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Aim: The first objective is to compare the performance of two-stage residual inclusion (2SRI), two-stage
least square (2SLS) with the multivariable generalized linear model (GLM) in terms of the reducing
unmeasured confounding bias. The second objective is to demonstrate the ability of 2SRI and 2SPS
in alleviating unmeasured confounding when noncollapsibility exists. Materials & methods: This study
comprises a simulation study and an empirical example from a real-world UK population health dataset
(Clinical Practice Research Datalink). The instrumental variable (IV) used is based on physicians’ prescribing
preferences (defined by prescribing history). Results: The percent bias of 2SRI in terms of treatment effect
estimates to be lower than GLM and 2SPS and was less than 15% in most scenarios. Further, 2SRI was found
to be robust to mild noncollapsibility with the percent bias less than 50%. As the level of unmeasured
confounding increased, the ability to alleviate the noncollapsibility decreased. Strong IVs tended to be
more robust to noncollapsibility than weak IVs. Conclusion: 2SRI tends to be less biased than GLM and
2SPS in terms of estimating treatment effect. It can be robust to noncollapsibility in the case of the mild
unmeasured confounding effect.
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In order to address unmeasured confounding bias concerns in observational CERs, the IV approach is widely used.
In this approach, the most commonly used estimation method is the two-stage least square (2SLS) which consists
of two stage linear regression. The 2SLS estimator is normally consistent when the outcome measure is represented
as a numerical variable [1]. However, if one requires to estimate the treatment effect using an odds ratio (OR) for a
binary outcome, the method needs to be adapted to the nonlinear setting. One such approach is two-stage predictor
substitution (2SPS). The first stage regression of 2SPS is treatment regressed upon the covariates; the second stage
is the outcome regressed upon predicted results from the first stage together with covariates.

Another nonlinear method, two-stage residual inclusion (2SRI), has the same first stage regression as 2SPS,
but use the residuals from the first stage as an additional covariate in the second stage. It was first introduced by
Hausman [2] in order to test endogeneity in the linear context. Currently, there are simulation studies [3,4,5] as well
as real-world studies that provide evidence for the 2SRI being generally less biased than 2SPS when estimating a
treatment effect in the presence of unmeasured confounding. However, unlike the risk difference, odds ratio, is
not collapsible which means that it cannot always be expressed as the weighted average of stratum-specific OR.
This characteristic is also referred to noncollapsibility [4,5,6,7,8]. For example, if one adjusts for covariates that are
not associated with both outcome and treatment in a logistic regression model (i.e., not a true confounder), the
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Table 1. Measurement of performance.
Measurement Calculation

Percent bias (in GLM, 2SRI, 2SPS)
true odds ratio − estimated adds ratio(from GLM, 2SRI and 2SPS)

true odds ratio
× 100%

Coverage rate Iterations when 95% CI includes the true OR across 1000 simulations (%)

F-statistics of the first stage regression

F-statistics =
Sum of squares for Model/Degrees of Freedom For Model

Sum of Squares for Error/Degrees of Freedom for Error

=
Mean of Squares for Model
Mean of Squares for Errors

2SLS: Two-stage least square; 2SRI: Two-stage residual inclusion; CI: Confidence interval; GLM: Generalized linear model; OR: Odds ratio.

adjusted OR may differ from the unadjusted OR. Therefore, in such contexts the difference between adjusted and
unadjusted logistic regression consists of is made of two parts: confounding effect and noncollapsibility effect.

In terms of using PPP as an IV and applying the 2SRI method, Koladjo et al. concluded that 2SRI is less
biased than IV-based generalized method of moments (GMM) [5] in estimation of treatment effect. It is widely
acknowledged that 2SPS is not superior to 2SRI in terms of dealing with endogeneity in health research [3,6].
However, there are also studies indicating that 2SRI produces biased estimates of average treatment effect (ATE)
and local average treatment effect (LATE), compared with 2SLS [7]. In this study, we focused on the nonlinear
settings. For the conventional approaches which do not account for the unmeasured confounding issue, we chose
the generalized linear model (GLM) as it is a one of the most intuitive approaches in nonlinear settings. There
are two objectives in this study: compare 2SRI and 2SPS with the generalized linear models (GLMs), which
can only adjust for measured confounders, in a drug comparison simulation study using physician’s prescribing
preference as instrumental variable in the presence of unmeasured confounding bias; test the robustness of 2SRI to
noncollapsibility, using simulated data and real-life data from a real-world UK population health dataset (CPRD).

