Polar Lander had a software sequence that was to be 
executed if it remained on the planet surface for 24 hours without receiving a 
command.   The purpose of this software was to start testing alternate 
communications facilities.   However, the Lander was placed into a ‘sleep mode’ to 
conserve battery resources with an interval of less than 24 hours.   Software reset the 
timer back to 24 hours each time the Lander awoke and hence the alternate 
communications configuration was never used.   In this example, the model of the 
world, the machine and the program would satisfy the individual requirements for the 
backup communications and for the sleep mode.  However, the models do not imply 
the requirement for the backup communications to work in the presence of the sleep 
mode.    This illustrates some of the complexities associated with a formal approach 
to accident verification by providing an example of the problems associated with the 
development of complete requirements.   The development of a formal proof to 
identify the potential problem before launch is technically feasible.   However, the 
real challenge is to identify those requirements that are necessary to ensure mission 
success.  Unless we can first do this, there is little likelihood that we will identify the 
corresponding theorems. 
 
There are few examples of this alternate use of formal methods as a tool to assist 
accident investigation.   Ladkin and Loer have extended theorem-proving mechanisms 
as part of their Why-Because Analysis technique [12].  This is deliberately intended 
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to support accident investigation.  There are other notable examples.  Zuojun Shen 
[22] has used the Murφ procedure in Figure 1 to model the Entry, Descent and 
Landing phase of the Mars Polar Lander.  The model checker was used to �search for 
sequences of states that led to the violation of a Murφ invariant.  This stated that the 
PWM thrust should always be on above a certain altitude.  Although Shen’s work 
illustrates the feasibility of the approach, many unresolved questions remain to be 
addressed. 
  
Procedure EDL_DESCENT 

(freeD_uncnty:FREESECENT_ACC_UNCNTY;supon_uncnty:SUPON_ACC_UNCNTY; 
subon_uncnty:SUBON_ACC_UNCNTY; 
subon_hshelloff_uncnty:SUPONHSELLOFF_ACC_UNCNTY; 
SupPyroSwitchHealth: boolean; AccelerameterHEalth: boolean; 
SubPyroSwitchHealth: boolean; AltimeterEalth: boolean);--: EDLstate; 

Var ENTRY_OK,state2_OK,state3_OK,state4_OK: boolean; 
 
Begin 

ENTRY_OK :=false; state2_OK:=false; state3_OK:=false; state4_OK:=false; 
if s = ENTRY then 

SupDply(SupPyroSwitchHealth,AccelerameterHEalth,freeD_uncnty); 
ENTRY_OK :=true; 

End; 
if s = state2 & ENTRY_OK then 

SupSepr(supon_uncnty); 
state2_OK:= true; 

End; 
if s = state3 & ENTRY_OK & state2_OK then 

SubDply(freeD_uncnty); 
state3_OK:= true; 

End; 
if s = state4 & ENTRY_OK & state2_OK & state3_OK then 

HeatshellOff(subon_uncnty); 
state4_OK:= true; 

End; 
if s = state5 & ENTRY_OK & state2_OK & state3_OK & state4_OK then 
      SubSepr(SubPyroSwitchHealth,AltimeterEalth,subon_hshelloff_uncnty); 
End; 

End; 
 

Fig. 1. Excerpt from Shen’s Model of the Mars Polar Lander Mishap [22] 

