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Abstract

A three-dimensional numerical study is conducted to investigate the ra-
diative heat transfer in a model gas turbine combustor. The Discrete Ordi-
nates Method (DOM/S,,) has been implemented to solve the filtered Radia-
tive Transfer Equation (RTE) for the radiation modelling and this has been
combined with a Large Eddy Simulation (LES) of the flow, temperature and
composition fields within the combustion chamber. The radiation considered
in the present work is due only to the hot combustion gases notably carbon
dioxide (C'O2) and water vapour (H20), which is also known as the ‘non-
luminous’ radiation. A benchmark problem of the ideal furnace is considered
first to examine the accuracy and computational efficiency of the DOM in the
three-dimensional general body fitted co-ordinate systems.

Keywords: Discrete Ordinates Method, Large Eddy Simulation, Radiative Heat
Transfer, Turbulent Flow, Combustion

1 Introduction

In most gas turbine combustors a large part of the heat transfer to and from the walls
of the combustion chambers occurs by radiation. This radiation has two components:
(i) the ‘non-luminous’, which emanates from the combustion gases notably carbon
dioxide (CO;) and water vapour (H20), and (ii) the ‘luminous’, which is mainly
due to the soot formed in the flame.

The prediction of wall temperatures is an important aspect in the design of
practical engine combustors and this clearly requires that the radiative heat fluxes
be predicted accurately. An inability to predict the wall temperatures may lead to an
excessive amount of the combustor airflow being used for cooling the liner wall and
this is likely to lead to a reduced combustion efficiency and an increased emission
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of the pollutants such as carbon monoxide (CO), NO, formations and unburned
hydrocarbons (UHC). In addition, excessive combustor wall temperatures have a
deleterious impact on combustor ‘life’.

Chandrasekhar [1] first proposed a method, known as the Discrete Ordinates
Method (DOM), in his work on one-dimensional stellar and atmospheric radiation.
Subsequently Carlson and Lathrop [2] developed the DOM for multidimensional
radiation problems employing the finite volumes approach. More recently, the DOM
has been widely used on various different problems [3; 4; 5; 6; 7] where the major
emphasis has been on solving the Radiative Transfer Equation (RTE), which is the
steady state representation of the radiative transfer. The radiative transfer in high-
temperature combustion devices requires a simultaneous solution of the RTE and the
governing flow equations such as Navier-Stokes, enthalpy and species concentrations
conservation equations, etc [8; 9; 10].

With respect to combining the RTE with the LES, only a little work has been
done to date to the authors’ knowledge. Recently, Desjardin and Frankel [10] have
studied soot formation in the near field of a strongly radiating turbulent jet flame
involving LES and a simplified two-dimensional treatment of radiation involving gray
and non-scattering medium. Here, our interest is a combining the three-dimensional
form of the RTE with the LES. While this requires a large amount of computer
resource essentially because of the integro-differential nature of the RTE, parallel
computation with today’s CPU speeds allow a time-accurate and efficient simulation
in this regard. The DOM is found to be the best suited method for domain based
parallelism compared with the other methods such as Discrete Transfer (DT), Finite
Volume (FV) and Finite Element (FE) methods [11; 12].

The first objective of this paper is to develop an efficient three-dimensional nu-
merical Discrete Ordinates Method, for solving the Radiative Transfer Equation in
a general body-fitted coordinate system. The second objective is to incorporate
this method into a Large Eddy Simulation of flow, temperature and composition
fields, and finally apply the devised methods to a gas turbine combustion chamber
to investigate the radiative heat transfer.

2 Physical and mathematical models

This section describes the physical model and geometry of the model gas turbine
combustor, followed by the descriptions of the filtered governing conservative equa-
tions for the radiative transfer and the Large Eddy Simulation of flow and com-
bustion. In LES the large-scale turbulent motions are resolved while the small-scale
turbulence is modelled [13; 14; 15]. The small-scale or subgrid-scale (SGS) modelling
is described in Section 2.3. The Section 2.4 describes the details of the modelling
and the properties of radiation, and the required boundary conditions to solve the
radiative transfer equation.

