Mechanical failure in microstructural heterogeneous materials

Bordas, S., Hoppe, R.H.W. and Petrova, S.I. (2007) Mechanical failure in microstructural heterogeneous materials. Lecture Notes in Computer Science, 4310, pp. 533-541. (doi: 10.1007/978-3-540-70942-8_64)

Full text not currently available from Enlighten.

Abstract

Various heterogeneous materials with multiple scales and multiple phases in the microstructure have been produced in the recent years. We consider a mechanical failure due to the initiation and propagation of cracks in places of high pore density in the microstructures. A multi–scale method based on the asymptotic homogenization theory together with the mesh superposition method (s-version of FEM) is presented for modeling of cracks. The homogenization approach is used on the global domain excluding the vicinity of the crack where the periodicity of the microstructures is lost and this approach fails. The multiple scale method relies on efficient combination of both macroscopic and microscopic models. The mesh superposition method uses two independent (global and local) finite element meshes and the concept of superposing the local mesh onto the global continuous mesh in such a way that both meshes not necessarily coincide. The homogenized material model is considered on the global mesh while the crack is analyzed in the local domain (patch) which allows to have an arbitrary geometry with respect to the underlying global finite elements. Numerical experiments for biomorphic cellular ceramics with porous microstructures produced from natural wood are presented.

Item Type:Articles
Status:Published
Refereed:Yes
Glasgow Author(s) Enlighten ID:Bordas, Dr Stephane
Authors: Bordas, S., Hoppe, R.H.W., and Petrova, S.I.
College/School:College of Science and Engineering > School of Engineering > Infrastructure and Environment
Journal Name:Lecture Notes in Computer Science
Publisher:Springer
ISSN:0302-9743
ISSN (Online):1611-3349
Published Online:15 May 2007

University Staff: Request a correction | Enlighten Editors: Update this record