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Abstract 

One of the main outcomes of aerobic endurance exercise training is the improved maximal oxygen uptake, 

and this is pivotal to the improved work capacity that follows the exercise training. Improved maximal 

oxygen uptake in turn is at least partly achieved because exercise training increases the ability of the 

myocardium to produce a greater cardiac output. In healthy subjects, this has been demonstrated 

repeatedly over many decades. It has recently emerged that this scenario may also be true under conditions 

of an initial myocardial dysfunction. For instance, myocardial improvements may still be observed after 

exercise training in post-myocardial infarction heart failure. In both health and disease, it is the changes 

that occur in the individual cardiomyocytes with respect to their ability to contract that by large drive the 

exercise training-induced adaptation to the heart. Here, we review the evidence and the mechanisms by 

which exercise training induces beneficial changes in the mammalian myocardium, as obtained by means 

of experimental and clinical studies, and we argue that these changes ultimately alter the function of the 

whole heart and contribute to the changes in whole-body function.  
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Introduction 

Physical activity and regular exercise training is a potent but cheap intervention that reduces the Western 

Society epidemics of lifestyle-related conditions such as heart, vascular, metabolic, and skeletomuscular 

diseases (e.g. American Heart Association 2003). It improves and extends individual lives as well as 

reduces the burden on public health and economy. In contrast, lack of physical activity and exercise 

training increases the prevalence, incidence, and severity of the abovementioned diseases (Blair & Church 

2004). A prime example is the effect regular exercise training has on heart disease and failure patients, as 

it improves cardiac function, health and quality of life, and reduces morbidity and mortality to significant 

degrees in both sexes; in patients of all ages; and at all stages of the disease (Belardinelli et al. 1999, Blair 

et al. 1995, Gulati et al. 2003, Jolliffe et al. 2001, Paffenbarger et al. 1993). In line with this, recent 

epidemiological surveys and meta-analyses have clearly indicated that improving aerobic fitness or 

exercise capacity alone has the power to effectively reduce mortality, cardiac events, and hospitalization 

in men and women with established heart disease or with heightened risk of developing heart disease 

(Kodoma et al. 2009, Myers et al. 2002). Thus, the idea emerges that exercise training asserts a number of 

effects that benefit the subject in both health and disease. However, recommendations on physical activity 

in primary and secondary prevention of cardiac disease are diffuse (American College of Sports Medicine 

1994, Fletcher et al. 2001) despite indisputable evidence showing that aerobic fitness is an important 

clinical reference point and target (Kavanagh et al. 2002, Myers et al. 2002). In order to develop optimal 

exercise protocols, a sound understanding of the underlying biology, including an integration of the 

elements from molecular to organismal physiology is required.  

 

Exercise intensity 
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Although defining studies of healthy individuals are still lacking, clinical trials point to the superiority of 

high aerobic exercise intensity over low-to-moderate intensities to gain full effect of an exercise training 

program (Helgerud et al. 2007, Jensen et al. 1996, Lee et al. 2003, Rognmo et al. 2004, Shephard 1968, 

Tanasescu et al. 2002, Tjonna et al. 2008, Wisloff et al. 2007). This has been demonstrated while 

balancing lower intensity exercise programs with longer exercise times per session in order to make them 

isocaloric and thence isolate intensity as the sole parameter that differ between exercise training groups. 

Furthermore, the emergence of aerobic fitness as a continuum from health to disease supports this notion 

(Kavanagh et al. 2002, Myers et al. 2002). Because of the aerobic fitness-heart link (see below), cardiac 

adaptations may therefore also rely on the exercise intensity during long-term regular training programs 

also in healthy individuals, especially since it was demonstrated that stroke volume in well-trained athletes 

may increase continuously with increasing intensity up to maximal levels being reached around peak 

aerobic exercise intensity (Gledhill et al. 1994). 

 

Maximal oxygen uptake 

An important physiological characteristic in both health and disease is the maximal oxygen uptake 

(VO2max), which assesses the maximal rate at which oxygen can be transported from ambient air to 

peripheral skeletal muscles where it fuels aerobic oxidative metabolism. As such, it provides a 

physiological measure of aerobic fitness. A majority of studies indicate that VO2max is rate-limited by the 

cardiac pumping capacity (cardiac output), as the main drop in oxygen partial pressure occurs between the 

pulmonary and skeletal muscle capillaries (Richardson 1998, Richardson et al. 1999). This view has also 

been supported by analytical modeling, by studies showing that the cardiac pump capacity greatly differs 

between untrained and endurance-trained subjects, and by approaches experimentally manipulating with 

convective oxygen delivery (Levine 2008, Saltin & Calbet 2006, Wagner 1996). Here, we review how the 
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primary muscle cell of the heart; the cardiomyocyte, contributes to VO2max and aerobic fitness in both 

health and disease and before and after exercise training programs. 

 

The heart and the cell integrated 

The beat-to-beat pump action of the whole heart originates from the coordinated equivalent beat-to-beat 

contraction in the cardiomyocytes (Bers 2002), and just as the stroke volume may change when exercise 

intensity or workload changes, the force and extent of each cardiomyocyte contraction may also change. 

Cardiomyocytes are the primary cells of the heart, and although they only account for ~20% of the total 

cell population in the heart, cardiomyocytes account for >90% of the myocardial mass because of the size 

of each individual cell (Bergmann et al. 2009). As such, many of the exercise training-induced chronic 

changes in the heart originate from cardiomyocyte adaptations (Kemi et al. 2008C), and it is also this 

plasticity of the systems that allows for intensity-dependent effects to occur.  

 

Cardiomyocytes respond in multiple ways to exercise training programs, including regulation of both size 

and intrinsic contraction. Remarkably, the cardiomyocytes also seem to respond to exercise training in an 

intensity-dependent manner; higher intensities result in greater adaptation (Kemi et al. 2005). Since the 

objective has been to correlate VO2max with cardiomyocyte function, it has required access to viable cells 

and tissues freshly isolated from individuals undergoing defined and controlled exercise training regimens, 

which cannot be accommodated by studying human subjects. We therefore adopted procedures for 

exercise training and testing of VO2max to experimental mice and rat models (Kemi et al. 2002, Wisloff et 

al. 2001A). An intensity-controlled exercise training program at 90-95% of VO2max was chosen to magnify 

any effect, and this was performed by the interval principle, in which high intensity exercise bouts (95-

95% of VO2max) were interspersed by moderate intensity active recovery periods at 50-60% of VO2max, to 
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sustain and avoid a drop in the exercise intensity during the on-transients. Thus, each animal would 

exercise for 1-2 hours per day, 5 days per week, for a total of 8-12 weeks. This exercise training program 

therefore mimics human exercise programs and result in robust and reproducible adaptations that also 

mimic human responses to exercise training that include increased VO2max and improved cardiac function, 

as well as vascular and skeletal muscle improvements (Kemi et al. 2002, Wisloff et al. 2001A).  