2.1 Physical model and geometry

Fig. 1 shows the main features of the model gas turbine combustor, which is repre-
sentative of the Rolls-Royce Tay gas turbine [16]. The combustor walls are made of



transply, a laminated porous material. The geometry of the combustor includes a
relatively small swirler at the head of the combustor in the centre of which the fuel
injector is located and a hemispherical head section attached to a circular barrel
of 75mm diameter. This barrel contains a set of six primary ports/holes of 10mm
diameter each at the front and another set of six dilution ports/holes of 20mm di-
ameter each at 80mm downstream of the first set. A circular-to-rectangular nozzle
is attached to the end of the barrel. High purity gaseous fuel comprising over 95%
propane (C3Hg) was injected into the combustion chamber through the centre of
the swirler.

2.2 (Governing equations

The equations of motion in LES may be obtained by applying a spatial filter, a
mechanism to separate the large-scale (resolved) variables from the small scales.
The filtered value of a generic variable ¢(z;,t) is defined, [17], as its convolution
with a filter function, GG, according to:

o(z4,1) / P, t) — a, A(xy))da’ (1)

where € is the entire flow domain and A(zx;) is the filter width.

Large density variations occur in turbulent reacting flows and this must be prop-
erly accounted for. In LES the resolved scale density variations are calculated ex-
plicitly whilst the subgrid scale density variations are treated by the introduction of
a density weighted Favre type filter, [18]. Favre-filtered quantities are denoted by
(7) and are defined as:

Byt =22 )
p

An application of the density weighted filter defined in Eq. (2) to the continuity,
the Navier-Stokes, the mixture fraction, and the radiative transfer (discrete ordinates
representation) equations gives:
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where p is the mixture density, ¢ is the time, z; = (z,y, 2) is the coordinate vector,
u; is the velocity vector, p is the dynamic pressure, u is the coefficient of viscosity,

Si; is the stain rate, defined as S;; = (gg’ + Bu])’ d;; is the Kronecker delta, f is
the conserved scalar or mixture functlon and Pr is the Prandtl number.



In Eq. (6), I, is the directional radiative intensity along the direction §,,, where
m=1,2,.... M (see Fig. 2) and the equation represents a set of M different direc-
tional radiative intensities from each of the computational nodes. The subscripts m
and m’ denote the outgoing and the incoming directions respectively and the terms
Oy Bm and 7, in Eq. (6) represent the direction cosines of the discrete direction
$m along the coordinates (see Fig. 2) [19]. I, is the blackbody intensity at the tem-

"TTAL where o is the Stefan-Boltzmann

perature of the medium which is defined as
constant and 7" is the temperature, & is the absorption coefficient, oy is the scatter-
ing coefficient, w,, is the quadrature weight corresponding to the direction §,, [19],
and P, is the scattering phase function which determines the probability of a ray

scattering from one direction §,, into another direction §,, (see Fig. 2).

2.3 Subgrid-scale modelling

The Favre-filter introduces unknown terms pu;u; in Eq. (4) due to the non-linearity
of the convective terms and leaves the equation unclosed. It is usual to define these
terms as [20]

puitl; = pliiti; + Tij (7)
where 7;; is unknown and is referred to as the residual or subgrid-scale stress, which
must be modelled. The oldest and probably the most widely used model is that of

Smagorinsky model [21] and this is used here; it is an eddy viscosity model of the
form

1 By
Tij — g@'ﬂkk = —2lsg55ij (8)

where gl-j is the Favre filtered strain rate and fi,4, is the subgrid scale eddy viscosity.
This eddy viscosity is given by:

Hsgs = ﬁC§A2|§Z]| ) (9)
where |S;| = (25;;5;;)"/? and A is the filter width, defined as A = (AmAyAz)l/g,
is proportional to the local mesh spacing. The Smagorinsky constant, C;, takes the
typical value of around 0.1.