Traditional Investigation and Identifying Theorems… 

The most obvious limitation of formal methods in accident investigation is that the 
benefits may not outweigh any associated costs.   Typically, the budgets available to 
accident investigation teams are a tiny fraction of those devoted to the development of 
space missions.  Added to this, there are usually tight deadlines by which a report has 
to be presented to the commissioning authorities.  These deadlines are dictated by 
future launch windows.  A number of factors might mitigate these costs.  For 
example, the use of technology such as Murφ can greatly assist the general application 
of formal methods both in design and accident verification.   By extension, if 
mathematical specification techniques were more widely used in the development of 
space systems then this would drastically reduce the costs associated with accident 
modeling.   In other words, we might already have the program, machine and 
environmental models identified in formula (4). 
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There are further problems.   The application of formal methods would seem to 
require that we already have some idea about the potential failure mode for the space 
system.   If an existing mathematical model of a program, machine and environment 
can be shown to violate safety or liveness requirements then the mission should not 
have gone ahead.  In practice many missions, including the Mars Climate Orbiter, 
have been launched with known bugs in their software.   The meta-level point is, 
however, that we cannot simply set a model checker loose on a system and 
environmental description with the hope that it will identify a sequence of events 
leading to an accident.   The formalization process necessarily involves a number of 
complex decisions about the scope of any models and these circumscribe the range of 
possible causal hypotheses.   This problem is even more acute for theorem proving 
where we must identify the particular safety and liveness properties that are to be 
disproved.   These theorems represent a significant commitment towards the putative 
causes of an accident.   Equally, however, the process of formalization can force 
developers to ask questions about requirements that might not previously have been 
asked.   This is especially important in the early stages of development before 
requirements can become intractable in the mass of detail that is associated with an 
eventual implementation.   Unfortunately, the introduction of ‘band-aid’ software 
implies that these initial requirements will be subject to constant revision.  We are, 
therefore, faced with a complex situation in which formalization can help both to 
uncover problems that were not anticipated and to reinforce existing prejudices by 
modeling those aspects that are already well understood. 
 
It can be argued that a formal model of the symptoms of an accident might be used to 
support a form of backwards reasoning from the observed failed state.  Such models 
help to narrow the search space of possible causes.   However, further problems arise 
from what has been termed ‘causal asymmetries’ [10].   If we know that an event has 
occurred then we can predict its effects with a reasonably degree of confidence.   
However, if all we know are the consequences of an earlier event then we typically 
have a far worse ability to predict the causes of those effects.   By analogy, if we 
know a program and its inputs we can reason about the likely outputs.  However, if 
we have a program and its outputs it can be far harder to reason about the 
combinations of input values that led to the observed results. 
 
The previous caveats undermine some of Shen’s achievements in his application of 
Murφ to the Mars Polar Lander case study.  He already knew what to include in his 
finite state model because he was working from the Casani report into the mission 
failure.   In general, investigations into space mission failure are not so fortunate.   It 
is worth considering the investigatory processes that did reveal the possible software 
failures in this mission.  The failure mode in the PWM engine code was not found by 
the application of the Murφ model checker.   Lockhead Martin engineers identified 
the bug during a test run on a second Lander that was intended for a future mission.  
An engineer pushed a button to indicate a touchdown too early in the test. He released 
the button when he realized his error and “was surprised when thrust termination 
occurred prematurely” [19]. This prompted a more formal failure analysis that 
uncovered the software problem.  Similarly, the bug in the Polar Lander’s uplink 
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command string was not found during the initial code design walkthrough.  The 
investigators argued that one reason for this was that logic flow diagrams were not 
used; “it is difficult to find logic errors by walking through the code without logic 
flow diagrams to help the process” [19].  The uplink design error was discovered after 
a fault-tree analysis led to the examination of the code and the preparation of code 
descriptions for reviews by outside reviewers.  Such observations make it important to 
be careful in the claims that are made for the formal analysis of accidents.   They can 
be used to add confidence in any analysis but, at present, it seems too optimistic to 
argue that they will automatically uncover failure modes.   It seems likely that the use 
of mathematical reasoning will continue to depend upon insights provided by more 
traditional forms of software forensics [9]. 

Material Implication Does Not Represent Causation 

The previous section focused on some of the practical limitations to the formal 
verification of accident models.   There are also a number of theoretical problems 
[11].   For example, many people would interpret formula (4) as representing a causal 
relationship.  Changes in our environmental model can be used to explain why an 
accident occurred.   Unfortunately, material implication cannot easily be used to 
represent and reason about the causes of an adverse event.   Several paradoxes, 
including circular arguments, can confuse the unwary.  The impact of these paradoxes 
and other features of material implication should not be underestimated.   For 
instance, we can introduce an arbitrary true antecedent to implications that may 
convince non-mathematicians of causal relationships even though there is no direct 
relevance with the antecedent.  ‘If NASA’s Faster, Better Cheaper programme 
reduced funds for the Mars Surveyor projects then software failures led to the loss of 
the Polar Lander’. 
 