 

Cardiomyocyte hypertrophy 

Regulation of the cardiomyocyte size contributes to the cellular involvement in the regulation of pump 

function. The adaptive growth of the cell in response to exercise training; termed physiological 

hypertrophy, usually involves proportional growth in length and width (Hunter & Chien 1999). This 

corresponds with increased ventricular weights and chamber volumes; termed athletes’ heart, and serves 

thus as the cellular mechanism to the organ effect (Anversa et al. 1982, Pluim et al. 2000). Cellular 

hypertrophy has been reported in response to various exercise training programs (Mokelke et al. 1997, 

Moore et al. 1993). We have reported that high intensity exercise training at 85-90% of VO2max induces a 

proportional hypertrophic response in the length and width of cardiomyocytes that is observable already 

after a few weeks of exercise training; that reaches a plateau after ~2 months, and that surpasses previous 

studies in terms of magnitude of effect (Kemi et al. 2002, 2004, Wisloff et al. 2001A, 2001B). The greater 

effect is likely explained by the higher intensity of exercise training, compared to previous studies. In a 

more thorough comparison, we found that the magnitude of cardiomyocyte hypertrophy depends upon the 

intensity of exercise, as high-intensity exercise training induced a substantially larger response than 

moderate intensity, which in relative terms equated to almost three times greater response (Kemi et al. 

2005).  
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Induction and maintenance of the physiological hypertrophy of the cardiomyocyte during and after a 

program of exercise training includes both transcriptional and translational features. Such pathways may 

have different temporal periods in which they occur, and may have different levels of biological 

importance. First, it has been convincingly demonstrated by several research groups and with various 

experimental approaches spanning both running and swimming exercise protocols and targeted knock-out 

models, that the initiation of the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mammalian 

target of rapamycin (mTOR) pathway is crucial for induction of the physiological hypertrophy (Kemi et 

al. 2008B, McMullen et al. 2003). This pathway stimulates p70S6-kinase/ribosomal protein S6 signal 

transduction, and it phosphorylates the eukaryotic translation initiation factor-4E binding protein-1 (4E-

BP1). Accumulatively, this increases ribosomal biogenesis and activity and therefore leads to a greater 

translation of messenger ribonucleic acids (mRNA) and protein synthesis. Regulation of hypertrophy by 

this signal pathway appears to be particularly important, since the same experiments found no chronic 

activation of either of mitogen-activated protein kinase (MAPK) or fetal gene re-expression signals, and 

since a pressure-overload-induced pathological hypertrophy in contrast associated with downregulation of 

the PI3K/Akt/mTOR cascade (Kemi et al. 2008B). Thus, activation or inactivation levels of 

PI3K/Akt/mTOR signals may distinguish between physiological and pathological growth of the 

cardiomyocyte.  

 

Evidence also suggests that the MAPK signal cascade (extracellular signal-regulated kinases; ERKs, p38 

isoforms, c-Jun N-terminal kinases: JNKs) is transiently increased during and shortly after exercise 

training bouts in untrained, but not in trained rats (Iemitsu et al. 2006). This signal cascade is known to 

activate nuclear transcription factors such as the myocyte enhancer factor 2 (Mef-2) that initiate 

transcription of genes regulating cellular hypertrophy (Liang & Molkentin 2003), suggesting that MAPK 
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activation may facilitate induction, but not maintenance, of physiological hypertrophy. In parallel to this, 

exercise training also chronically increases intracellular cycling of Ca2+ (reviewed below), and this 

chronically activates Ca2+/calmodulin-dependent kinase II (CaMKII) (Kemi et al. 2007A). Activated 

CaMKII has several downstream effects, one of which is inhibition of class II histone deacetylase 

(HDAC) (Bossuyt et al. 2008). Since HDAC suppresses Mef-2, reduced suppression of Mef-2 by activated 

CaMKII may therefore lead to chronically increased transcription of genes regulating cellular 

hypertrophy. However, any chronic CaMKII-induced activation of genes regulating hypertrophy may be 

counteracted by the fact that exercise training also reduces nuclear factor of activated T cell (NFAT) in the 

nucleus (Wilkins et al. 2004). In contrast to HDAC, NFAT activates Mef-2, but the exercise training effect 

abolishes this. However, this is debatable and requires more studies, as different studies have reported 

conflicting results with regard to exercise training and NFAT and its activator calcineurin (Eto et al. 2000, 

Wilkins et al. 2004). Alongside this, it has also recently emerged that Mef-2 also activates transcription of 

micro-RNAs 1 and 133, and they innately repress mRNA translation by a different molecular mechanism, 

namely binding and cleaving specific mRNA strands, which thereby inhibits muscle development (Liu et 

al. 2007). Micro-RNAs 1 and 133 are downregulated by exercise training (Care et al. 2007), such that 

mRNA translation is allowed to increase. It has therefore become increasingly clear that induction of 

physiological cardiomyocyte hypertrophy is extremely complex and that the resultant phenotype is the 

result of a multitude of signal cascades operating next to each other. 

 

Maintenance of physiological hypertrophy therefore relies on the chronic activation states of the 

abovementioned cascades, but also by mechanisms that control and maintain the translated protein mass of 

the cell. This includes the molecular chaperones heat shock proteins (HSPs), of which a number of 

isoforms have been reported up-regulated after exercise training programs (Boluyt et al. 2006), as well as 
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the ubiquitin-proteasome pathway (UPS), which on the other hand is reduced after exercise training, as 

reported by measuring the mRNA and protein expression levels of its constituents muscle ring finger-1 

(Murf-1) and muscle atrophy f-box (MAFbx) (Adams et al. 2008). Signaling mechanisms causing or 

maintaining physiological hypertrophy of the heart with evidence of susceptibility to exercise training are 

summarized in Figure 1. 

 

Cardiomyocyte excitation, Ca2+ handling, and contraction 

The cardiomyocyte contraction is orchestrated by a process known as Ca2+-induced Ca2+-release; the 

action potential depolarizes the plasma membrane including the transverse tubule and opens the voltage-

sensitive L-type Ca2+ channel. This initiates an inward Ca2+ current through the plasma membrane that 

activates the ryanodine receptors (RyR2) to release 0.5-1 μM Ca2+ from the sarcoplasmic reticulum (SR). 