The mixture fraction equation (5) also contains the unknown term p‘uj-? . This
is defined in terms of a subgrid scale scalar flux, J;, viz

puif = pii;f +J; . (10)
It is usual to employ a gradient model for this flux of the form [22]

_ sgs OF
Prygs Oz,

J; = (11)
where Pry, is the subgrid scale Prandtl/Schmidt number which is assigned a value
of 0.7 in the present work.

The conserved scalar model is used for combustion and the dependence of species
concentrations, temperature and density on the mixture fraction is obtained from
the computations of an essentially unstrained laminar flamelet. The subgrid scale
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fluctuations are accounted for via a beta probability density function (PDF). Further
details of this model are given in [15].

The radiative transfer equation (6) also contains some unknown terms, (x + o) I,
kI, etc, which are the nonlinear correlations between turbulence and radiation. In
the present study the subgrid scale turbulence-radiation interactions are neglected;
future studies are required to incorporate those interactions and to investigate their
effects. Based upon the preliminary assumption made, the unknown terms in Eq. (6)
are simply expressed as

(k+05) L= (F+05s) L, kIy=FrI,. (12)

2.4 Radiation modelling

For radiation modelling in the gas turbine combustor, it is assumed that the enclo-
sure contains an absorbing-emitting, non-scattering and radiatively gray medium. If
the presence of the scattering (i.e., if o5 # 0 in Eq. (6)), is considered the RTE will
be coupled with both the incoming and the outgoing radiative intensities inside the
medium. To calculate a single directional radiative intensity from a computational
node it is required first the calculation of all scattered intensities into that node
point, i.e., the incoming radiations, be calculated. This becomes computationally
a very expensive calculation. The assumption of a non-scattering medium in the
work is made for computational reasons but the medium is highly dominated by the
absorption and the emission. Based on this assumption, the Eq. (6) takes the form:

U, a;;” + B aa[; + yma;;” =kl — Kl . (13)

2.4.1 Absorption coefficient

In gas turbine combustion chambers, the radiating species are typical the combustion
products. The notably combustion products are H,O and COy along with the
smaller amount of CO, H, and other minor species. At a high temperature, the
spectral bands from H>O and C'O, are the most dominant feature in non-luminous
radiation compared to other species [23]. Therefore, the absorption coefficient is
based on a mixture of H,O and C'O; and is expressed as [8; 24]

R = 01(?]{20 + ?COQ) (m_l) (14)

where ?HQO and Y/COQ correspond to the mole fractions of HoO and C'Os respectively.

2.4.2 Boundary conditions to solve the RTE

Consider the combustor walls are diffusely emitting and reflective, and the appro-
priate boundary conditions required to solve the radiative transfer equation (13) are

then
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In Egs. (15)-(20), the first terms on the right hand side are the outgoing radiative
intensities from the surfaces while the second terms are the incoming radiative heat
fluxes which are related to the incoming radiative intensities on the surfaces and

also known as an irradiation. Here, Iy, = % is the black body intensity on the

™

combustor walls at the temperature T,, and €, is the walls emissivity.

3 Numerical procedures

In this section the numerical procedures used to solve the filtered governing equa-
tions (3)-(5) and (13) are described. The filtered equations are rewritten in general
boundary/body fitted coordinates system using the approach introduced by Thomp-
son [25], where the governing differential equations in the Cartesian coordinates are
transformed into the curvilinear coordinates system. The details of the numerical
procedures in the LES approach to solve Egs. (3)-(5) have already been presented in
[26; 27] and will not be repeated. Here, attention is focused only on the procedure
for solving the radiative transfer equation (13) along with the boundary conditions
given in Eqs. (15)-(20). These are presented in the next section.

