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Supporting Tasks with Adaptive Groups
In Data Parallel Programming

John O'Donnell

Abstract— A set of communication operations is defined which
allows a form of task parallelism to be achieved in a data
parallel architecture. The set of processors can be subdivided
recursively into groups, and a communication operation inside a
group never conflicts with communications taking place in other
groups. The groups may be subdivided and recombined at any
time, allowing the task structure to adapt to the needs of the data.
The algorithms implementing the grouping and communications
are defined using parallel scans and folds which can be executed
efficiently in an abstract tree machine. This approach is best
suited for massively parallel systems with fine grain processors.

Index Terms— Data parallel, task parallel, adaptive algorithms,
processor groups, parallel scan, parallel tree machine.

I. INTRODUCTION

Two common models of parallel computing are task par-
allelism and data parallelism [1]. As the names suggest, task
parallelism organizes a program into independent pieces of
work, while data parallelism provides concurrent operations
over large aggregate data structures. A pure task parallel sys-
tem is often supported by a coarse grain MIMD multiprocessor
with a relatively small number of powerful machines, such as
a cluster of workstations. A pure data parallel system may be
supported by a fine grain SIMD multiprocessor, with a large
number of small computers. Such systems include vector ma-
chines, massively parallel processors, and application specific
VLSI designs.

Some applications can be handled effectively using a mix-
ture of task and data parallelism. Examples include scien-
tific computations with irregular structure and digital circuit
simulation. A variety of approaches have been developed for
supporting such a mixture in one system [2].

At the level of software, it is possible to make a distinction
between task and data parallelism while supporting both in
one system. The programming model TwoL [3] allows both
modes of parallelism in one application, and offers methods for
developing programs as well as predicting their performance.
There are also data parallel languages that allow nested data
parallel operations [4], giving some of the capabilities of tasks.

At the level of hardware, parallel systems are usually tuned
to give best support for one form of parallelism. Coarse grain
systems comprising a few processors connected by a network
with high latency can execute programs with a small number
of long-running tasks, but are generally inefficient for data
parallel execution. At the opposite extreme, fine grain SIMD
computers (e.g. the MPP [5] and Connection Machine [6]) are
optimized for data parallelism but their SIMD organization
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precludes efficient task parallelism. Some parallel systems are
intended to support both task and data parallelism, but their
coarse granularity makes them less effective for fine grain
data parallel computations than for tasks. An example is the
Connection Machine CM-5, which has relatively powerful
processors that can execute ordinary tasks efficiently and also
incorporates some support in the interconnection network for
data parallel operations. Much of this previous work aims to
adapt a coarse-grained architecture with excellent support for
parallel tasks so that it also offers limited support for data
parallel operations.

This paper takes the opposite approach, by describing a
technique for embedding a limited form of task parallelism
in a computational model that is well suited for data parallel
architectures. Each task runs in a group of computers, which
pool their resources—both memories and processors—for the
execution of that task. The processor groups may be subdi-
vided recursively, and subgroups may recombined into larger
groups. The grouping can be changed quickly, and there are no
constraints on the sizes of groups or the degree of subdivision;
this enables the application to adapt quickly to the demands
of problems with irregular or dynamically changing structure.
Ordinary data parallelism can be used at any time, giving the
approach the characteristics of both task and data parallelism.

The grouping technique presented here is implemented
using an abstract tree architecture with a SIMD organization.
A variety of concrete implementations are possible, ranging
from massively parallel processors, to FPGAs, to custom
VLSI hardware designs. This paper focuses on the theoretical
properties of the grouping algorithms and the cost model,
so the use of an abstract architecture model simplifies and
clarifies the analysis. The suitability of the approach presented
here for a particular parallel architecture depends on the
range of operations required for a specific algorithm and the
frequency of their use.

In order to gain insight into the inherent efficiency of the
grouping operations, it is helpful to analyze the performance
on the weakest architecture that can support them, not the
richest one. There is a tradeoff between the flexibility of a
system and the speed of the operations that it provides. The
choice in this paper of an abstract SIMD tree architecture
allows a fast implementation of the adaptable grouping and
communication operations that are presented below, and it
provides a cost model that gives an accurate measure of the
inherent cost of those operations. The abstract SIMD tree
also has some drawbacks: it prevents some commonly used
operations, including some of the standard MPI collective
communications, from being supported efficiently. Naturally,
it is possible to use the algorithms presented in this paper on a



system with a richer interconnection network, or with a MIMD
organization, in order to support the entire range of standard
collective communications at the expense of worse latency in
the grouping algorithms.

The algorithms in this paper are expressed using Haskell
[7], a standard nonstrict pure functional language. The com-
munications operations are defined as combinators: higher
order functions without free variables that can express general
patterns of computation.

Section Il defines the abstract architecture used throughout
this paper, and Section Il discusses two methods for pro-
gramming it: direct use of the low level sweep operations,
and the definition of an intermediate level family of fold and
scan combinators. The main innovation of this paper, adaptive
processor groups that can support intragroup communications
without interference among groups, is presented in Section IV.
There are several ways to build a practical implementation
of these algorithms, which are discussed in Section V. The
programming paradigm proposed in this paper is unusual,
and Section VI gives some examples of how it can be used.
Related work is summarized in Section VII, and Section VIII
concludes.

Il. AN ABSTRACT PARALLEL TREE MACHINE

The system used in this paper is described abstractly as a
network of processors whose structure is defined by a tree
data structure, and whose behavior is defined by a global state
transition function.