Method
Data generating process
In Box 1 in the Appendix, we present the details of the data generating process. In order to construct an observational
CER, we set the total number of physicians as 80. The patients per physicians is in range from 10 to 50. The
simulated data consists of 2442 records (n = 2442). X 1 and X 2 are the measured confounders. ‘un’ is the unmeasured
confounder. The R code for constructing the treatment (X) and the outcome (Y) is listed in the Appendix.

X 3 in research objective 2 is the variable that induces the noncollapsibility effect which is based on a scenario
that the variable is associated with the outcome but not associated with the treatment [4]. X 3 is formed with a
mean value of 10 and 1 as standard deviation to ensure an adequate noncollapsibility effect. We used the γ2 (ranges
from 0 to 1.9) to control the unmeasured confounding level and γ3 (ranges from 0 to 0.95) to control the level of
noncollapsibility effect. The PPP IV is formed by the prior n prescription of drug A and divided by n prescribed
by the same physician. The strength of IV is tested using the F-statistics. All assumptions of a valid IV are assumed
to be met in this simulated dataset.

Study design
According to recent studies, 2SRI is sensitive to the choice of residuals [7]. In this study, we selected Pearson residuals
to be used in the second stage of regression after initial analysis using raw residuals (results from raw residuals are
extremely biased and not shown in this thesis). Percent bias and coverage rate are used to measure the performance of
the estimation methods (Table 1). In order to obtain more precise estimates, each simulation is run for 1000-times.
All simulations and statistical analyses are conducted using R version 4.1.1.

Design of the empirical illustration
An empirical example is presented in this section to demonstrate the ability performance of 2SRI in dealing with
the accounting for a noncollapsibility effect. It is a CER which compares the effectiveness of acamprosate and
disulfiram in reducing the risk of alcohol use disorder (AUD) hospitalizations in England using data from CPRD.
Unlike adjusted logistic regression, the inverse propensity score weighting (IPSW) method using stabilized weights
is considered to estimate the marginal treatment effect (MTE) and is free from the impact from noncollapsibility.
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Table 2. The measurement of confounding bias and noncollapsibility effect.
Forms of bias Ways of presentation using estimate of treatment effect from univariable,

multivariable logistic regression and IPSW

Confounding bias �′ − �IPSW

Noncollapsibility effect �IPSW − �

IPSW: Inverse propensity score weighting.

First prescription of acamprosate or disulfiram

Patient

Physician

Time

Time

N = previous prescription dates
back to the beginning of the study
n = number of acamprosate
among previous prescription dates
back to the beginning of the study

Proportion IV = proportion of
acamprosate among the
previous prescriptions = n/N

Figure 1. Constructing instrumental variable in the empirical illustration.
IV: Instrumental variable.

Therefore, the noncollapsibility is usually quantified as the difference between IPSW-adjusted results and multi-
variable logistic regression, while the confounding bias is quantified using the difference between the univariable
logistic regression and the IPSW-adjusted results [4,8] (Table 2).

The IV used in this case is the proportion of acamprosate among the last year prescriptions (see Figure 1 for the
details of constructing the IV).

Results
Research objective 1: assessing the ability of 2SRI & 2SPS of alleviating the unmeasured
confounding bias
Figure 2 shows that 2SPS is consistently more biased than 2SRI (γ2 more than 0.75). When γ2 is less than 0.75,
the 2SRI estimates are not always less biased than 2SPS, but the percent bias is consistently at a low level (below
12.5%). The percent bias from 2SRI does not always inflate as the unmeasured confounding level rises; in the case
of prior 1 and prior 2 as IV, we observed a rather low percent bias (less than 12.5%) for 2SRI throughout the range
of γ2 values from 0 to 1.9. The estimates from GLM are only at a low level when the unmeasured confounding
level is small.

Despite the point estimate deviating from the ‘true’ OR, the coverage rates of 2SPS are around 95% most of
cases. When the IV strength increases (F-statistics from 105 to 250), the coverage rates from 2SRI are more likely
to achieve 95% (Figure 3).

Research objective 2: assessing the ability of 2SPS & 2SRI of alleviating noncollapsibility
This simulation tested whether the 2SRI or 2SPS estimates are able to reduce unmeasured confounding bias.
However, the percent bias from the research objective 1 is free from the noncollapsibility effect. Research objective
2 is to assess the performance of 2SRI and 2SPS with the existence of unmeasured confounding as well as
the noncollapsibility effect. We minimized the unmeasured confounding effect by selecting two scenarios where
γ2 equals 1.0 and 1.5 where 2SRI is generally unbiased (percent bias less than 10%) against the unmeasured
confounding according to the results from the research objective 1. The results are shown in Figure 4.