3.1 Discrete Ordinates Method (5,)
3.1.1 Description of the method

After the coordinate transformation, the RTE in equation (13) may be rewritten in
the curvilinear coordinates system as

o IS, — > IS = JP (Rl — kL))", (21)

i=e,n,r i=w,s,l
where the terms S, in Eq. (21) represent as

St = (i Aue + BinAye + YmAse) i=e,w (22)
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Sy, = (mAwy + B Ayy + YmAsy)’ i=n,s (23)
Sy = (OémAxg + ﬁmAy( + ’}/mAzg)Z 1=l (24)
where (£,7n,() are the general curvilinear coordinates; J is the Jacobian of the
coordinate transformation; A,e, Aye, A.e, etc are the cofactors of the Jacobian J;
the superscripts e, w, etc indicate that the values are taken at the eastern, western,
etc control volume surfaces respectively; and the superscript P represents the value
at the central node of the control volume (see Fig. 3).
To close the above system of Eqs. (21)-(24) relations are required between the
radiative intensities on the control volume surfaces and the nodal intensities (see
Fig. 3). Most often a linear relation is applied:

I =dIt, + (1 —d)I2 =dl + (1 —d)I}, = dI}, + (1 — d)I}, (25)

where 0.5 < d < 1, known as the “weighted diamond differencing” scheme proposed
by Carlson and Lathrop [2]. A diamond difference or symmetric scheme corresponds
to the value, d = 0.5, which is the second order accurate central difference approach
but is found to be unstable. The scheme gives positive-negative oscillatory values of
the radiative intensities which are physically unrealistic [28]. Fiveland [3] suggested
that if the dimensions of the control volumes were kept within a range such as
¢ < %, dn < 5‘1@;), etc, then the negative intensities might be minimised but
not totally avoided. Therefore, it becomes important to employ a negative intensity
‘fixup’ procedure such that when a negative intensity arises, the value of d will be
switched to 1.0 from 0.5 [7], or gradually increase the value of d from 0.5 to 1.0 until
a stable positive solution is achieved [8].

The simulations/computations were initially started employing the negative in-
tensity ‘fixup’ procedures. However, it was found that due to the very complex
shape of the combustor geometry those procedures produced physically unrealistic
solutions of the RTE in the non-orthogonal computational grid and that negative
intensities could not be totally avoided. Thus above ‘fixup’ procedures for negative
intensities are only suitable for orthogonal type grid computations or if the compu-
tational /physical geometry is very simple [7; 8]. Therefore, an alternative suggested
for complex geometries is the step scheme [6; 29] whereby the downstream surface
intensities are set equal to the upstream nodal intensities. Although this is a first
order accurate approach, no negative intensities occurred in the computation. Based
on use of the step scheme, the final discretised equation for the radiative transfer
may be rewritten explicitly as

af;lji = afjﬁ + anvlvfnvf + aanfn]\lf + afj,i + afjﬁ + afnljﬁ + bf; , (26)

where the intensities with the superscripts E, W, etc, denote the values at the
eastern, western, etc, nodal intensities and the coefficients are defined as

ab = > max(S,,,0)— > min(S.,,0)+ J'R, (27)
i=e,n,r i=w,s,l
al, = —min(S’ ,0) it=emn,r and [ =F N R, (28)
al, =max(S:,0) i=w,s,l and I =WS L, (29)
and B
vl = JPRI, . (30)



3.1.2 Selection of the discrete ordinate directions

The Discrete Ordinates Method or S,,, where n represents the order of approxima-
tion, is based on a discrete representation of the directional variation of the radiative
intensity. In a three-dimensional enclosure, the total number of the different discrete
directions, M, to be considered at each computational node is again related to the
order of the S,, approximation and is defined as M = n(n+ 2) [19; 2]. For example,
in the Sy approximation of the DOM the radiative intensities in a total of M = 24
discrete directions are calculated from each computational node point P: in the case
of Sg total number of directions is M = 48 while for Sy it is M = 80.

Only positive values of the direction cosines/ordinates and the associate weights
are given in Table 1 and these cover one eighth (the first quadrant) of the total
directions and the total range of the solid angles 47, as the three-dimensional enclo-
sure has eight corners. To cover the entire solid angles 47, any or all values of «,,,
Bm and 7, in the table may become positive or negative [2]. Therefore, each row
of the table contains values of the direction cosines and the weights in total eight
different directions.