A number of logicians, philosophers and linguists have recognised the limitations of 
strict implication and have responded by constructing alternative logics, which avoid 
the problems of classical logic, or by analysing the ways in which people construct 
implicational statements using material conditions.   Grice [5] and Jackson [7] have 
exploited this latter approach.   They argue that material implication remains a valid 
form of argument for indicative conditionals.   In particular, Grice and Jackson 
observe that most people use arguments to communicate information in the most ‘cost 
effective’ means possible.   They are anxious to avoid the costly repair actions that are 
necessary whenever misunderstandings occur.   One consequence of this is that 
people will not assert weaker forms of a proposition when they can assert a strong 
form.  In particular, speakers do not say 'If P, then Q' when they know that P is false.   
It is simpler and more informative to say 'not P'.   Grice and Jackson’s analysis is 
important because it can be used to avoid some of the problems that arise from 
material implication between two arbitrary false statements.  Recall that material 
implication would allow a statement of the form 'If snow is black, then grass is red‘ to 
be true. Grice and Jackson argue that people do not reject such statements because 
they believe them to be ‘false’.   Instead, they argue that our reservations stem from 
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the impression that such arguments would misleadingly suggest that we are unsure 
about the colour of snow.    
 
Lewis [see Lewis and Langford, 13] goes beyond the material implication of classical 
logic to develop the notion of strict implication.   This is based upon the idea that a 
proposition strictly implies all others, which are true, in all possible circumstances 
where it is true.  The semantics for this form of strict implication is based around that 
of modal logics.  Hence, we have that A->> B is true at world w if and only if for all 
w' such that w' is accessible to w, either A fails in w' or B obtains there.   However, the 
Lewis semantics for strict implication still permit an antecedent that is irrelevant to 
the consequent.  Logicians have responded by developing what are known as 
relevance logics.   One approach builds on a notion of ‘relevant’ proof [1].   This 
requires that premises and conclusion must share a variable in valid conditionals.  
This requirement can help to ensure that the antecedent and consequent refer to the 
same object in an assertion.   Alternatively, the proof theory of relevance logics can 
require that conclusions can be directly derived from a premise without the 
introduction of arbitrary antecedents and consequents.   This is intended to ensure that 
any premises really are used to obtain a valid conclusion.  
 
Further problems also arise because the material implication of classical logic cannot 
convey different and varied interpretations of causal information.  For example, 
mishap investigators often distinguish between necessary and sufficient causes.   A 
necessary cause is often identified using counter-factual arguments of the form ‘the 
mishap would not have occurred if this cause(s) had not also occurred’.   A sufficient 
cause can be distinguished by arguments of the form ‘the mishap could have occurred 
if this cause(s) had taken place irrespective of any other of the other circumstances 
surrounding the incident’.   Similarly, many causal arguments are constructed using a 
form of subjunctive conditional that is not characterized by material implication.    In 
particular, counterfactual conditionals rely upon an antecedent, which represents a 
past tense subjunctive sentence of the form "If X had been the case …then Y would 
have happened.   These sentences are known as counterfactuals because there is an 
assumption that the antecedent is false.   In other words that X is known not to have 
been the case.   For example, an investigator might assert that ‘If he had been further 
away, then he would not have been hurt’.  There is an implication that he was NOT 
further away and also that he was, in fact, hurt.   Most incident investigation 
guidelines explicitly recommend that investigators use counterfactual arguments to 
guide their analysis [11].   The Lewis semantics for strict implication can be used to 
form counterfactual arguments.  However, the interpretation of the accessibility 
relation between possible worlds still relies on the subjective judgment of domain 
experts.  In other words, disagreements can arise over whether it is plausible that an 
accident would have been avoided if only a cause had been prevented. 

 
The key meta-level issue here is that many of the logics that are used to support the 
formal analysis of complex systems have serious limitations if they are to model the 
causes of incidents and accidents.   Instead, we have been forced to rely on modal 
logics and non-standard proof techniques.  The identification of a tractable alternative 
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to first order classical logic remains a topic of considerable debate amongst the small 
number of researchers in this area.  It also remains the focus of several funding 
initiatives from the potential end-users of this technology.    