It can be seen from Figure 4 that the 2SRI is generally less biased than 2SPS and GLM when the noncollapsibility
effect is not severe. When the γ2 equals 1.0, the percent bias of 2SRI is at a low level at the beginning but rise
dramatically when the non-collapsibility effect increases. Same trend is found in GLM and 2SPS. When the γ2

equals 1.5 (the unmeasured confounding effect at higher level), the percent bias of 2SRI fluctuated below 50% and
hits a high level as γ3 increases. The threshold of γ3 where the percent bias (b) of 2SRI becomes extremely biased is

10.57264/cer-2023-0085
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Figure 2. Estimates from generalized linear model, two-stage residual inclusion and two-stage least square.
GLM: Generalized linear model; 2SLS: Two-stage least square; 2SRI: Two-stage residual inclusion.
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Figure 3. Coverage rates from generalized linear model, two-stage residual inclusion and two-stage least square.
Red dash line represents the 95% nominal.
GLM: Generalized linear model; 2SLS: Two-stage least square; 2SRI: Two-stage residual inclusion.
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Figure 4. Percent bias of generalized linear model, two-stage residual inclusion and two-stage least square when
there is noncollapsibility. (A) Percent bias represents percent bias of the estimate when γ2 equals 1.0. (B) Percent bias
represents percent bias of the estimate when γ2 equals 1.5.
GLM: Generalized linear model; 2SLS: Two-stage least square; 2SRI: Two-stage residual inclusion.

smaller than percent bias (a) of 2SRI. The percent bias of 2SPS and GLM exceeds 100% when γ3 is at low level in
both scenarios indicating they are less robust to noncollapsibility. Note that for 2SPS and GLM, the percent bias is
high even when γ3 equals 0. This indicates that 2SPS and GLM are not robust to a random variable which is not
a true confounder adjusted in the covariates. The coverage rates are presented in Figure 5. The coverage rates of
2SRI are around 95% when the γ3 equals 1.0 and drop when the noncollapsibility effect increases. Note that, the
coverage rate (b) increases after a certain point because the confident interval of 2SRI estimate is extremely wide,
where the estimates of 2SRI become biased.

Empirical illustration using CPRD data

As it has been mentioned in the method section, the empirical illustration of research objective is based on a CER
that compares the effectiveness of acamprosate and disulfiram in preventing AUD hospitalization. The confounders
adjusted for in the models are Charlson Comorbidity Index (CCI), and ‘prescription year’. CCI is associated with
the outcome, but not associated with the treatment. ‘Prescription year’ is associated with both treatment and
outcome (Figure 6). The presence of confounding bias and/or noncollapsibility is defined by adjusting for or not
adjusting for these confounders.

In order to illustrate how 2SRI perform in different practical scenarios, we built three models. Model 1 is a
logistic regression with or without adjusting for CCI. Model 2 is a logistic regression with or without adjusting for
‘prescription year’. Model 3 is a logistic regression adjusts for ‘prescription year’, with or without adjusting for CCI.

The results of the case study using CPRD data are shown in Table 3. Since the CCI is associated with outcome
but not associated with the treatment, the difference between the coefficient from β′ and β in Model 1 should be
totally due to the noncollapsibility. In Model 2, adjusting for ‘prescription year’ bring in both noncollapisibility and
confounding bias, where the noncollapsibility is less significant than the confounding effect. In Model 3, adjusting
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Figure 5. Coverage rate of generalized linear model, two-stage residual inclusion and two-stage least square. (A)
Coverage raterepresents coverage rate of the estimate when γ2 equals 1.0. (B) Coverage rate represents coverage rate
of the estimate when γ2 equals 1.5.
GLM: Generalized linear model; 2SLS: Two-stage least square; 2SRI: Two-stage residual inclusion.

Treatment:

Acamprosate or disulfiram

Prescription year

CCI

Outcome:

AUD hospitalisation

Figure 6. Assumed relations between the prescription year,
Charlson Comorbidity Index and treatment and outcome.
AUD: Alcohol use disorder; CCI: Charlson Comorbidity Index.

for CCI brings more noncollapsibility compared with in Model 2. In Model 1 and Model 2, 2SRI does not show
much ability to remove noncollapsibility from the adjusted models. However, results from the Model 3 echoes
the simulation in the research objective 2 that the 2SRI can alleviate noncollapsibility when true confounders
are adjusted in the model. Note the percent difference in Table 3 may be partly due to the residual unmeasured
confounding in the observational studies.