The following increase in intracellular free Ca2+ concentration ([Ca2+]i) allows for more Ca2+ binding to 

troponin C of the contractile apparatus, and this leads to a conformational change of the actin-

tropomyosin-troponin complex that facilitates actin-myosin interaction and cross-bridge creation. This 

causes myofilament contraction, and when it occurs in a coordinated fashion as during the global transient 

increase in the [Ca2+]i, the sarcomere and the whole cell contracts (Bers 2002). The RyR2 may 

spontaneously open and releases small amounts of SR Ca2+ during diastole, but in this case the release is 

uncontrolled and non-coordinated and leads to potential detrimental effects such as reduced levels of SR 

activator Ca2+ and increased diastolic [Ca2+]i in the cytoplasm. The cytoplasmic Ca2+ also activates the 

Na+/Ca2+-exchanger (NCX) to initiate an inward Na+ current, and this current may induce delayed 

afterdepolarisations that under some circumstances cause arrhythmias and ventricular fibrillation 

(Venetucci et al. 2008). A tight control of the RyR2 is therefore of physiological importance. In diastole, 

cardiomyocyte relaxation is evoked by removal of intracellular free and troponin C-bound Ca2+, mainly by 
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the SR Ca2+ ATPase (SERCA2a) that removes the bulk of the Ca2+, but also by the forward-mode NCX. 

The SERCA2a is innately controlled by the presence of free Ca2+, and more importantly for regulation of 

its activity, by phospholamban, which in dephosphorylated form inhibits SERCA2a, but in phosphorylated 

form translocates and removes the inhibition it exerts on SERCA2a. The main kinases phosphorylating 

PLB are protein kinase A (PKA) and CaMKII, which phosphorylate the serine-16 and threonine-17 

residues of PLB, respectively. Thus, the transient increase in [Ca2+]i (termed Ca2+ transient) constitutes the 

beat-to-beat cellular mechanism of the heartbeat. Several experimental approaches such as altering [Ca2+]i, 

and using models with altered [Ca2+]i handling due to changed expressions of e.g. SERCA2a and PLB 

have demonstrated that [Ca2+]i and the transient increase in [Ca2+]i during systole orchestrates cellular 

contraction (Frampton & Orchard 1992, del Monte et al. 1999, Gomez et al. 1997). As such, the Ca2+ 

cycling frequency determines the frequency of the heartbeat, whereas the amount of Ca2+ released from 

the SR and the responsiveness of the myofilaments to Ca2+ determines the extent (fractional shortening) 

and force of the contraction (Bers 2002). Several aspects of excitation-contraction coupling are prone to 

exercise training, whether it be in normal or dysfunctional and failing cardiomyocytes. 

 

Exercise training and cardiomyocyte contraction 

Aerobic exercise training performed with a high intensity (90% of VO2max) over a prolonged period of 

time improves contractility in unloaded cardiomyocytes, measured as the fractional shortening (the 

shortest systolic length relative to resting diastolic length) and as the rates with which shortening and 

relengthening occurs, during electrical field stimulation with increasing frequencies. Fractional shortening 

improves by 40-50%, and contraction and relaxation rates improve by 20-40% (Kemi et al. 2004, Wisloff 

et al. 2001B, 2002). These changes are particularly consistent for relaxation rates throughout a series of 

different studies, whereas faster contraction rates have been observed in some (Kemi et al. 2004, 2005), 
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but not all studies (Wisloff et al. 2001B, 2002). However, increased shortening rates have also been 

observed in cardiomyocytes during loaded contractions that more accurately mimic physiological preload 

conditions of the heart (Diffee & Chung 2003). Loaded conditions also allow for studies of the 

development of force during each contraction cycle, with subsequent calculation of the developed power, 

and under those conditions, it was indicated that exercise training increased the maximal power output in 

the cardiomyocyte by 60%. It should though be noted that the exercise intensity applied in this study was 

low-to-moderate, such that direct comparisons to high intensity exercise training cannot be made as to the 

magnitude of effect. However, there is a clear tendency that those studies utilizing a high exercise 

intensity (reviewed above) during the exercise training programs report greater magnitudes of changes 

compared to studies utilizing lower exercise intensities or voluntary running schemes (Diffee & Chung 

2003, Diffee et al. 2001, Mokelke et al. 1997, Moore et al. 1993). This has been confirmed by subjecting 

exercise training rats to either of high (85-90% of VO2max) or moderate (65-70% of VO2max) exercise 

intensities for 2.5 months, which found high intensity exercise to be approximately twice as effective as 

moderate intensity (Kemi et al. 2005). In fact, some of the studies utilizing low or voluntary exercise 

intensities fail to detect contractile improvements following prolonged exercise training programs 

(Laughlin et al 1992, Palmer et al. 1998). However, different experimental conditions while studying 

cellular contraction, and different electrical stimulation protocols may explain some of the differences.  

 

Furthermore, exercise training improves contractile function also when no simultaneous changes to end-

diastolic wall stress can be recorded (Schaible & Scheuer 1981), and it increases isometric force even 

when optimal sarcomere length is maintained (Mole 1978). This suggests that the contractile improvement 

of the cardiomyocyte after exercise training is independent of hypertrophy, and that the contractile 

response therefore relies on subcellular mechanisms that facilitate inotropy, such as adenosine 
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triphosphate (ATP) hydrolysis and Ca2+-induced actin-myosin crossbridges. Finally, experiments with 

permeabilized cardiomyocytes; in which ions move freely across the plasma membrane such that the 

[Ca2+]i can be very accurately manipulated in order to study direct Ca2+ effects on contractile force, have 

also demonstrated that force- and power outputs and the steepness of the sarcomere length-tension 

relationship increase in the single cell with exercise training (Diffee & Chung 2003, Diffee & Nagle 2003, 

Natali et al. 2002). This suggests that changes in the individual cardiomyocytes explain at least some of 

the Frank Starling-related mechanisms that occur with exercise training. Collectively, the cardiomyocyte 

contractile adaptations to exercise training reviewed above provide the cellular rationale for exercise 

training-induced improvements in systolic and diastolic functions and increased cardiac output in whole 

hearts of both humans and experimental animals (Gledhill et al. 1994, Helgerud et al. 2007, Schaible & 

Scheuer 1981).  