A. Structure of the machine

The system consists of a network of leaf processors con-
nected by a tree of node processors. Each leaf processor has
a local memory, but the node processors do not. It is not
necessary for the tree to be balanced, although communication
operations are faster if it is balanced. The system has an input
and output port at the root node. The state of a leaf processor
has a generic type s, but each specific algorithm supplies a
concrete type for s.

data Tree s = Leaf s | Node (Tree s) (Tree s)

B. Computation and communication steps

The behavior of the system is defined abstractly as a global
state transformation operation called sweep. During a sweep
operation, every processor reads an input on all of its ports,
performs a local computation, and sends an output on all of
its ports. All processors participate in every sweep, which
acts as a global synchronization. Since the entire system is
synchronized at the end of a sweep, the global state of the
system can be specified precisely as the set of leaf processor
states; this is written as [z, ..., z,—1] :: [s], where z; is the
memory state of processor P;.

For the sake of simplicity, there are some useful gener-
alizations and extensions of the abstract tree machine that
are not presented here. The state types can be made more
general, and two useful special cases of the sweep operation
are omitted; these are upsweep and downsweep, in which

information flows only up or down the tree respectively.
With some concrete implementations of the tree machine,
these restricted operations offer minor technical advantages.
However, they complicate the algorithms because a node state
needs to be introduced to make downsweep useful, and they
do not improve the theoretical efficiency of the algorithms.

The sweep operation is defined as a global state transition
function that takes a system state (the states of all the leaf
processors) and a singleton input at the root node processor
and returns the final global state along with a singleton output
from the root. The behavior is determined by two individual
processor state transition functions, one for the leaves and the
other for the nodes. Since all the leaves execute the same leaf
transition function, and all the nodes execute the same node
transition function, the system belongs to the SIMD class of
parallel computers.

As the sweep operation proceeds, messages of type u are
transmitted up the tree, and messages of type d are transmitted
down. The computation performed by a leaf processor depends
on its state, with type s, and a message of type d received from
the node above it. The processor computes a new state and a
message of type « to send up the tree. This computation is
specified by a leaf transition function of type LTF. Each node
processor receives an input on each port, and computes an
output to send on each port; the node computation is specified
by a node transition function of type NTF.

type LTF = s — d — (s,u)
type NTF =d — u — u — (u,d, d)

The most common operation performed by the tree machine
is a sweep. During a sweep, each leaf processor function takes
initial messages of type s from the processors, constructs up-
packets of type « and sends them up the tree, combining them
in the nodes. A singleton down-packet of type d is received
from the root. Packets of type d then move down the tree, and
at the interface to the processors are converted to data of type
s which is placed in the local stores.

sweep :: LTF — NTF — d — Tree s — (u, Tree s)

The sweep function is defined recursively. The base case
is just a leaf, in which the processor and network exchange
messages, while the recursive case defines the behavior of a
node as it communicates with its parent and two children.

sweep leaf node a (Leaf x) =
let (z/,a') = leaf x a
in (o', Leaf 2')
sweep leaf node a (Node z y) =
let (a/,p’,q¢') = node a p q
(p,z") = sweep leaf node p’ x
(q,v") = sweep leaf node ¢’ y
in (a', Node =’ y')

The definition of sweep is general, and allows arbitrary
communication up and down the tree. In particular, for some
specific node functions the sweep can deadlock. However, the
algorithms presented later in this paper consist of an upsweep
followed by a downsweep, and they do not deadlock.



I1l. PROGRAMMING THE TREE MACHINE

It is possible to program the tree network directly, by
manually writing suitable leaf and node functions to solve a
specific problem. A number of techniques can be used to write
such programs, but this paper follows an alternative approach:
we develop a set of combinators describing operations on
lists (i.e. the set of processor states), and then seek efficient
implementations of these combinators using the primitive tree
operations. The main tools are the standard fold and scan
functions, which can be used to express communications
within processor groups. These functions are commonly used
in parallel programming [8], [9].

With a SIMD organization, we can express the algorithm
using map :: (a — b) — [a] — [b] to express a computation
step. Let f :: S — S be a function that takes a processor
state, performs a computation on it, and updates the state.
The map combinator applies a function to each element of a
list, so map f [0, ..., Tp—1] = [f 2oy --vy [ Tn-1].
This describes the effect of a computation step at the level of
the entire system, and it also captures the single-instruction
constraint of the architecture. With an MIMD organization, it
may be more convenient to express the algorithm in SPMD
style, at the level of an individual processor.

A standard technique in SIMD algorithms is the use of
conditional operations. Each instruction may have a field
indicating that it should be executed by a processor only if a
specified Boolean value is True (or False). Several algorithms
that appear later in the paper use this technique.

The foldl and foldr combinators take a function f of two
arguments, and use it to combine the elements of a list in order
to produce a singleton result. An initial accumulator argument
provides a default value in case the list is empty.

foldl ::
foldr ::

The result of the fold is a single value which is computed
by n applications of f, where n is the length of the list. The
difference between foldl and foldr is the order in which they
iterate over the list, which leads to the following results:

(a—b—a)—a—[b—a
b—-a—a)—a—[b—a

foldl f a [zg, 21,22, 23] =
f(f (f (f axo) x1) 22) 23
foldr f a [fL’(),lCl,IQ,Zg] =
fao (f 21 (f 22 (f 23 a)))
An alternative notation for these equations uses an infix
operator & in place of the function:
foldl (&) a [xo,x1,22,23] =
(((a ® o) ® x1) ® 22) ® 23)
foldr (@) a [Z(),Zl,xg,l':g] =
2o @ (21 D (22 @ (23 © a)))
The folds are specified as linear recursions over the list, so they
are both sequential. However, if f is associative then the folds
can be performed in logarithmic time by the tree machine.
foldl fa[] = a
foldl f a (z:xs) = foldl f (f a x) xs

foldr fa[] = a
foldr f a (x:xs) = f x (foldr f a xs)

The fold functions are useful because there is an exten-
sive set of programming techniques that express a variety
of computations as folds. Many of the standard iteration
constructs from imperative languages, such as for and while
loops, are often expressed in functional languages using the
family of fold functions. Folds are commonly used for ordinary
reductions of data, such as computing the sum of a list of
numbers. In this paper they are used with much more complex
auxiliary functions to perform operations on data structures
and group communication.

