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Faster Convergence on Differential Privacy based
Federated Learning

Shangyin Weng, Student Member, IEEE, Lei Zhang, Xiaoshuai Zhang, Senior Member, IEEE
and Muhammad Ali Imran, Fellow, IEEE

Abstract—As a novel distributed machine learning approach,
federated learning (FL) is proposed to train a global model
while preserving data privacy. However, some studies manifest
that adversaries can still recover private information from the
gradients. Differential privacy (DP) is a rigorous mathematical
tool to protect records in a database against leakage. It has been
widely applied in FL by perturbing the gradients. Nevertheless,
while using DP in FL, the convergence performance of the
global model is inevitably degraded. In this paper, we implement
a DP-based FL scheme, which achieves local DP (LDP) by
adding well-designed Gaussian noise on the gradients before
clients upload them to the server. After that, we propose two
strategies to improve the convergence performance of the DP-
based FL. Both methods are realized by modifying the local
objective function to limit the effect of LDP noise on convergence
without degrading the privacy protection level. We then provide
the detailed framework which adopts the LDP scheme and two
strategies. The framework on different machine learning models
is tested by simulation results, which show that our framework
can improve the convergence performance up to 40% faster
under different noise compared with other DP-based FL. Finally,
we show the theoretical convergence guarantee of our proposed
framework by first presenting the expected decrease in the global
loss function for one round of training and then providing the
upper convergence bound after multiple communication rounds.

Index Terms—Privacy-preserving federated learning, differen-
tial privacy, convergence performance.

I. INTRODUCTION

W Ith the enormous amount of data generated from the
Internet of Things, artificial intelligence (AI) has been

broadly developed and deployed in recent years in many
sectors, including finance, industries, network service applica-
tions, etc. For such an unprecedented blooming with the great
benefits brought by AI that relies on a large amount of data to
achieve acceptable performance, there is a privacy problem
causing great attention in public during data collection. In
addition, with the new General Data Protection Regulation
(GDPR) law [1], it becomes more difficult to collect raw
data to train a good ML model. To solve this issue, Google
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first proposes federated learning (FL) in the smart keyboard
application for typing recommendation [2]. The key idea of FL
is to let local users train models with their data and upload
the gradients instead of their raw data, which will then be
aggregated to obtain a global model. Since the private data
never leaves local users’ devices, it is claimed that FL can
preserve privacy during training models.

A baseline FL model, Fed-Avg, is proposed to use stochastic
gradient descent (SGD) to train local models for multiple
epochs to reduce the communication rounds between the
server and clients [2]. However, when training with Non-
independent and identically distributed (Non-IID) data, Fed-
Avg has unsatisfactory convergence performance [3]. Several
local optimizers for FL are proposed to improve the FL
convergence performance with Non-IID data and proved to
converge much faster than Fed-Avg [4], [5]. In addition, many
studies have proposed different structures for FL to speed
up convergence time. For example, authors in [6] propose a
hierarchical clustered FL and authors in [7] use Blockchain as
coordination to achieve decentralized FL.

Even though FL is proposed for privacy protection, several
studies have shown that useful information can be recovered
even from the gradients of the trained model to violate user
privacy [8], [9]. In many FL settings, the servers are honest to
finish the FL tasks, but sometimes they are curious about the
users’ private data and try to recover them from the gradients.
Therefore, further studies are essential to protect user privacy
when FL servers are not fully trusted. For example, homomor-
phic encryption (HE) can be used by each client to encrypt
the gradients before they are uploaded to the server [10]. By
using HE, the server can aggregate all the encrypted gradients
without acknowledging the content shared by each client.
Then, the clients decrypt the aggregated encrypted gradients
to obtain the new global model for training. However, this
requires that all the clients are trustworthy to protect the secret
key. Furthermore, performing HE on the gradients needs strong
computational capability, which is normally unavailable for
resource-constrained smart devices. On the other hand, as a
mathematical tool, differential privacy (DP) is widely adopted
in FL by adding noise or perturbing original gradients before
uploading to the server to provide a strong privacy guarantee
[11], [12], also known as Local-DP (LDP). However, the work
in [12] has a strict bound for privacy loss, which might be
difficult for the real world. Besides, the work in [11] still
requires the server to compute the privacy loss for users so that
the server may fool the users for more training rounds, causing