 

Exercise training and intracellular Ca2+ 

Since intracellular Ca2+ handling controls cardiomyocyte contraction (see above), it comes to no surprise 

that exercise training-induced changes in the cardiomyocyte contractility are chiefly caused by changes in 

the intracellular handling of Ca2+. Indeed, the comparable changes of the rates of the Ca2+ transient rise 

and decay and the rates of contraction and relaxation suggests that changes to contractility and Ca2+ 

handling are intimately linked together. In other words, the changes in rate of Ca2+ cycling explain the 

changes in contraction-relaxation rates of the cardiomyocyte after exercise training (Kemi et al. 2004, 

Wisloff et al. 2001B). In short, exercise training leads to faster systolic rise and diastolic decay times of 

the Ca2+ transient, and this has been demonstrated after electrical stimulation at both low and increased 

frequencies that correspond to heart rates of sedentary and exercising rat and mice. Moreover and in line 

with the recordings of contraction-relaxation rates, the magnitude of the exercise training-induced 
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adaptations to rise and decay rates of the Ca2+ transient depends upon the exercise intensity. High intensity 

exercise training at 85-90% of VO2max induced a ~40% change, whereas moderate intensity exercise 

training in contrast induced a ~20% change in the release and re-uptake rates of Ca2+ cycling (Kemi et al. 

2005). This is in line with observations from human studies showing that high aerobic exercise intensity 

induces a greater cardiac adaptation than exercise training with lower intensities (Helgerud et al. 2007), 

and provides thus a cellular rationale for the whole heart effects. However, the concept of exercise training 

inducing a faster rise of the Ca2+ transient does not rely on unambiguous evidence, as some studies have 

been unable to identify a change in the rise time of the Ca2+ transient after exercise training, only a faster 

Ca2+ transient decay time (Wisloff et al. 2001B). Nonetheless, the majority of studies of high intensity 

exercise training specifically investigating Ca2+ transients have reported faster rise times in both mice and 

rats (Kemi et al. 2004, 2005, 2007A). Apart from increased rates of Ca2+ cycling, exercise training also 

reduces diastolic [Ca2+]i (Kemi et al. 2007A, Wisloff et al, 2001B), compared to sedentary controls. This 

has several important implications. First, the likelihood of developing Ca2+-linked arrhythmias is reduced. 

In normal hearts, this risk is already small. However, in certain pathologic conditions or mutations 

favoring spontaneous diastolic Ca2+ release, improved control of diastolic Ca2+ may become important. 

Second, reduced free intracellular diastolic Ca2+ also leads to a more complete relaxation and a greater 

recharging of the SR, which supports Ca2+-induced Ca2+-release by the RyR2. 

 

In response to exercise training, [Ca2+]i handling as well as contractility improves steadily over the course 

of the program until a plateau is reached after ~2 months; the positive inotropic effects of high intensity 

exercise are indistinguishable between 8 and 13 weeks of exercise training programs (Kemi et al. 2004). 

Two likely explanations for the plateau are either that the cardiomyocytes reach a maximal potential for 

improvement or that the relative exercise intensity or volume needs to be increased at this point to elicit 
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further development. In contrast, when a high intensity exercise training program is ceased by a return to a 

sedentary lifestyle (detraining), the regression of training-induced effects on cardiomyocyte [Ca2+]i 

handling and associated contraction with a return to normal levels occurs within 2-4 weeks (Kemi et al. 

2004). Hence, detraining effects occur faster than the actual training effects. 

 

Mechanisms of Ca2+ control 

We have in several studies provided evidence that exercise training increases the SERCA2a mRNA and 

protein expression levels in cardiomyocytes, but not PLB expression levels (Kemi et al. 2007A, 2008A). 

This upregulates the SERCA2a-to-PLB ratio and therefore allows the SERCA2a to increase activity. 

Concomitantly, exercise training also increases the phosphorylation status and hence chronic activation of 

CaMKII in the cardiomyocyte, which subsequently chronically hyperphosphorylates the threonine-17 

residue of PLB (Kemi et al. 2007A). Phosphorylated PLB does not inhibit SERCA2a, in contrast to the 

dephosphorylated isoform. These effects suggest a faster re-uptake of free cytoplasmic Ca2+ by the SR and 

provide an explanation for the faster Ca2+ transient decay rate after exercise training; as reviewed above. 

Consequently, they also suggest that SR loading of Ca2+ may increase with exercise training, although this 

has not been measured yet. In contrast to CaMKII, PKA and its serine-16 PLB residue were unaltered by 

exercise training. 

 

Recently, we developed an assay that allows us to directly study the activity levels of isolated SERCA2a 

proteins in the intact SR membranes of permeabilized cardiomyocytes, and this showed that the maximal 

rate of SERCA2a Ca2+ uptake increased by 30% after exercise training (Kemi et al. 2008A). This 

magnitude of effect compares closely with the magnitude of the exercise training-induced effect on the 

Ca2+ transient decay. In line with this, exercise training also increases the protein expression levels of 
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NCX (Wisloff et al. 2001B, 2002), which together with the chronic activation of CaMKII and its effect on 

PLB, and the increased SERCA-to-PLB ratio also explains the reduced diastolic [Ca2+]i. However, not all 

studies have been able to report that exercise training improves cardiac SR Ca2+ cycling or changes 

expression levels of SERCA2a and NCX (Lankford et al. 1998, Tate et al. 1993). The reason for this 

discrepancy is not clear, but may be linked to different exercise intensities, as studies of high exercise 

intensity have reported upregulated expression of SERCA2a and NCX, whereas those studies reporting no 

changes have utilized low exercise intensities in their exercise regimens. The reduction in resting diastolic 

[Ca2+]i after exercise training could also be at least partly explained by several other factors. These include 

improved Ca2+ buffering capacity of the cytoplasm, since only a small fraction of the cytoplasmic Ca2+ 

exists as free Ca2+ (Bers 2002) and since exercise training increases Ca2+ binding and binding sites in the 

cardiomyocyte SR (Penpargul et al. 1977) and plasma membrane (Tibbits et al. 1989), as well as the 

cellular hypertrophy that may dilute cytoplasmic Ca2+ due to the volume expansion. Finally, mitochondrial 

Ca2+ cycling, albeit contributing very little to the overall Ca2+ handling of the cell, may also account for a 

small portion of the reduced diastolic [Ca2+]i after exercise training (Beyer et al. 1984). This study 

indicated that the exercise trained mitochondria may increase its ability to accumulate Ca2+. 