A fold describes the behavior of the communications net-
work as it takes inputs from a sequence of processors, and
sends a result back to an individual processor P;. Since the
network actually sends a result to every processor during
each communication operation, we usually need to compute a
separate fold value for every processor in parallel. This set of
folds is called a scan. A scanl is defined as a list of folds over
all the prefixes of a list, while the scanr is the list of folds
over the suffixes.

pTEfiXES [IIJQ, x1,T2, 353] =
[[Ha [Z()]v [l‘(),l‘l], :E()vxlvaH
suffixes [Sﬂ(), x1,Z2, 1'3] =
[[1'1,1‘2,1'3], [1'2,1‘3], [Zd]a H]

For example,

scanl (EB) a [iL’(),lCl,IQ,SCg] =
[aa a®xg, (a®x0) @21, ((a®20) D1) @552]

The scans have similar types to their corresponding folds;
the only difference is in the return type, which is a singleton
for fold and a list (of fold results) for scan.

scanl :: (a = b—a)—a—[b] — [q]
scanl f a = map (foldl f a) o prefixes

scanr :: (b—a —a) — a— [b] — [a]
scanr f a = map (foldr f a) o suffixes
Ladner and Fischer presented a parallel algorithm that
computes a scan f in one primitive step, provided that f
is associative [10]. The tree architecture can be programmed
to do this using a suitable sweep operation, with simple tree
processor programs leaf and node:
tscanl, tscanr :: (a — a — a)
— a — Tree a — (a, Tree a)

tscanl f a = sweep leaf node a
where leaf 2 a = (a,2)
node ap q=(fpq,a,f ap)
tscanr f a = sweep leaf node a
where leaf © a = (a, )
node ap q=(fpqfqa,a)

The tree network provides more general communications
than are required by either scanl or scanr. In particular, these
scans are unidirectional, but the network can transmit informa-
tion both left to right and right to left across the sequence of
processors. The bidirectional tscan operation performs a scanl
and scanr in parallel, and can be used to transmit messages
between processors in both directions at the same time in the
interconnection network.



For practical parallel programming, it is convenient to use
slightly generalized versions of the parallel scans. The familiar
list notation is used to express the global state of the system as
a list of the leaf processor states; thus the state type is written
as [s| rather than Tree s. In addition, auxiliary functions are
used to initialize a scan by extracting an up-message from a
processor state, and to complete the scan by updating the final
processor state using the down-message. The pscanl function
has type

pscanl :: (s — a) = (a > a—a) — (s > a—s)
—a—[s] = (a,[s])

An application has the general form pscanl f g h = xs, where
the arguments are:

e f s — a extracts a message of type a from each leaf
processor with state of type s.

e ¢g::a— a— a combines the messages during the scan.
The function g must be associative.

e h s — a — s updates the processor states using the
results of the scan.

o x :: a is the initial singleton data value; it can be thought
of as a “horizontal” message available at the left side of
the row of leaf processors, but it actually is provided by
the control processor at the root of the tree.

e Xs :: [a] is the global state, represented as a list of the
leaf processor states.

A logarithmic time operation on the tree network can
compute the scans and folds of a function f over a list
of processors, provided that f is associative. The singleton
fold results computed by the tree do not include the extra
accumulator value a which is used in foldl and foldr; these
slightly modified combinators are called foldl1 and foldrl. A
proof appears in [11].

IV. PROCESSOR GROUPS

The abstract tree architecture presented in the previous sec-
tions is well suited for conventional data parallel computation.
For example, the leaf processors can perform arithmetic oper-
ations simultaneously on all the elements of a vector, while the
tree network can compute reductions and scans. In this section,
the programming model is extended to support a restricted
form of task parallelism. The approach is to partition the set
of leaf processors into a set of contiguous processor groups,
and to provide a set of collective communication operations
that allow the processors within a group to cooperate on a
task.

The collective communications allow independent commu-
nications to occur within each processor group. They are
implemented using sweeps and scans on the abstract tree
architecture, and they are used by application programs. The
collective communication operations described in this paper
share an essential characteristic: the same operation must
be performed simultaneously within all the processor groups
(this is the SIMD restriction), but latency is good because
there are no communication conflicts between distinct groups.
However, more general collective communication operations

could be supported by an abstract machine with an enhanced
interconnection network, at the cost of longer communication
latencies. These issues are discussed in more detail below.

A. Representing processor groups

The n leaf processors of the system are indexed to form
a sequence [P,...,P,_1]. This set of processors can be
subdivided into any number of contiguous processor groups;
each group must consist of [P;, Pit1,. .., P;] such that 0 <
i < j < n. A group may comprise just one leaf processor,
or it could consist of the entire set of processors in the full
system.

The group representation is distributed. That is, no processor
in the system has a global picture of the partitioning into
groups; instead, each processor contains just enough infor-
mation to know how to communicate with the other members
of its current group. Each processor’s local memory contains
a distance pair that describes its position within the grouping
structure. The current grouping status of the entire system is
determined by the set of distance pairs of all the processors.

The elements of a distance pair give the distance from a
processor to the leftmost and rightmost members of its group.
Therefore a processor that is in the ith position (counting from
0) of a group with & members has a distance pair (i, k—i—1).
In particular, the leftmost processor has distance pair (0, k—1)
and the rightmost one has (k — 1,0). If the current distance
pair for P; is (j, k), then P; is currently a member of the group
comprising processors [P;_;, ..., P;, ..., Piti]. For example,
suppose there are 8 processors with two groups of sizes 3 and
5. The set of distance pairs would then be

[(0,2),(1,1),(2,0),(0,4), (1,3),(2,2), (3, 1), (4,0)]

The elements of this list are distributed across the processors.
The system is initialized as one group containing all the
processors, using [(0,n — 1), (1,n —2),...,(n —1,0)].