Discussion
Results from the simulation study show that the percent bias of 2SRI is less than 15% in most scenarios while the
percent bias of 2SPS reaches 50%. This echoes the findings from Cai et al. [6], who found that two-stage logistic
regression 2SRI is asymptotically unbiased when the unmeasured confounding effect is not severe. However, our
results are inconsistent with their conclusion that percent bias of 2SRI tends to rise as the unmeasured confounding
level increases. Our findings indicate that the percent bias of 2SRI fluctuates when the unmeasured confounding
is moderate but does not increase monotonically following the increase of an unmeasured confounding effect.
According to the results, the IV strength does not affect the consistency of 2SRI estimates.
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Table 3. Results from empirical case study.
Model �′ � �IPSW �2SRI Confounding

bias = �′ − �IPSW
Noncollapsibility =
�IPSW − �

The estimate of
treatment that
excludes
noncollapsibility:
�∗ =
� − (� − �IPSW)

Percent differ-
ence = |�2SRI−�∗ |

�∗ ∗
100%

1 Unadjusted logistic
regression

0.168

Adjusting for CCI 0.211 0.184 0.152 0.168–0.184
= -0.016

0.184–0.211
= -0.027

0.238 33.9%

2 Unadjusted logistic
regression

0.168

Adjusting for
‘prescription year’

0.439 0.420 0.326 0.168–0.420
= -0.252

0.420–0.439
= -0.019

0.458 28.8%

3 Adjusting for
‘prescription year’ but
not ‘CCI’

0.439

Adjust for ‘prescription
year’ and ‘CCI’

0.452 0.379 0.608 0.439–0.379
= 0.06

0.379–0.452
= -0.073

0.525 13.6%

CCI: Charlson Comorbidity Index; IPSW: Inverse propensity score weighting.

We discussed the potential bias from the noncollapsibility on the 2SRI estimate using a simulated scenario where
a covariate is associated with outcome but not associated with the treatment. The results indicate that percent bias
of 2SRI has potential to be robust with minor or moderate noncollapsibility effect, and robustness is associated
with the level of unmeasured confounding effect. We can see from Figure 4 that robustness is shown to be more
resilient when the unmeasured confounding is smaller in magnitude (γ2 equals 1.0). It is also reflected in the case
study that 2SRI provides a close estimate to the unadjusted logistic regression when a variable that should not be
adjusted appears in a model and brings noncollapsibility. However, for 2SPS and 2SRI, the noncollapsibility leads
to major distortions on the estimates.

In this study, 2SRI is shown to be superior to 2SPS. There are studies that argue the consistency of 2SRI estimate
is associated with the collapsibility of the model. Normally, the 2SRI estimator is consistent when the model is
collapsible, for example, in the addictive hazards models [9]. However, our results show that the 2SRI estimate is not
certainly biased with noncollapsibility effect. Despite our results supporting the preference of 2SRI, the nonlinear
extension of 2SRI and 2SPS in the binary exposure are not studied adequately. Wan et al. proved the consistency
of 2SRI estimates as the same time pointed out that the original framework proposed by Terza is used for the
continuous treatment variable [10]. Further theoretical and methodological research is needed for 2SRI used for
binary treatment.

Strengths & Limitations
To my knowledge, this study is the first simulation study to discuss the 2SRI’s robustness to the noncollapsibility
effect. In addition to the simulated data, we demonstrated an empirical example from CPRD to illustrate the
noncollapsibility effect is common in logistic regression and can cause misleading results in causal inferential
studies. One limitation of this study is the simplicity of the design. We only considered the simplest scenarios,
without out taking account for more covariates, or more than one IV, or another forms of residuals that used in
2SRI. In the empirical illustration, we only consider three models in which the noncollapisbility can be considered
mild. We did not consider the settings with more different levels of unmeasured confounding effect. Without the
rigorous mathematical reasoning, these simplicity put a caveat on generality of results. As there is always possibility
that the results turn to an opposite way when we apply the same approach to more scenarios.

Conclusion
The findings of this simulation study show that 2SRI performs unbiasedly in nonlinear models when conducting
comparative effectiveness research. Further, the results show that 2SRI is more likely to alleviate noncollapsibility
when unmeasured confounding effects are at lower levels.
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Summary points

• Two-stage residual inclusion (2SRI) can reduce unmeasured confounding in the nonlinear settings.
• 2SRI tend to be less biased than two-stage least square (2SLS) and generalized linear model (GLM) when there is

unmeasured confounder.
• The percent bias of 2SRI in terms of treatment effect estimates to be lower than GLM and 2SPS and was less than

15% in most scenarios.
• 2SRI is more robust to the noncollapsibility than 2SPS.
• 2SRI can alleviate moderate noncollaspibility.
• The percent bias of 2SRI in terms of treatment effect are around 20% when the unmeasured confounding is

moderate.
• The percent bias of 2SRI in terms of treatment effect are less than 50% when the unmeasured confounding is

more noticeable.
• Strong IVs tended to be more robust to noncollapsibility than weak IVs.
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