Can We Model the System and the Environment? 

The opening sections of this paper described how many academic software engineers 
use space mission failures to warn students about the hazards of programming.   Many 
of these talks omit critical details.  For example, they focus on the confusion between 
imperial and metric units in the Mars Climate Orbiter code.  They overlook the ways 
in which software was used as a ‘band aid’ for the asymmetrical solar arrays.   
Similarly, I have attended research talks where software engineers construct elaborate 
counterfactual arguments of the form ‘if only ESA/NASA/ISRO had followed 
software engineering technique X then the mishap would have been avoided’.  Such 
counterfactuals are by their very nature non-truth functional.   We have no accessible 
world in which the mishap did not occur so we can never really be sure that the 
software engineering technique X would have prevented the mission failure.    
 
In contrast, I would urge software engineers to watch more natural history 
programmes on television.   These programmes help to show how the animals’ 
environment helps to shape behavior.   By analogy, in order to understand the causes 
of software failure in space missions we need to look beyond the immediate causes of 
bugs to look at the organizational context that created them.  It is extremely 
fashionable to talk about accidents as the result of ‘emergent properties’ or 
unanticipated outcomes from interaction between subsystems.   I do not support this 
view.  All of the failures mentioned in this report had precursors; the agencies either 
had experienced previous similar failures or their own employees and sub-contractors 
had described potential concerns through incident reporting systems.    
 
It is also important to stress that analytical techniques can be applied to represent and 
reason about the environment in which bugs occur.   For example, Figure 2 represents 
an Event and Causal Factor (ECF) analysis for the pre-launch phase of the Mars Polar 
Lander [10].   The US National Transportation Safety Board and the US Department 
of Energy pioneered ECF for use in accident investigation.   Rectangles denote events 
while ellipses are used to represent those causal factors that make events more likely. 
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Fig. 2. Events and Causal Factor Overview of the Mars Polar Lander, Pre-Lauch [10] 
 
The ‘Faster, Better, Cheaper’ initiative placed the entire Surveyor programme under 
pressure to push the boundaries of cost and technology.  This in turn led to a number 
of contextual factors that helped shape the programming effort.  It was hard for 
contractors to meet the mission requirements with the available resources.   As we 
have seen, opportunities for testing and validation were restricted as tight deadlines 
prevented access to hardware platforms and costs prevented many forms of 
destructive testing.   Analysis and modeling were proposed as lower cost alternatives 
and so on.  These influences led to the decision to use pulse mode control and a 4 by 3 
array of off the shelf engines in preference to previous missions that had used a more 
gradual form of throttle control.  The outcome of these decisions was to increase the 
complexity of software development to control the platform.  At the same time, 
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management focused on the problems of mass reduction so that the Polar Lander 
would meet the performance profile of the launch vehicle and cruise resources.  This 
arguably took their attention away from the wider engineering risks created by cost 
reduction across the programme.   The contextual factors at the bottom of Figure 2 
show that fault tree analysis revealed the hazard from premature shutdown of the 
Lander engines, possibly triggered by a software bug. However, this risk was not 
adequately guarded against.  

 
Figure 2 characterizes the growing pressures on investigators to look beyond the 
immediate or catalytic events that lead to mission failures.   It has been argued by 
government organizations, by researchers and by a mass of other public bodies that 
accident and mishap analysis should instead look for root causes [10].   Unfortunately, 
software engineering has a tendency to focus on the immediate events that trigger 
particular failures.  We remember the code re-use in Ariane 5 or the metric and 
imperial confusion with the Mars Climate Orbiter or even the uplink timer commands 
on the Polar Lander.  Instead, we should look at the underlying causes.  For instance, 
the Faster, Better Cheaper initiative arguably fostered a culture in which engineers 
took considerable risks to innovate with new design.  These included the 
asymmetrical solar arrays on the Climate Orbiter and the pulse controlled engines on 
the Polar Lander.   These innovative engineering decisions saved costs but relied on 
‘band aid’ software.   Programmers were forced to calculate the de-saturation 
parameters that would compensate for momentum induced by the innovative solar 
arrays.  Programmers had to develop control software for the pulse times needed by 
the Polar Lander.     