The distance pairs are used to control the collective commu-
nication operations. If at any time the distance pairs in a group
are corrupted, then the group representation is inconsistent and
the communication algorithms will not function properly. A
processor with distance pair (j, k) can send a message to the
left by a distance of j and to the right by a distance of &, with
the message remaining within the group.

To allow the grouping structure to adapt to the needs of
the application, each processor maintains a stack of distance
pairs, where the top element of the stack describes the current
grouping. A group can be split into two or more subgroups.
This requires each processor to compute a new distance pair
for the subgroup it will belong to, and then to push this onto its
stack. To recombine the subgroups into the original group, the
processors pop their stacks. These operations are parallel local
computations, although they require preparation by collective
communication operations.

The following sections describe some of the collective
operations that are supported by the abstract tree machine.
To illustrate how the tree can perform these operations, the
implementation of one of them—Ieftmost—is shown in detail.



B. Local computation

In a local computation, each processor updates its state
using only data held in its own memory. Since there is
no interprocessor communication, the grouping structure and
distance pairs are irrelevant.

With the SIMD system organization presented earlier, all
the processors are constrained to execute the same local
computation. Conditionals are still possible, but the only
conditional action a processor may take is to omit the operation
being executed; the processor cannot do a different operation
instead. Naturally, it is possible to generalize the system to
an MIMD organization in order to allow the processors to
perform different instructions during local computation steps.

In general, each processor applies a function f :: S — S
to its state « :: S in order to compute its new state 2’ = f x.
The effect on the entire system is to compute a new global
state xs” = map f xs, where the original state was xs.

C. Global operations

A separate control processor can communicate with the tree
network through its root. This can serve as an input/output port
for the system. The control processor may be a workstation
that treats the tree network as a dedicated parallel processing
system.

The control processor can broadcast data to all the leaf
processors. Alternatively, it can broadcast a message (a,d)
that tells P, to store d. This requires each processor to know
its index. As the system is initialized, the processors can
all cooperate to compute their indices using the collective
communication operations described later.

The tree network can perform reductions, or folds, using an
associative function to combine values provided from all the
leaf processors.

The control processor may need to fetch data from indi-
vidual processors, for example to output results or to take a
snapshot of the distributed memories. To read a value x from
P, the control processor first broadcasts k. Each processor P;
then computes locally the value of ' = (if i == k then z
else 0). The set of 2 is then reduced in the tree by folding it
with a logical or, and the result = is produced at the root.

D. Unique local responders

The most critical collective communication operations are
the ones that perform a computation involving communication
among all the processors within a group. To illustrate the
techniques required, a characteristic operation called leftmost
is described in detail, along with its implementation using
parallel map and scan. Briefer introductions to some of the
other operations appear below. The leftmost, and its parallel
implementation using a tree, was first used in APSA, an
architecture for supporting list processing [12]. APSA supports
a recursive decomposition of processors into groups, although
the representation is based on the standard Lisp technique of
“cdr-coding” rather than the distance pairs used in this paper.

Suppose that all the processors in a group have computed
some local data values, and it is necessary to do further

work on just those “responders” that satisfy some predicate.
A function rsp :: s — Bool determines whether a processor
is a responder, and the aim of the operation is to find the
leftmost processor where rsp gives True. The situation can be
depicted by showing a symbol @ for the processors that are
responders, and _ for the ones that do not. For example, the
status of the processors might be

- -®_-_®® _ _ _® _ |

Since the flagged data values must be processed one at
a time, a collective communication operation is needed to
choose an arbitrary one. The leftmost operation can be used
to select just the first processor in the group that has the flag
set. Using the symbol X to denote this choice, the result of
executing leftmost using the example above would be

- - X _®® . - @ _|]

The operation performs same work simultaneously on all
groups. For example, if the system state is

[--ell-e®e][. - -]®ee][-® - @]

then the result of a single leftmost operation is

- -RI[-Ree]l- - -]Re][-8.a]

There is a corresponding rightmost operation, and it is also
possible to locate both the leftmost and rightmost flagged
processor in each group in a single tree sweep operation.

The implementation of leftmost is presented in order to illus-
trate the programming style for the abstract tree architecture,
as well as to provide a foundation for a cost analysis.

Since the aim is to use a scanl to implement leftmost, the
starting point is to consider the auxiliary functions that are
required. Two are needed to obtain information from each
processor’s local memory (of type s) to prepare the scan:
grp :: Groupings obtains the distance pair for a processor,
while rsp :: s — Bool determines whether a processor
satisfies the ® condition. In effect, the scan sends a message
of type a from the left side of the row of processors to the
right side, and the processors update their state and modify
the message as needed. This requires an associative function
combine :: a — a — a for the communication, and a function
upd :: s — a — s t0 update each processor’s state, using the
information provided by the message it receives during the
scan.

It now remains to choose the message type a, the initial
message value, and to define the combine function. To appre-
ciate the subtleties involved in the implementation, it may be
helpful to consider a simple but incorrect first attempt before
giving the correct (but more complex) solution.

Itis natural (but, as will become clear shortly, misleading) to
view a scanl as an iteration across a list of elements, with each
processor in turn receiving a message from the left and sending
an updated message to the right. This suggests using a Boolean
message to indicate whether a responder has been located yet
within the current group: an initial message of False would be
provided as input to the leftmost processor, and each processor
would send on a message of True if it is marked, or False if



it is the leftmost processor in a new group (determined by the
leftmost predicate). The first processor within a group (if any)
that is marked and also receives an incoming False would
set its X flag to True, and this happens at most once in
each group. To achieve this, the initial message must be False,
and the combine function must satisfy the following informal
specification:

combine a x =
if rsp x
then True
else if leftbound x then False else a

This leads to a well-formed function definition:

combine a © = rsp  V (a A = leftbound x)

Unfortunately this approach is fatally flawed, because com-
bine is not associative. This means that the logarithmic time
parallel tree scan does not produce the same result as the linear
time iteration across the row of leaf processors, which was the
motivation behind this erroneous algorithm.