 

In contrast to the diastolic Ca2+ handling, no clear and uniform mechanism that would explain why and 

how exercise training increases the rate of rise of the Ca2+ transient has yet been identified. A potential 

mechanism that might explain this is the indication that exercise training may chronically prolong the 

action potentials and thus excitation, at least in regions of the heart (Natali et al. 2002). Since the L-type 

Ca2+ channel is voltage-sensitive, this may prolong the L-type Ca2+ current and therefore also the Ca2+-

induced activation of the RyR2 on the SR; the site of the bulk systolic Ca2+ release. However, it is not 

clear whether this would lead to a faster rise time of the Ca2+ transient per se. Another mechanism that 
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may explain this would be if the coupling of plasma membrane excitation, L-type Ca2+ current across the 

membrane, and RyR2 on the SR membrane changed properties, for instance by reducing physical 

distances without hampering Ca2+ flux from the SR to the myofilaments. This, however, remains to be 

studied. Exercise training-induced changes in cardiomyocyte Ca2+ cycling are illustrated in Figure 2. 

 

Ca2+ transient amplitude and myofilament Ca2+ sensitivity 

Whereas the exercise training-induced increased rates of contraction and relaxation can be fully explained 

by the similar changes to the rise and decay rates of the Ca2+ transient, the larger fractional shortening that 

also occurs after exercise training does not appear to be fully explained by elevated peak systolic [Ca2+]i or 

a greater amplitude of the Ca2+ transient (Kemi et al. 2004, 2005, Laughlin et al. 1992, Wisloff et al. 

2001B, 2002), which normally would have been the first mechanism to study with relation to increased 

contraction. In fact, although most studies have reported no changes to the amplitude of the Ca2+ transient, 

some studies have also reported either a reduced Ca2+ transient amplitude or a sustained amplitude but at 

reduced diastolic and systolic [Ca2+]i (Wisloff et al. 2001B, 2002). Thus, this suggests that other 

mechanisms may be at play that would explain the improved fractional shortening of the exercise trained 

cardiomyocyte, since systolic activator Ca2+ or the Ca2+ transient amplitude cannot provide an explanation 

for this phenomenon. However, if not the amplitude, the shape of the Ca2+ transient may still partly 

explain the improved magnitude of contraction, measured as increased fractional shortening after exercise 

training. Since the exercise training-induced increase in the decay rate of the Ca2+ transient was greater 

than the increase in the rate of rise; i.e. the Ca2+ transient became narrower due to the shorter duration, 

also means that the activator Ca2+ is less “smeared out” after exercise training. Because the Ca2+ binding 

to troponin C is a very short event, this consequently means that more of the available Ca2+ is activating 

contraction at the same time, such that actin-myosin contraction throughout the cell occurs more 
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synchronously. This would enable a greater fractional shortening, though it is very unlikely that it would 

explain the full exercise training effect on the fractional shortening. Thus, improved contraction appears to 

also result from improved myofilament responsiveness to Ca2+, i.e. increased Ca2+ sensitivity. Higher Ca2+ 

sensitivity during submaximal, but not maximal activation of tension, after exercise training has been 

convincingly demonstrated, measured as a leftward shift in the tension-pCa relationship (Diffee et al. 

2001, Wisloff et al. 2001B). This effectively means that the [Ca2+]i that produces half-maximal tension is 

decreased, and it is important because most of the cardiomyocyte contraction occurs at submaximal 

[Ca2+]i. The leftward shift suggests a faster shortening, but also that a greater contraction and force output 

can be produced in each contraction cycle, despite the Ca2+ transient amplitude may not change or even 

when the Ca2+ transient duration is shortened.  

 

Several mechanisms may explain the improved myofilament Ca2+ sensitivity. Recent work has implied 

that the exercise training-induced chronic phosphorylation (activation) of CaMKII may contribute toward 

this effect (Kemi et al. 2007A). Another mechanism that may explain this is the improved regulation of 

intracellular pH during increased stimulation frequencies (faster heart rates) (Wisloff et al. 2001B). If pH 

is allowed to drop by ineffective H+ buffering, the excess H+ will compete with Ca2+ for binding to 

troponin C, but without inducing the conformational change that induces the contraction. However, since 

intracellular pH is similar between exercise trained and sedentary cardiomyocytes during resting and low-

frequency stimulation conditions, it can only explain improved Ca2+ sensitivity during increased heart 

rates, whereas the increased Ca2+ sensitivity was observed during both resting/low and high electrical 

stimulation frequencies. Nonetheless, it is during increased stimulation frequencies (heart rates) that the 

biological significance of Ca2+ sensitivity is highest, such that the pH effect may still exert an important 

adaptation to exercise training. The cause of the improved pH regulation was linked to increased mRNA 
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expression of the Na+/H+-exchanger (NHE), which removes excess H+ from the cytoplasm (Wisloff et al. 

2001B). Finally, increased expression levels of atrial myosin light chain 1 (Diffee et al. 2003), and 

isoform shifting of troponins (Anderson et al. 1995) and myosin heavy chains (Nakao et al. 1997) have 

also been proposed as candidates explaining the exercise training-induced increase in myofilament Ca2+ 

sensitivity, since such changes would associate with altered troponin-tropomyosin configurations that 

would alter the biophysical properties of cross-bridge creation and force production. 

 

Experimental animal models of cardiac dysfunction and failure: post-myocardial infarction heart 

failure 

Several experimental models of heart dysfunction, disease and failure have been developed in mice and 

rats that allow for studies of intrinsic heart and cardiomyocyte function under those conditions, including 

the associated responses to exercise training. 

 

A commonly utilized model of heart disease is the post-myocardial infarction (MI) heart failure (HF) 

model in rats. The left coronary artery is permanently ligated to induce ischemia (Kemi et al. 2007B, 

Wisloff et al. 2002), leading to a subsequently developming HF. The condition is characterized by 

pulmonary congestion and compromised exercise capacity. In the heart, the symptoms include reduced 

reserve and pump capacity, development of pathological hypertrophy, dilatation, and fibrosis, increased 

end-diastolic and reduced systolic pressures, reduced function of the myocardium, and re-expression and 

activation of fetal genes and pathologica molecular signaling pathways (Hasenfuss 1998). Thus, this 

model mimics the pathology and pathophysiology of post-MI HF patients, albeit the induction of it is a 

sudden physical damage to an otherwise healthy organ. Hence, the etiology is different from clinical HF, 

but the resulting phenotype and genotype shows considerable similarities to post-MI HF in humans. 
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Further proof of this comes from studies showing that post-MI HF animals also die from progressive 

pump failure or sudden arrhythmic events, in line with clinical cases in humans (Myles et al. 2008). The 

model therefore has been used to study the mechanistic basis of post-MI HF both before and after exercise 

training. Indeed, and similar to humans, cardiomyocytes isolated from hearts of post-MI HF rats are 

characterized by dysfunctional and reduced excitation, Ca2+ handling, and contraction, and abnormal 

cellular structure and architecture, including a pathologically enlarged size (Bers 2002, Loennechen et al. 