3.2 Solution algorithm

Temperature and the absorption coefficient are calculated first to obtain the radia-
tion sources and the boundary conditions. Without the presence of scattering, the
RTE in Eq. (26) is uncoupled with the incoming radiative intensities and solved in-
dependently. The solution of the RTE proceeds with an initial guess of the radiative
intensities along all the possible directions and starts with a global iterative process.
At each iteration, the discretised Eq. (26) is solved in every direction of §,, and
the boundary conditions in Eqs. (15)-(20) are updated for the next iteration. The
new solutions are then replaced by the previous iterative solutions and this process
continues until the following convergent condition is satisfied

mazx }fz(”l) — POl <107, (31)

1<m<M

where 7 in the number of iteration.

4 Results and discussion

The results of the application of the above described numerical method to an ideal
furnace and the gas turbine combustor are presented in this section. A benchmark
problem, the ideal furnace, is considered first to examine the accuracy and compu-
tational efficiency of the DOM in three-dimensional general body fitted co-ordinates
and the results are compared with the results available in the literature.

4.1 1Ideal furnace - a test case

The three-dimensional ideal furnace of Menguc and Viskanta [30] is chosen to val-
idate the numerical method for radiative heat transfer. Fig. 4a shows a schematic
diagram of the idealised furnace which is filled with an absorbing-emitting (o = 0)
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gray gas with & = 0.1m™!. The radiative transfer equation (26) is iteratively solved
together with the following steady state energy equation with an internal heat source

of V.q = 5kWm™3
Va=~& <4wa — / fdQ> . (32)
47

The temperatures on the six boundaries of the furnace and their emissivities are

given as
z2=0: T =1200K, €, =0.85;

z=1L,: T =400K, ¢€,=0.70;
others : T =900K, ¢,=0.70.

Fig. 4b shows the non-orthogonal body-fitted grid on z-y plane. Although the
ideal furnace has a regular three-dimensional geometry, a non-orthogonal grid is
generated to this problem to test the numerical method for radiative transfer in
body-fitted co-ordinate system. It is noted that the grid in the z-direction is uniform
and perpendicular to the z-y plane. In this computation, the DOM is applied with
the grid nodes of 20 x 20 x 40 in the z, y and z directions respectively.

Fig. 5 shows the comparisons of the temperature profiles and the net wall ra-
diative heat flux distributions obtained by the various S,, approximations such as
Sy, S¢ and Sy of the discrete ordinates method in non-orthogonal (NOR) grid; the
S, approximation of the DOM in orthogonal (OR) grid; and the zone method ob-
tained by Menguc and Viskanta [30]. In Fig. 5a, the temperature distributions are
presented along the z-axis in three different z locations at y = 1m of the ideal fur-
nace. As the horizontal location, z, increases, the temperature inside the furnace
decreases and these predictions from the DOM in NOR grid are found to be a very
good agreement with the DOM in OR grid and the zone method. In Fig. 5b, the
radiative heat losses at hot wall (2 = Om) and gain at cold wall (z = 4m) at the
centre line (y = 1m) are presented, and which also show that for both walls the
results obtained by the DOM with the NOR grid are in very good agreement with
those of the other methods.

4.2 Results in the gas turbine combustor

In previous section, a test case was presented where the accuracy and efficiency of the
discrete ordinate method in a general body-fitted non-orthogonal grid was discussed.
This numerical method is now applied to the model gas turbine combustor.

The numerical grid employed in the simulation consists of a total of 96000 cells
with 40 x 60 x 40 grid nodes in the z, y and z directions respectively, and Table 2
shows the necessary parameters used in the present work. The computational results
presented in Figs. 6-9 are at 65000 time steps, which is at the real clock time of
t =~ 0.036sec. The emissivity of the combustor walls are kept at ¢, = 0.1. To
reduce the computational load, the radiation results are obtained only by the S,
approximation of the DOM.