It is unproductive to cast around for an associative combine
that might work; the best way forward is to observe that the
tree sweep requires that combine must be able to compute (by
folding) a summary of all the relevant information pertaining
to a span of contiguous processors. Consider a span of con-
tiguous processors consisting of two parts, spanl ++ span2.
A responder should be reported for the combined span if one
was found in span2, or if one was found in spanl and a new
group did not begin in span2.

To implement this new idea, the message for the scan is
defined to be a pair of Booleans (b,r), where b is True if
and only if a group left boundary occurs in the span, and r is
True if and only if a responder has already been found in the
active (rightmost) group. A processor with state 2 computes
these values as (b,r) = (leftbound x, rsp x). The combine
function is therefore defined as follows:

combine (by,r1) (ba,72) = (b,r) where
r = roV (7“1 N _|b2)
b = by Vby

It is necessary to verify that combine is associative; if it
were nonassociative then the parallel scan computation in the
tree would produce an incorrect result.

combine (b1,71) (combine (ba,r2)(b3,73))

= combine (b1,71) (ba V b3, 73V (r2 A —b3))
= (b1 V (ba V b3),

(rg V (ro A —b3)) V (r1 A = (b2 V b3)))

combine (combine (by,r1)(ba,r2)) (bs,r3)
= combine (by V ba,r2 V (r1 A —b3))(bs, r3)
= ((by Vb2) V bs,
rg V ((ra V (r1 A =b2)) A —b3))

Since V is associative, by V (b2 V b3) = (b1 V ba) V b3 and the
first parts of the pairs are equal. The second parts of the pairs
can be verified algebraically or by model checking.

Now that the auxiliary functions have all been worked out,
the leftmost operation can be defined as an executable function.

leftmost :: Grouping s — (s — (Bool, Bool))
— (s — (Bool, Bool) — s) — [s] — [s]
leftmost grp rsp upd xs =
let (_, zs") = pscanl rsp g upd (False, False) xs
g (b1,71) (b2,12) =
(b1 vV 2,72V (r1 A —02))

in zs’

The leftmost computation has low latency because it is
implemented by just one scan that takes logarithmic time
using the tree network, as well as a small amount of local
computation carried out in parallel by the leaf processors.
The time to execute leftmost is independent of the number of
groups, and there is never any time lost due to conflicts in the
tree interconnection network. Regardless of the number, sizes,
and locations of the groups, there is never any interference
among groups that would require more than one scan to be
performed in order to mark all the groups in parallel, and
there is never any interference that slows down the scan. In
particular, there is no need for the grouping structure to match
the tree structure.

E. Finding predecessors and successors

A common data parallel programming technique is to iden-
tify a specific processor within a group, and then to perform
some operation on all the processors within the group that lie
to the right (or to the left) of the selected one. For example,
suppose there are two subgroups, each containing one selected
cell, which is determined by a Boolean indicated below with
X .

(R - TR RN -

The mar k_ri ght operation sets a second boolean variable,
indicated with a ® , in the processors that are to the right but
still within the same group. The result is:

- . - Neoe®]. - - X®a]

Similarly, if mar k_| ef t is performed on the original state,
the result would be

@eeR _ _ _ JeeeX _ _|

These marking operations are useful in algorithms that use
relative positions of data to represent significant information.
One example is quicksort, where the location of a data
item relative to the splitter is important. By marking all the
processors in a group to the left (or right) of a selected member
of the group, it is possible to operate in parallel on all the
predecessors or successors of the selected processor.



F. Broadcasting within groups

The most complex of the group data parallel communication
operations is broadcasting. A Boolean condition is used to
identify a unique processor within a group which is requesting
to send a message, and the network delivers the message to all
the other processors within the group. The entire communica-
tion takes one machine step, and an independent broadcast may
take place in any or all of the groups, with no conflict among
groups. There are three variants of broadcast; the bidirectional
broadcast sends the message to all other processors in the
group, while send_right and send_left transmits the message
only to the processors within the group which lie to the right
or left of the sender respectively.

The implementation of broadcasting is similar to that of
leftmost; the essential point is that a message carrying the
data value and the remaining distance within the group is
transmitted by the scan. The techniques used to derive an
associative function that does this are similar to the ones used
for leftmost.

G. Shifting within a group

In general, many-to-many communications operations re-
quire an interconnection network with a large number of
independent paths. The tree network requires many steps in
order to perform such an operation, and is generally better
for one-to-many communications such as multi-broadcast.
However, there is one many-to-many communication that can
be performed efficiently in the tree: shifting. These operations
allow all the processors in a group to communication in
parallel, but only with their neighbors.

The shifting operations proceed in three steps. First, a
computation step causes each processor to perform a fetch
operation (called fet) on its local memory. The fetch returns
either a value v to be transmitted to the neighbor (represented
as Just v), or no value (represented as Nothing). The fetching
step results in a list of messages, one for each processor, which
is sent into the leaf nodes of the interconnection network.
The actual communication is performed by a parallel scan,
resulting in a sequence of messages to be returned to the
processors. Finally, a computation step is performed where
each processor uses a function sto that stores the incoming
message into the processor.

shift_left, shift_right :: (a — Maybe b)
— (a — Maybe b — a) — [a] — [d]

The shift operations are straightforward to implement with
a pscanl or pscanr. Some parallel tree machines, such as the
FFP machine [13], provide direct links between neighboring
leaf processors, so that the shift operations do not need to use
the tree.

H. Group subdivision

Some of the intra-group communication operations have
been introduced in the previous sections. These operations

allow the processors within a group to cooperate on a com-
putation, giving some of the characteristics of task parallelism
within a data parallel framework.