2002, Wisloff et al. 2002). A metabolic myopathy contributes toward the cellular dysfunction (Kemi et al. 

2007B), but factors intrinsic to the Ca2+ handling, such as reduced NCX and SERCA2a also explain the 

dysfunction (Wisloff et al. 2002). Furthermore, altered gene transcription and translation, including re-

expression of embryonic fetal genes also contribute to the pathology (Hunter & Chien 1999). 

Functionally, failing cardiomyocytes show reduced fractional shortening and reduced rates of contraction 

and relaxation, reduced Ca2+ transient amplitude and rise and decay rates, and increased diastolic [Ca2+]i 

(Loennechen et al. 2002, Wisloff et al. 2002). Taken together, these changes have the potential to explain 

the reduced ability of the cardiomyocyte to perform beat-to-beat contractile work, and importantly, they 

also constitute a set of parameters that are prone to positive modulation by exercise training; as detailed 

above. Thus, this opens up the possibility that exercise training may reverse the contractile dysfunction of 

the cardiomyocyte and restore a more normal pump function of the heart through a cellular route. Indeed, 

regular aerobic exercise training has been demonstrated to correct and reverse at least some of the 

pathological alterations in the cardiomyocyte, and more so after high intensity exercise training programs 

at 85-90% of VO2max than after moderate to low exercise intensity training programs. 

 

Post-MI HF and exercise training 
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Several ameliorating effects to the heart have been observed when post-MI HF rats are subjected to 2-3 

months of daily high intensity exercise training at 85-90% of VO2max starting one month after the induction 

of MI. Thus, this is the same exercise training program as described above for healthy animals, though 

with lower absolute workloads to adjust for the reduced exercise capacity. First, the arterial dysfunction is 

reversed by virtue of restored production of nitric oxide (NO) in the endothelium of the vessel wall, a 

change facilitated by adaptive changes in the endothelial NO synthase (eNOS), its activation by Akt, and 

by reduced nicotinamide adenine dinucleotide phosphate (NAD(P)H) oxidase-generated reactive oxygen 

species (ROS) scavenging of NO (Adams et al. 2005, Hambrecht et al. 2003). Thus, the normalized 

arterial function stems from changes intrinsic to the artery endothelium and is not driven by the heart. 

However, a net effect is that it unloads the heart and thus improves hemodynamics and pressure 

characteristics. Secondly, and even more important for the heart, exercise training also reduces the 

intrinsic dysfunction of the heart, leading to an improved ability of the myocardium and the 

cardiomyocyte to perform beat-to-beat contractions, independent of peripheral vascular feedback to the 

heart as well as neurohormonal regulation. 

 

The exercise training partly, but not fully, reversed the pathological hypertrophy, observed as reduced cell 

length and width (Wisloff et al. 2002). The cellular remodeling was also paralleled by reduced myocardial 

mass and left ventricular dilatation, as measured by echocardiography. The mechanism of the reverse 

remodeling remains unknown, but it was associated with reduced mRNA levels of atrial natriuretic 

peptide (ANP). This does not prove a cause-effect relationship between reverse remodeling and ANP, but 

it does demonstrate that whatever the mechanism is, it is reflected in both the phenotype and the molecular 

marker of this phenotype. 
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In parallel to the reverse remodeling, exercise training also restored the rates of contraction and relaxation 

and the amplitude of the fractional shortening toward normal levels (Wisloff et al. 2002). Normalized rates 

of contraction and relaxation were explained by increased rates of rise and decay of the Ca2+ transient, 

which also reverted toward normal levels. Mechanistically, this was associated with normalized NCX and 

SERCA2a, which in post-MI HF are pathologically altered, suggesting that diastolic removal of 

cytoplasmic Ca2+ was shifted from the plasma membrane to the SR. This also implies that SR Ca2+ loading 

was normalized, which would benefit the RyR2 release of SR Ca2+, measured as the amplitude or the rise 

time of the Ca2+ transient. Therefore, this supports cardiomyocyte inotropy and may likely also reduce the 

potential for developing arrhythmic events, since a Ca2+ flux across the plasma membrane leads to an 

inward Na+ current through the NCX that under some circumstances may induce delayed 

afterdepolarizations (Venetucci et al. 2008). Nonetheless, although faster contraction and relaxation rates 

can be fully explained by faster Ca2+ cycling in its entirety, the normalized fractional shortening after 

exercise training cannot be solely explained by the Ca2+ transient, since the changes in the amplitudes of 

the fractional shortening and the Ca2+ transient do not fully correspond to each other. The narrowing of the 

Ca2+ transient due to the changes to the Ca2+ cycling rates may increase fractional shortening (see fuller 

explanation above), but it is unlikely that this fully explains the normalized fractional shortening. It is 

therefore likely that myofilament Ca2+ sensitivity also contributes toward the correction of the inotropy. 

Indeed, experiments in permeabilized cardiomyocytes subject to increasing [Ca2+] reveal that exercise 

training counteracts and corrects the post-MI HF-associated reduction in Ca2+ sensitivity (Wisloff et al. 

2002). In parallel to reduced Ca2+ sensitivity, intracellular pH is also chronically reduced in post-MI HF 

(Kemi et al. 2006), and this has been associated with the reduction of myofilament Ca2+ sensitivity and the 

restoration by exercise training, which improved both Ca2+ sensitivity and pH regulation of the 

cardiomyocyte (Wisloff et al. 2002). These changes were at least partly associated with myocardial NHE, 
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rendering an improved ability to buffer intracellular H+ after exercise training in post-MI HF. However, 

the concept of myofilament Ca2+ sensitivity in post-MI HF has yet to be fully explored. For instance, a 

recent study observed that myofilament Ca2+ sensitivity increased in post-MI HF mice; possibly to 

compensate for contractile failure, but in this study, exercise training reversed the post-MI HF-associated 

increase in the myofilament Ca2+ sensitivity, in a PKA-dependent manner (de Waard et al. 2007). The 

reason for this controversy is unknown.  

 

Finally, post-MI HF is also associated with a metabolic cardiomyopathy, as evidence by reduced activities 

and levels of enzymes involved in myocardial energy metabolism, such as creatine and adenylate kinases, 

creatine synthase, cytochrome c oxidase (COX), lactate dehydrogenase, as well as reduced levels of the 

master transcription factor for mitochondrial biogenesis; the peroxisome proliferator-activated receptor γ 

co-activator 1α (PGC-1α) (Kemi et al. 2007B). The intervention with high intensity exercise training 

reversed the abnormal metabolic status and close-to-normalized myocardial energetics. This may have 

served to improve the abnormal Ca2+ cycling and inotropy, because SERCA2a, actin-myosin ATPase, and 

actin-myofilament sliding all require ATP to function normally (Kuum et al. 2009).  