privacy leakage. Therefore, a new LDP-based scheme for FL
is considered in this paper. Although DP is a strong privacy
protection tool, perturbing gradients inevitably decrease the
convergence performance to incur longer training time and
lower accuracy. Thus, how to improve the convergence per-
formance under DP noise still needs to be addressed.

In this paper, we propose an LDP-based framework and two
novel strategies for modifying the local objective function to
reduce the convergence time cost and improve the accuracy
performance while maintaining the same privacy protection
level, namely Federated Noise Reduction 1&2 (Fed-Nore-
1&2). We implement an LDP-based FL framework by adding
Gaussian noise before uploading their gradients and use RDP
to keep track of the privacy loss. Our contributions are listed
as follows.

• Our first proposed strategy is to compute the difference
between the gradients with and without DP noise and
add the difference values to the loss function to limit
the effect of the noise. On the other hand, by adding
noise to the gradients, it is considered that noisy gradients
will generate an additional term to the final loss. Our
second proposed strategy is to calculate the increment
of the loss from the noise on the gradients and then
subtract that increment from the local objective function.
Detailed formulas on how to make those modifications to
the local objective function for different learning models
are illustrated. To the best of our knowledge, this is the
first of its kind to try to improve the FL’s convergence
performance under the DP noise by limiting its possible
effect on the loss without degrading the privacy protection
level.

• A theoretical convergence bound on the first modified
local objective function is developed, which presents the
expected increment in the loss function of one round and
then the upper convergence bound after multiple rounds.

• We perform simulations on our proposed framework, and
the results present that our proposed framework can spare
up to 40% training rounds to reach the same performance
as normal DP-based FL under certain settings. Besides,
our proposed work also achieves higher accuracy perfor-
mance compared to other DP-FL.

The remainder of this paper is structured as follows. A
summary of the notations is given in Table I. Section II
introduces the related works, and Section III presents the
background of the theories of DP and the threat model. In
Section IV, the privacy-preserving FL framework based on DP
and the models to improve the performance under DP noise are
proposed. We give the theoretical convergence bound analysis
in Section V. Then, the simulation and the numerical results
are shown in Section VI. Finally, this article is concluded in
Section VII.

II. RELATED WORKS

With the emerging development of ML and the rising
attention to privacy, FL (Fed-Avg) is proposed. However, it
still suffers from privacy leakage.

Table I: Summary of Main notations

D,D′ Two adjacent datasets
R A DP mechanism
ϵ, δ, α The privacy budget for DP
M The number of the clients in total
m The number of the selected clients in each round
W t The global model of the tth communication round
t The tth communication round
F () The local loss function
Wi The model of the ith client
∇W t

j The gradients of the jth client in tth round
C The sensitivity in the DP mechanism
n The number of data of each client
σ The base noise variance of the DP mechanism
J The distance between noisy gradients and

original ones in Fed-nore1
N(µ, σ2) A Gaussian distribution with a mean of µ and

a variance σ2

λnore1, λnore2 A factor used to control the Fed-nore
wk, bk The parameters of the kth hidden and bias layer
zk, ak The kth layer’s intermediate optimization parameters
dzconv , dzpool The dz of the convolution layer and pooling layer
K The final layer of the model
g(), g()′ The activation function and its derivative
n′ The number of the input data of training
dz, dw, db The expected change on the gradients in Fed-nore-2
l The index of the true label in the one-hot output