The processor groups can be changed dynamically as a
program is running. This allows the sizes of groups to adapt
to the needs of the application. There is no need to restrict
the group sizes; for example, there is no performance penalty
if the groups do not match the sizes of subtrees in the system
network. Furthermore, the latency required to change the
grouping structure is very small.

A group may be subdivided around a selected pivot proces-
sor, which is determined by a predicate function. The spl it
operation creates three subgroups comprising the cells to the
left of the pivot, a group consisting of just the pivot cell, and
a group consisting of the cells to its right. For example, the
following system state contains a group with one processor
selected by the predicate:

[(0,7),(1,6),(2,5),8 (3,4), (4,3), (5,2), (6, 1), (7,0)]

Given this state, a split produces three groups:

[(0,2), (1

The subdivision operation requires a parallel scan to com-
municate information about the location of the pivot to all
the members of the group, followed by a computation step
in which each processor calculates its new distance pair and
pushes it onto the stack.

There are minor variations on the split operation, in
which the pivot cell does not form its own subgroup, but is
included instead in either the left or right subgroup. It is also
possible to partition a group into a larger number of subgroups,
by selecting more than one pivot cell in advance.

,1),(2,0)], (0,0)], [(0,3),(1,2),(2,1),(3,0)]

I. Group recombination

After a group has been subdivided into several subgroups,
these subgroups can be recombined back into the original
group. This is performed as a local computation that must be
performed in every cell belonging to the original group. Each
of these cells removes the top element of its distance pair
stack, reverting to the previous configuration. The algorithm
must take care to ensure that all the cells of all the original
group perform this operation; otherwise the distance pairs will
no longer be consistent.

V. IMPLEMENTATION

A variety of methods exist for building an executable
implementation of the abstract tree machine. This section
describes a few of them, contrasting several choices between
alternatives: control (SIMD or MIMD); network (physical tree
or embedded tree); processors (general purpose, reconfigurable
logic, or ASIC); and signaling (I1/O between processors or
direct combinational tree circuit).



a) Control.: During a sweep operation, the abstract tree
requires all the leaf processors to perform one operation, and
all the node processors to perform another. Thus the abstract
architecture needs only a SIMD organization. However, a
SIMD system places a severe constraint on the tasks that are
running in separate groups. If an application has a heteroge-
neous structure, so that different tasks need to be able to run
different code, then it would be best to embed the abstract
system into a general purpose MIMD architecture. In effect,
the grouping operations defined here would then just constitute
a new set of collective communication operations. However,
MIMD architectures generally have far more hardware per
processor, resulting in a smaller total number of processors. It
may be necessary to represent a large set of virtual processors
on one physical processor, and this would cause a serious
slowdown in the intra group communications. Furthermore,
the latency of interprocessor communications is often higher
in MIMD systems. To conclude, then, the algorithms presented
in this paper could be used in either SIMD or MIMD systems,
but they are probably better suited to fine grain architectures.

b) Network.: A significant result of this paper is that a
tree architecture can be used to support intra-group commu-
nication where the group structure does not match the tree
structure. Much past work on parallel tree algorithms has
assumed that the work has to be divided into separate tasks to
run on the left and right subtrees, in order to avoid a bottleneck
near the root. Notwithstanding the good performance of the
group operations presented here, it remains true that many
applications require richer collective communication opera-
tions, such as scatter and gather, which cannot be implemented
efficiently on a tree. In such cases, the algorithm should be
run on a system with a more general interconnection network,
and the tree communications used in this paper can then be
embedded in this.

c) Processors.: The system could use conventional pro-
cessor chips, but this is not the only alternative. Many SIMD
architectures use special purpose VLSI processors so that
many can be packed into one chip. Also, some data parallel
algorithms are bit serial in nature, and do not need all the
complex operations provided by standard microprocessors. A
dedicated VLSI processor—even a bit serial one—can perform
the group communication operations presented in this paper
efficiently. A particularly interesting target is programming
for FPGAs, which are fine grain SIMD machines. FPGASs
are often described as programmable digital circuits, because
their granularity is so fine. They offer easy support for data
parallel computations, and allow efficient implementation of
the fast tree sweeps, but FPGASs lack good tools for adaptive
and task-based algorithms. These characteristics make them
a good potential target for the algorithms presented in this
paper. However, performance will normally be better if ad hoc
communication algorithms are targeted for the FPGA’s specific
topology. The potential benefit in the group communication
algorithms presented in this paper, on an FPGA host, is more
likely to be portability rather than performance.

d) Signaling.: If conventional processors are used for
the tree nodes, then the nodes will communicate with each
other via input/output mechanisms. The time for a sweep is

proportional to the height of the tree, and the latency for each
level will be many microseconds. However, another alternative
is feasible. The abstract tree can be built as a physical tree
using VLSI combinational logic for the nodes [14]. This
approach is especially appropriate if the leaf processors are
also custom VLSI or configurable hardware. The latency
would now be only a few gate delays in each level of the
tree, and it would be reasonable to view the system as a
“smart memory” rather than a conventional multiprocessor.
In effect, the tree then corresponds to the address decoder
tree in a single processor system, with one difference: the
addressing hardware performs a significant amount of useful
computation as well as simply decoding addresses, and the
increase in latency is only a small constant factor. The situation
is similar if the abstract tree is embedded in reconfigurable
hardware, such as FPGAs. The interconnection topology of
typical FPGAs provides long distance paths controlled by pass
transistors, but these may require buffering to overcome the
high capacitive load of long paths [15]. The tree nodes used
in this paper could provide buffering while performing some
useful computation with little extra overhead.

VI. APPLICATIONS

The grouping techniques described in this paper consti-
tute an unusual programming environment, and there is not
yet a large amount of experience with it. There are some
applications that have the characteristics that might make
them suitable for this system, including active data structures
for list processing, combinator reduction, and digital circuit
simulation. In order to illustrate what an application for the
system might look like, one example will be presented in some
detail: a variation on the quicksort algorithm that uses the
ability to split groups dynamically in order to adapt to the
irregularities in real data.