Instantaneous results of the temperatures and the mole fractions of C'O, and
H,0 are plotted in Fig. 6(a-c), respectively, at various horizontal locations of the
combustor. It is noted that these results are obtained first without considering the



effect of radiation. As an input of the radiation sources, the measurement of both the
temperature and the gaseous species is required, because the black body intensity,
I, is a function of the temperature and the absorption coefficient, &, plotted in
Fig. 6d is considered to be a function of both the mole fractions of H,O and C'Os.
di Mare et al [15] compared the computational results of T, ?HQO and }7002 with
that of the experimental measurements done by Bicen et al [16] and found a good
agreement. The details of the turbulent flow and combustion characteristic inside
the combustor were also discussed by those authors [15] and will not be repeated
here. The main objective of the present paper is to investigate the radiative heat
transfer which occurs from the combustion gases (notably for H,O and C'O,) to the
liner wall and vice versa. The relevant results are presented below.

Fig. 6(e-g) show the results of the radiation quantities at the same time step
and the same horizontal locations as in Fig. 6(a-d). Fig. 6e shows that the total
radiative intensity, I = Z%zl I, attains a maximum at the region where both the
temperature and the absorption coefficient are maximum. Therefore, it provides
clear evidence that the medium is highly dominated by the hot H,O and CO,
gases. The radiative heat flux vectors, q, calculated from

M
g= / [d0~ Y wnlmbo (33)
4m m=1

show that the radiation transport is directed to the centre of the combustor from
the high temperature and the high emitting-absorbing regions where the value of
absorption coefficient, &, is also maximum (see Fig. 6f). Fig. 6g shows contours of
the magnitude of the radiative heat fluxes defined as |q| = (q2 + q2)"/2. As the
length of each of the radiative flux vectors is proportional to its magnitude, these
contours also show that the largest radiative flux vectors are located near the region
of maximum temperature, }7002 and Y/HQO.

Fig. 7 shows the net loss or gain of the energy due to the radiation as a divergence
of the radiative heat fluxes, V.q, which have been calculated using the following
relation

V.q = 4nkl, — A kI dS). (34)
7

In Eq. (34), the first term on the right hand side represents the emitted/outgoing
radiation from a computational control volume, while the second term represents
the total incident radiation into that control volume. Thus, V.q gives the rate of
the generation of energy by radiation and this must be coupled in the overall energy
conservation. In this figure, the dashed lines represent the negative contours.

Fig. 8 shows the results of another important radiation property known as the
incident radiation, G, related to the radiative energy density, by which the total
radiation energy is stored in each computational node and it is defined as

M
(;:/ [d~ S wal,. (35)
47

m=1

The radial profiles of G have been plotted in Fig. 8 at various different locations
on the mid-horizontal plane and show a distinct variation of the energy storage
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inside the combustion chamber. This figure shows that the value of G is lower in
the nozzle region (see for y = 165mm) due to the effect of the large amount of air
flowing through the Dilution ports for cooling; no combustion occurs downstream of
these ports. The rate of the radiative absorption-emission in that region is also lower
as both the flame temperature and the concentrations of H,O and C'O, are predicted
to be lower (see in Fig. 6v). However, inside the combustor barrel (at y = 130mm,
95mm and 50mm), G attains a maximum as this part of the combustor houses the
extremely hot gases, though in the head of the combustor (at y = 20mm) G is
lower. The prediction of the incident radiation is an essential task which allows the
radiative energy transfer to be coupled with global energy conservation (for example,
see Eq. (34)).

The predictions of the net wall radiative heat fluxes, q, = €, (qm — W_fbw), on
the inlet, the outlet and the four different horizontal surfaces of the combustor are
shown in Fig. 9. In this figure, the solid lines indicate the positive contours while
the dashed lines indicate the negative contours. At most places of the combustor
barrel, the liner walls lose heat by radiative transfer, but gain heat in both head and
nozzle areas (see Fig. 9¢-f). Also, the combustor surfaces gain heat in the vicinity
of the Primary and the Dilution ports.