Conclusions and Further Work 

The rise of ‘systemic’ approaches to accident investigation has clear implications for 
the use of formal methods in mishap analysis.   One option is to follow the route taken 
by many others in the formal methods communities by looking for niche applications.  
Mathematical reasoning might be confined to the early stages of an investigation 
where it is important to understand precisely what happened.  In this view, techniques 
such as model checking would provide simple extensions of their more conventional 
role in software engineering following the model outlined by Shen’s use of the Murφ � 
system.   The challenges of this work should not be underestimated.   In particular, we 
must find ways of using the results from theorem proving and model checking to 
inform the wider analytical techniques, such as ECF analysis, that will retain the 
primary role in identifying the managerial and organizational root causes of any 
mishap.   This use of formal methods in forensic software engineering raises a host of 
further technical barriers. Space-related software continues to become more complex 
as it controls increased functionality and provides a vehicle for highly integrated 
systems, including satellite arrays.   

 
An alternative future is one in which the scope of formal methods is expanded to 
reason about the root causes of software-related failures.   Such a route follows the 



The Natural History of Bugs:                                    Using Formal Methods to Analyse 
Software Related Failures in Space Missions      17 

 

vision of Jackson and Zave where we begin to model many features of the 
environment that are not traditionally considered within formal areas of software 
engineering.   Again this poses enormous technical challenges.   A key question is 
what might be included within a formal model of a mishap.  For interactive systems, 
such as the Shuttle’s General Purpose Computing system, our model may be forced to 
consider cognitive, perceptual and physiological attributes of the crew.   This, in turn, 
raises profound questions about the abstractions that might support such modeling.   
There has been work on formal aspects of human computer interaction but the results 
are limited and can often be disappointing when applied to applications such as the 
Shuttle or Rovers.   Even if formal modeling were expanded in this way, it would still 
not capture the organizational and managerial issues that are increasingly being 
identified as the root causes of software failure.   The use of epistemic and deontic 
notations to model such decision-making now forms part of the heritage of formal 
methods.  Studies in the 1980s and 1990s showed how these techniques might be 
used, for instance to model legislative requirements.  Again, however, the results do 
not seem to scale well and there are considerable problems in developing suitable 
proof theories.  These problems are compounded when one remembers the host of 
problems in developing discrete mathematics to provide a satisfactory model of causal 
arguments.  
 
To summarize, this paper has introduced some of the demands that are created by 
software development for space-related applications.   These include the usual 
suspects that complicate all forms of software engineering.  However, the physical 
properties of space environments create novel problems.  For example, data and 
software updates must often be communicated over vast distances and this creates 
novel forms of batch processing.   High-levels of radiation as well as mass and power 
limitations also create problems because they typically force programmers to rely on 
specialist hardware.  Additional verification requirements and the limited sales of 
these processors often imply that they are obsolete in terms of mass-market 
applications long before they reach the launch pad.   Later sections have also 
described the problems created by ‘band aid’ software.   There is a growing tendency 
to rely on code to mitigate problems created by engineering decisions that are made 
elsewhere in the development of a space mission.   One consequence of this is that 
software seems to be playing an increasingly prominent role in space-related mission 
failures.    
 
The traditional role of formal methods can be expanded beyond design to analyze 
software failures.   Existing models of software development, such as that proposed 
by Jackson and Zave, can easily be adapted to support this endeavor.  Others have 
used a range of theorem proving and model-checking technology to represent and 
reason about space-related software failures [10, 22].  However, there are many 
technical and conceptual challenges that remain to be addressed.   In particular, 
software bugs often form part of more complex problems that permeate through many 
different aspects of the engineering of space missions.   The technical challenges also 
include basic issues with the representation of causal arguments given the limitations 
of classical material implication.   The conceptual issues relate to the scope of the 
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modeling activity.   Do we focus narrowly on the behavior of a machine and its 
program?   Or do we consider the managerial and organization precursors that are the 
root causes of software failure?   Until these issues are resolved we remain even less 
equipped to identify the causes of software failure than we are to support the 
development of space related systems. 
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