A. Data parallel quicksort

This section illustrates the use of intragroup communication
operations in a data parallel implementation of quicksort,
assuming an SIMD system organization. A similar algorithm
appeared in [16], although it used operations specially de-
signed for the quicksort rather than a general set of group
communication operations. A survey of parallel sorting algo-
rithms targeted for a several architectures, along with analyses
of their performance, is given by Akl [17].

The algorithm begins with a sequence of unsorted numbers
in a group. It arbitrarily selects the leftmost element as the
splitter and broadcasts it to the rest of the processors in the
group, which compare their own value with the splitter. Each
element that is less than the splitter, and therefore out of place,
is marked with a Boolean flag. These values are then rotated to
the leftmost position in the group, ensuring that they appear
to the left of the splitter. The rotations involve sending the
misplaced value to the left, while simultaneously shifting the
intervening elements to the right. An important point is that a
single scan can perform a rotation in parallel on every group
that needs one (and leaves other groups unaffected). After all
the data are on the correct side of the splitter, in every group,



the groups are then partitioned into subgroups and the whole
process is repeated.

To show how the quicksort algorithm proceeds, an execution
is sketched using the sample data [13, 15,10, 12,14, 11].

The algorithm begins by initializing the group indices. To
save space, the distance pair (i, j) is written below as . Each
processor (or “cell”) holds several Boolean flags, the distance
pair stack, and two data values in its local memory. The input
data is read into the first value fields of the cells, the second
data value is initialized to O, and the leftmost cell (the one
with left index 0) is marked as the splitter (denoted $).

[$213,0
312,0

1

15,0
4
414,0

210,0

211,0]
The splitter is broadcast to the rest of the group using the
send_right operation. The cell selected by the the $ flag is the

sender, and all the cells in the group to its right receive the
message and store it in their second data field.

[$213,13
312,13

1
715,13
114,13

2
£10,13
211,13
The cells next perform a local computation: if their data
value is less than the splitter (which is stored locally), they

set a flag indicating that the value must be moved to the left
of the splitter. This flag is indicated with a X .

[$213,13
X 312,13

1
115,13
114,13

X 210,13
X 211,13]

The algorithm performs a global or to determine whether
there exists (in any group) a cell marked X . There is such
a value, so the algorithm rotates the first out-of-place value
to the leftmost cell of the group. First, all the cells up to

the leftmost starred value are marked with a flag, denoted ®
(using the mar k_| ef t operation):

0
[® $213,13
X 312,13

® 15,13
114,13

X 210,13
5
X 511,13]

Now the cells marked with @ perform a rotation. The left
endpoint of this span of cells is the one whose left index
is 0; the right endpoint is the first cell with the X flag set.
The rotation is performed by shifting the values (including the
splitter flag $) to the right by one position, while the rightmost
value is sent back to the left and stored in the leftmost cell.
The result of the first rotation is:

0
[® 210,13
X 212,13

® $113,13
114,13

215,13
X 511,13]
Such rotations take place independently, in parallel, in all

subgroups that have a starred value. The rotations are repeated
until no misplaced elements remain, and the result is:

0
[211,13
$313,13

1
112,13
115,13

210,13
514,13]

At this point all values less than the splitter lie to its left,

while all larger values lie to its right. The group is now
subdivided using a spl it operation, which pushes a new
index pair onto the index stack. Only the top pair in the index
stack is shown, and the groups are emphasized with brackets,
although the only representation of the group structure is the
set of distance pairs.

(911,13
[§13,13]

112,13
[915,13

2
210,13]
114,13]

The main step of the quicksort is now repeated. The crucial
point about this algorithm is that each operation acts on all
subgroups in parallel. For example, the next two operations
are to identify the leftmost element of each group as its splitter

and to broadcast the splitter to the rest of the group. These
two operations produce the following result:

0
[$511,11
[813,13]

112,11
[$915,15

2
£10,11]
514,15]

This algorithm requires an average time of O(n) to sort
an array of n numbers. The reason it is not faster is that the
partitioning steps require a sequence of rotations; if these were
performed in parallel a better complexity could be achieved.
However, if this algorithm is implemented in a suitable tech-
nology, such as FPGAs or VLSI, the individual communication
steps have extremely low latency and the overall performance
may be good.

VIl. RELATED WORK

Tree machines have appeared frequently in the literature
on parallel architectures and programming. Introductions to
parallel systems often depict a family of abstract intercon-
nection networks, typically including a star, ring, tree, mesh,
and cube. General discussions of tree machines may describe
advantages such as a fixed number of ports per processor,
and disadvantages including a potential bandwidth bottleneck
near the root [18]. At this general introductory level, it
may be assumed that the interconnection network is intended
to provide arbitrary point to point communication between
processors, and there is not necessarily an explicit connection
between the network and the algorithms that run on it. Akl
uses abstract tree architectures to analyze the complexity of
several algorithm problems [19].

Tree networks are well suited for efficient fabrication,
especially when the node processors are small enough to allow
a large number of nodes per integrated circuit. The standard
H-tree layout [20] gives an efficient usage of chip area, and
each chip has a fixed small number of ports. This allows a
system of arbitrary size to be constructed from a standard H-
tree chip.

The main problem with a tree network is that the number
of processors in each subtree increases toward the root, but
the bandwidth does not. This can lead to a communication
bottleneck between the two halves of the tree. Consequently,
tree networks are poorly suited for general parallel computing
where processors communicate randomly with each other.

One solution to the bandwidth problem is to choose prob-
lems whose communication needs match the architecture. A



common example of this is in computing reductions [21]
and divide and conquer algorithms, where each problem is
split into two subproblems of roughly equal size. In these
applications, the links in the tree network are used primarily
to communicate subproblem instances down the tree, and sub-
problem results back up, making efficient use of the available
bandwidth.