 

Several other studies have also confirmed that exercise training has the potential to improve the 

cardiomyocyte contractile capacity in HF (Musch et al. 1989). Interestingly, very high anaerobic exercise 

intensities, as achieved by repeated short bursts of treadmill running sprints, have also shown a potential 

for reversing and correcting the pathological abnormalities induced by post-MI HF (Zhang et al. 1998, 

2000). However, the applicability of this exercise training regimen for HF patients remains controversial, 

as no clinical trials have repeated this in human patients. In fact, the effect of different exercise intensities 

in HF has not been explicitly studied, such that it remains unknown whether or not the intensity-
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dependence of exercise training in post-MI HF is similar to that during normal conditions. However, the 

available data suggest that the adaptation to exercise training, including its dependence on exercise 

intensity, remains similar between normal and HF conditions. This assertion is based upon several factors. 

First, the intensity-dependence of exercise training adaptation exists in clinical trials, as evaluated by 

echocardiography in the whole-heart (Amundsen et al. 2008, Wisloff et al. 2007), and secondly, effect size 

is greater in studies utilizing high intensity exercise training compared to studies using low or moderate 

intensity exercise training, which in most cases only exert modest or no effects (Wisloff et al. 2002, 

Musch et al. 1989). 

 

Animal models of cardiac dysfunction and increased risk of developing HF 

Several experimental models exist that also allow for studies of conditions that either show myocardial 

dysfunction with different etiologies to post-MI, or show an increased risk of developing heart disease. 

These include a mouse model of type 2 diabetes mellitus induced by an inactivating mutation in the gene 

encoding leptin that presents with a metabolic and contractile cardiomyopathy (db/db mice), and a rat 

model of metabolic syndrome, a condition that presents with a cluster of risk factors adjourned together 

that precede heart disease, such as abdominal obesity, hypertension, insulin resistance or glucose 

intolerance, and dyslipidemia (Tjonna et al. 2008). Included in this syndrome is also a reduced amount of 

key proteins required for normal mitochondrial function, suggesting that it is linked to an abnormal 

metabolic state (Wisloff et al. 2005). Studies of exercise training in these models have supported the 

hypothesis that exercise training positively modulates intrinsic cardiomyocyte contractile function and that 

it may correct abnormal and reduced contractility to the degree that normal or close-to-normal contractile 

function is achieved. 
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High intensity exercise training was performed in the same way as described above for normal and post-

MI HF rats and mice, but this time by mice with diabetic cardiomyopathy due to diabetes type 2-like 

symptoms and rats with the metabolic syndrome. First, diabetic cardiomyopathy was associated with 

reduced cardiomyocyte contractility and Ca2+ handling and abnormal cellular architecture (Stolen et al. 

2009), reminiscent of post-MI HF. Exercise training restored normal contraction and Ca2+ transients, 

reduced spontaneous Ca2+ leak by the RyR2 and increased SERCA2a activity which thus also reduced 

diastolic [Ca2+]i, normalized transverse tubule density which was reduced in diabetic cardiomyopathy and 

corrected therefore the abnormal synchrony of Ca2+ release throughout the cell, and reversed the 

pathological hypertrophy. Figure 3 illustrates these phenomena. These changes were precipitated by 

altered activity levels of CaMKII and PKA, but in contrast to normal cardiomyocytes, exercise training 

reduced phosphorylation of threonine-17 of PLB and cytoplasmic CaMKII and increased phosphorylation 

of serine-16 PLB, the PKA-dependent residue (Stolen et al. 2009). The cause of this controversy is 

unknown, but it suggests that CaMKII may have differential downstream effects that under some 

circumstances may incur a benefit and under other circumstances incur adverse effects. Normalization of 

diabetic metabolic parameters was however ruled out as a mechanism restoring myocardial inotropy. 

Secondly, the metabolic syndrome was also associated with reduced contractility and Ca2+ handling, and 

pathological remodeling of cell size (Haram et al. 2009, Wisloff et al. 2005). In this case, exercise training 

also reversed the pathological changes and normalized the contractility of the cardiomyocytes, although 

the underlying explanatory mechanisms have been studied less rigorously. It is though clear that positive 

modulation of intracellular Ca2+ cycling at least partly leads to this, but so may also the partial correction 

of metabolic pathways in the cell (Wisloff et al. 2005). In both models, exercise training-induced 

improvements to cardiomyocyte contractile capacity are also associated with improved whole-heart 

functions and exercise capacities, measured as VO2max. 
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Intact responses to exercise training during cardiac dysfunction and failure 

The studies described above collectively suggest that the ability to respond to exercise training is sustained 

even during the development of a cardiac myopathy and failure due to either of MI, type 2 diabetes, and 

the metabolic syndrome, and that this ability remains equivalent to that observed in healthy animals. 

Importantly, since the majority of the measurements described above were performed in isolated 

cardiomyocytes, it furthermore suggests that exercise training corrects inotropy and lusitropy via 

mechanisms intrinsic to the cardiomyocyte and does not rely on extrinsic modulatory factors. 

 

It has become clear that exercise training not only regulates single genes and molecular pathways, but also 

networks of a large number of genes throughout the genome (Bye et al. 2008), but the significance and 

exact implication of this is incompletely understood. For instance, post-MI HF and salt-induced 

pathological hypertrophy is associated with a much larger number of differentially expressed myocardial 

genes than exercise training (Beisvag et al. 2009, Kong et al. 2005). Nonetheless, this suggests that 

separate genetic networks may be responsible for the pathological development of the heart and the 

changes that occur in response to exercise training, and hence, this may explain why the ability to respond 

to exercise training remains intact despite a pathological phenotype and genotype in the heart. However, 

this remains to be investigated in more details. 

 

The reviewed research strongly indicates that the function of the cardiomyocytes determines the function 

of the whole heart and ultimately the function of the whole body, and this relationship is maintained 

during the whole spectrum of conditions from disease to high fitness levels. Whole heart changes usually 

correlate well with changes in VO2max after exercise training, and this relationship has now also been 
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confirmed between individual cardiomyocytes and VO2max (Kemi et al. 2004). Changes in cardiomyocyte 

size (volume), contractility (fractional shortening and rates of contraction and relaxation) and systolic and 

diastolic Ca2+ handling correlate well with the changes in VO2max in the same animals. The same 

phenomena have also been observed in human populations, though these studies only allow studies of 

whole hearts and not cardiomyocytes (Pelliccia et al. 2002). Thus, changes occurring in the cardiomyocyte 

have the power to substantially alter exercise capacity, function, and health not only in normal individuals, 

but also in those developing or living with heart disease. As reviewed below, it is reasonable to assert that 

these phenomena also extend from small rodents to humans, also under conditions of heart disease or an 

increased risk of developing heart disease.  