5 Conclusion

The S; approximation of the discrete ordinate method has been implemented to
investigate the radiative heat transfer inside a model gas turbine combustor. The
DOM has been combined with a Large Eddy Simulation of the flow, temperature
and composition fields within the combustion chamber. A gray-gas approximation
to the RTE has been assumed (i.e., the transmission of the radiative intensities is
independent of the wavelength). The absorption coefficient for both HoO and C'O,
gases is calculated but scattering effects are neglected in the present work.

The instantaneous values of the radiation properties such as the radiative heat
fluxes, the incident radiation, the energy source or sink as the divergence of radiative
heat fluxes (V.q) have been calculated. The net radiative heat fluxes on the liner
walls of the combustor have also been calculated. A coupling of this radiative heat
gain or loss is likely to yield accurately predicted wall temperature and this will
aid combustor design by allowing an optimum amount of air to be used for wall
cooling. The beneficial effects will be a reduction in the emission of pollutant gases
by maximising the combustion efficiency and to allow a longer liner life.

The present study excludes the effects of the soot on radiative heat transfer. Soot
is likely to enhance the radiation field and ultimately the coupling of soot formation
and consumption to heat radiation is an important requirement. The conservation
of soot concentrations is required to measure the soot properties and Research is
currently underway on this.
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Figure 3: A representative control volume; solid circles indicate the node points
while hollow circles indicate the surface nodes.
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Figure 7: Contours of the divergence of the radiative heat fluxes on (a) the mid-
horizontal and (b) the mid-vertical planes of the combustor.

21



450

——c—— y=20mm
——&—— y=50mm
——— y=95mm
—<—— y=130mm
——— y=165mm

350

QD

300

250

200

T T T T T N B B A
150 -0.03 -0.02 -0.01 0 0.01 0.02 0.03

z

Figure 8: Radial profiles of the incident radiation, G(kWm™2), at various locations
on the mid-horizontal plane of the combustor.
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Figure 9: The net radiative heat fluxes, q,(kWm™2), on the liner walls of the
combustor; here (a) y =0, (b) y = L, (¢) v = —L,/2,(d) . = L, /2, (e) z = —L,/2,
and (f) z = L, /2.
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Sh
Approximation

Om

Ordinates
B

Tm

Weights
Wm

Sy

0.2958759
0.2958759
0.9082483

0.2958759
0.9082483
0.2958759

0.9082483
0.2958759
0.2958759

0.5235987
0.5235987
0.5235987

S6

0.1838670
0.1838670
0.1838670
0.6950514
0.6950514
0.9656013

0.1838670
0.6950514
0.9656013
0.1838670
0.6950514
0.1838670

0.9656013
0.6950514
0.1838670
0.6950514
0.1838670
0.1838670

0.1609517
0.3626469
0.1609517
0.3626469
0.3626469
0.1609517

0.1422555
0.1422555
0.1422555
0.1422555
0.5773503
0.5773503
0.5773503
0.8040087
0.8040087
0.9795543

0.1422555
0.5773503
0.8040087
0.9795543
0.1422555
0.5773503
0.8040087
0.1422555
0.5773503
0.1422555

0.9795543
0.8040087
0.5773503
0.1422555
0.8040087
0.5773503
0.1422555
0.5773503
0.1422555
0.1422555

0.1712359
0.0992284
0.0992284
0.1712359
0.0992284
0.4617179
0.0992284
0.0992284
0.0992284
0.1712359
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Table 1: Discrete ordinates for the S, approximation [2; 19] for the first quadrant.



Parameters Values

step size, dt 5.53 x 107" (sec)
Smagorinsky constant, Cj 0.1
emissivity of walls, €, 0.1

Stefan-Boltzmann constant, o 5.67 x 1078 (Wm 2K 1)

Table 2: Computational parameters.
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