Sometimes an algorithm for a parallel tree architecture
can be mapped directly into hardware, rather than being
programmed on a general purpose parallel system. In this case,
there is no point in supplying an interconnection network that
is richer than necessary. Any algorithm that happens to fit well
in a tree structure—which, as pointed out before, is well suited
for inclusion in a VVLSI chip—is more cost effective with the
tree network than with a “better” network. Two examples of
this are associative processors and fast adders.

One of the first applications of a physical tree machine,
where the network structure fits exactly the needs of the
problem domain, is in the design of responder networks for
associative processors. An associative processor [22] (also
called content addressable parallel processor) is a data parallel
system that provides operations for searching an aggregate
data structure according to values, rather than addresses. In
a typical application, the associative memory contains a list
of tuples, with each tuple held in a separate local memory. A
search operation would be issued by a single control processor,
with a constant value for one element of the tuple specified
as argument. All the processors then compare the argument
with the corresponding tuple element in their local memory.
Since many processors may find a match, the system needs
to provide a fast mechanism for choosing a unique responder.
This is best done with a binary tree circuit, and associative
processors are among the earliest ancestors of the abstract tree
machine described in this paper.

Another solution to the bandwidth problem is to enrich the
network. The X-tree [23] is one example of this approach, and
another idea is simply to increase the bandwidth on the links
that are higher in the tree, resulting in the "fat tree” network
which was used successfully in the network of the CM5 [24],
a general purpose parallel computer intended to support both
task and data parallelism.

Another class of architectures uses the tree to implement
a specific set of higher level collective communication oper-
ations. The intention here is that the application programmer
is concerned only with the higher level operations, and tailors
the program in terms of the collective communication library
rather than in terms of the network architecture, which remains
hidden.

One example of this approach is a parallel string reduction
machine [13], [25], intended for implementing the functional
language FFP. A related system is APSA [14], which uses
parallelism within the tree to provide data structure operations
useful in the implementation of list processing languages such
as Lisp and Scheme.

Another way to use a parallel tree architecture is to serve
as an abstract host for implementing the family of parallel
fold and scan functions. The primary purpose here is to
use the tree as a vehicle for defining the communication
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patterns needed for the folds and scans, but this could be
just a tree pattern of communication that is actually em-
bedded in a richer interconnection network, which provides
other collective communication operations that would not be
supported efficiently by the tree. There are two advantages of
using an abstract tree network in this way, rather than just
defining the implementations of folds and scans directly in
the richer network: the algorithms are clarified and made more
portable, and the inherent costs of folds and scans is measured
more accurately using a minimal network rather than one
with arbitrarily chosen additional bandwidth that is unused.
A parallel scan can be used to implement a “segmented scan”
[26] which yields a form of processor grouping similar to the
operations described in Section 1V.

Many problems in high performance computing require a
more general programming environment than the abstract tree
machine described in this paper, yet they might also benefit
from the data parallel techniques. This suggests embedding the
abstract machine and algorithms given in this paper within
a richer architecture. Hatcher and Quinn discuss the use of
general data parallel programming techniques on architectures
with an MIMD organization [27].

An interesting idea for generalizing SIMD architectures in
order to support tasks, while still retaining some of the effi-
ciency of SIMD for data parallelism, is the “multiple SIMD”
or MSIMD architecture [28]. Since MSIMD architectures are
intended to support efficient data parallelism, it is natural to
base them on a tree network, or at least to embed a tree within
a richer network. Several examples of this genre are surveyed
in [29], including a hierarchical MSIMD tree machine [30];
DADO, a multiprocessor for parallel rule processing in expert
systems [31]; the NonVon tree machine, and the FFP machine
of Mago which was cited earlier. An architecture combining
data parallelism with general MIMD hardware can also benefit
from an MSIMD organization.

The trend in high performance computers has been away
from fine grain architectures with large numbers of small
processors, and toward systems based on powerful processors
with large local memories. It is easier to exploit task par-
allelism using such architectures, and they appear to have a
wider range of applicability than the fine grain data parallel
architectures. However, fine grain parallel systems are making
a comeback in the form of reconfigurable hardware, especially
FPGASs [32]. These are often described in marketing literature
as hardware that can be modified to suit an application, but
in reality they are fine grain parallel SIMD systems. FPGAS
often have a flexible interconnection network with a mesh
organization containing pass transistors in the nodes that allow
the programmer to establish relatively fast links that are
tailored to the problem at hand. The abstract tree machine
used in this paper could be embedded in an FPGA.

VIIl. CONCLUSION

The main result of this paper is that a fine grain architecture
with a tree interconnection network can perform algorithms
that combine some of the characteristics of task and data
parallelism. The central result is a representation of subgroups,



along with a set of communication algorithms that allow
simultaneous data parallel communications within each group
with absolutely no interference from other groups.

Many tree algorithms require load balancing for efficient
performance. This leads to good performance when a problem
can be decomposed into subtasks whose sizes match the
subtree sizes, but performance deteriorates on irregular data
or adaptive algorithms. The approach to group communication
presented here does not suffer from that defect: the set of
processors can be decomposed recursively into subgroups
of any size; all the group communication operations take
a constant number of fast primitive tree instructions; and a
communication within one group never interferes with any
other group.

The algorithms presented here have been expressed using
the weakest possible host architecture, a SIMD organization
with a tree interconnection network. This does not mean that
the results are applicable only to such a limited architecture.
On the contrary, the results are made stronger by starting with
weaker assumptions about the capabilities of the host machine.
If these algorithms are used on more powerful architectures,
then they can be enhanced by additional techniques. Two
such generalizations are particularly important. If the parallel
system has MIMD control rather than SIMD control, then
the local computation steps can vary among the processors,
leading to much more flexible algorithms. Also, the set of com-
munication operations can be expanded, including standard
operations such as scatter and gather, if the interconnection
network allows this.
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