 

Exercise training in clinical trials of heart dysfunction and disease: cardiac effects 

The above research provides the mechanisms by which exercise training reduces intrinsic cardiac 

dysfunction and improves inotropy and lusitropy, and it provides a rationale for studying the effects of 

high intensity exercise training in patients with post-MI HF and established heart disease, as well as in 

patients with increased risk of developing heart disease. Currently, clinical trials and practice has only 

emphasized the use of moderate exercise intensities in the management of patients with established or 

increased risk of developing heart disease, as safety and efficacy has only been assessed after moderate 

exercise intensities (Hambrecht et al. 2000, 2003, Kodoma et al. 2009, Tanasescu et al. 2002). However, 

recent trials have suggested that high intensity aerobic exercise training programs at ~90% of VO2max may 

also be beneficial to patients with either post-MI HF (Wisloff et al. 2007), coronary artery disease 

(Amundsen et al. 2008, Rognmo et al. 2004), and increased risk of developing heart disease (Schjerve et 

al. 2008, Tjonna et al. 2008). Common for these trials is that they report cardiac benefits of high intensity 

exercise training performed at 90-95% of peak heart rate (which corresponds to ~90% of VO2max), and that 
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this effect is considerably larger than the effect of moderate exercise intensity at 70% of peak heart rate, in 

which exercise capacity increased, but no changes were observed in the heart. In the high intensity 

exercise groups, patients were able to run strenuous intervals at high exercise intensities on a treadmill 3 

times per week for several months. This resulted in 30-50% increased VO2max, and was paralleled by 

reduced left ventricular dilatation and mass, and increased ejection fractions, stroke volumes, and systolic 

and diastolic intracardiac flow and ventricular wall motion parameters, especially in those with 

compromised myocardial function. In contrast, no effects occurred in the control groups that were 

subjected to recommendations from the family physician following current guidelines for exercise training 

and physical activity, and only minor to no effects were observed after energy-matched moderate intensity 

exercise training. It should though be emphasized that these trials were small and not powered to assess 

safety or efficacy of exercise training. In line with the above, the largest trial of exercise training in HF 

patients conducted so far (HF-ACTION) could not detect any mortality or re-hospitalization benefits of 

exercise training; likely due to the use of low and moderate intensities and avoidance of high intensity in 

the chosen exercise training programs (O’Connor et al. 2009). Epidemiological surveys have however 

confirmed that the benefit of exercise training for populations with established or increased risk of 

developing heart disease increases with increasing exercise intensities, even when adjusted for other 

prevalent risk factors such as hypertension, obesity, diabetes and high cholesterol, or for pharmacological 

medication (Lee et al. 2003, Kavanagh et al. 2002, Kodoma et al. 2009, Moholdt et al. 2008, Myers et al. 

2002, O’Neill et al. 2005, Paffenbarger et al. 1993, Tanasescu et al. 2002).  

 

Summary and conclusions 

Experimental and clinical studies have demonstrated that high intensity aerobic exercise training is 

beneficial for the intrinsic pump capacity of the heart, independent of whether it is a healthy or 
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dysfunctional or failing heart, or at an increased risk of developing dysfunction and failure. This 

phenomenon is by large intensity-dependent, since high aerobic exercise intensity leads to greater effects 

than low- to moderate exercise intensities. At the cellular level in the heart, exercise training leads to 

improved inotropy due to contractile and hypertrophy changes. The improvement of contractility in the 

cardiomyocyte is tightly regulated by intracellular handling of Ca2+ and the cell’s ability to flux Ca2+ to 

and from the myofilaments that constitute the contraction, as well as the myofilaments’ response to Ca2+. 

These processes are down-regulated in heart disease, but exercise training has the ability to correct the 

abnormalities. Thus, the ultimate adaptation of the cardiomyocyte to chronic exercise training is to 

increase the pump capacity of the heart, which again ultimately increases the work capacity and 

functionality of the whole body. In other words, the function of the cardiomyocyte is integral to the whole-

body exercise capacity (VO2max). The cellular physiology reviewed above therefore makes best sense when 

appreciating the role cellular changes have for the integrated physiology of the mammalian, and it does 

not matter whether the mammal is a small rodent or man.  
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Figure legends 

Figure 1: Schematic of signaling pathways that cause or maintain exercise training-induced hypertrophy 

of the cardiomyocyte. Details are provided in the text. MAPKKK: mitogen-activated protein kinase kinase 

kinase, MAPKK: mitogen-activated protein kinase kinase, MAPK: mitogen-activated protein kinase, 

CaMK: Ca2+/calmodulin-dependent protein kinase, HDAC: histone deacetylase, miR-133: micro-

ribonucleic acid-133, mRNA: messenger ribonucleic acid, PI3K: phosphoinositide 3-kinase, Akt: protein 

kinase B, mTOR: mammalian target of rapamycin, S6K1: ribosomal protein S6-kinase-1, rpS6: ribosomal 

protein S6, 4E-BP1: 4E binding protein-1, eIF4E/eIF4G: eukaryotic translation initiation factors 4E and 

4G, HSP: heat shock protein. Reproduced with permission from Wisloff et al. 2009. 

 

Figure 2: Schematic of excitation-contraction coupling and Ca2+ cycling in cardiomyocytes, with broad 

arrows indicating exercise training-induced changes. Details are provided in the text. PM: plasma 

membrane, LTCC: L-type Ca2+ channel, NCX: Na+/Ca2+ exchanger, PMCA: plasma membrane Ca2+ 

ATPase, RyR: ryanodine receptor, SR: sarcoplasmic reticulum, SERCA: SR Ca2+ ATPase, PLB: 

phospholamban, P~CaMKII: phosphorylated Ca2+/calmodulin-dependent protein kinase II. Reproduced 

with permission from Wisloff et al. 2009. 

 

Figure 3: Schematic of Ca2+ transients (top), transverse (t)-tubule networks (middle), and synchrony of 

systolic Ca2+ release (bottom) in cardiomyocytes from sedentary (left) and exercise trained (right) mice 

with type 2 diabetes mellitus. The figure illustrates that less systolic Ca2+ is available for contraction in 

sedentary mice; that t-tubules appear disorganized and less dense in sedentary mice, and that the 

synchrony of the stimulated Ca2+ release during systole is reduced in sedentary mice, compared to exercise 

trained mice. 
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