Dwork et al. define pure ϵ-DP by considering the infor-
mation loss between two datasets [13]. Then, (ϵ, δ)-DP is
introduced to provide better flexibility. Besides, in applications
requiring multiple uses of the DP mechanism, (ϵ, δ)-DP can
adopt the advanced composition DP theorem to obtain a
tighter bound of privacy loss. As regards privacy protection
for learning algorithms, Martin et al. [14] first adopt DP into
single-end ML, namely as DP-SGD. The algorithm achieves
DP by adding Gaussian noise in every trained batch. To record
the accumulative privacy loss during the multiple DP proce-
dures, they come up with moments accountant (MA), which
has a tighter bound of privacy loss for DP-based learning,
compared to the original DP composition theorem [13]. More-
over, authors in [15] have proposed Rényi differential privacy
(RDP) or (α, ϵ)-DP by using Rényi divergence to calculate
the distance between datasets, which is a natural relaxation
for (ϵ, δ)-DP and it is proved to be more flexible and effective
than previous DP composition theories. Then, Geyer et al.
[16] first propose a client-level DP-based FL framework, also
known as Central-DP (CDP), for the purpose of hiding every
client’s track in training. It is achieved by adding Gaussian
noise to the global model before the central server broadcasts
it. However, malicious servers can still recover the original
data. After that, LDP is proposed to randomize local gradients
on the local side to protect data privacy [17], [18]. Authors in
[17] implement LDP by perturbing the local gradients, while
authors in [18] propose to add noise to the local gradients
before uploading them. However, their frameworks satisfy the
Laplace mechanism, which may have too tight bounds to be
achieved in real-world algorithms [13].



Even though DP can protect private data from leaking to
adversaries, the DP-based learning algorithms have a degraded
convergence performance in terms of longer convergence time
and lower accuracy performance due to the randomization of
the gradients [19], [20] and the studies in [19] also present
the convergence bound for different client select rates in
each communication round. Furthermore, to enhance privacy
protection, the authors in [21] have adopted secure multi-
party computation combined with DP into FL, which can
also improve convergence performance. Besides, the work
in [22] proposes a contract-based incentive mechanism by
modeling local users’ contribution and computation, privacy
and communication costs to improve FL’s utility performance.
The study in [23] utilizes HE along with DP to improve
privacy protection. In addition, the authors in [24] have
proved that applying CDP and LDP in FL can prevent the
training from backdoor attacks. Nevertheless, the accuracy
performance of DP-based FL is still greatly degraded due to
the noise. However, only a few works are trying to improve
the accuracy performance by using adaptive gradient clipping
[25], [26], while these works affect the DP settings by using
relatively smaller noise. This paper proposes to limit the effect
of noise on the accuracy performance during local training by
adding a noise-related term to the local objective function so
that, during gradient descent, the noise effect on the accuracy
performance can also be decreased while no changes are made
to the DP mechanism.

III. PRELIMINARIES

In this section, we introduce the definitions and principles
of DP and the threat model in this paper.

A. Differential Privacy

The DP mechanism is utilized for privacy protection for
sharing data. One relaxed definition of the DP mechanism,
the (ϵ, δ)-DP, is that there are two neighboring databases
D,D′, and after adding the DP mechanisms, the probability
distributions (Pr) of their outputs are bounded by eϵ, and δ is
the probability of that the difference between the probabilities
is not bounded for the given ϵ. This mechanism is known as
the Gaussian mechanism, which is formalized as:

Definition 1: A randomized mechanism R achieves (ϵ, δ)-
DP if it satisfies the following, ∀D,D′, and S ⊂ R [13] :

Pr [R(D) ∈ S] ≤ eϵPr [R(D′) ∈ S] + δ, (1)

where ϵ > 0 and δ ≥ 0.
To obtain a relaxed privacy calculation, RDP is adopted in this
paper, which is defined as follows [15]:

Definition 2: A randomized mechanism M achieves (α, ϵ)-
DP if it satisfies [15]:

Pr [M(D) ∈ S] ≤ (eϵPr [M(D′) ∈ S])(α−1)/α, (2)

where α ∈ (1,+∞).

B. Threat model

Even though in FL, only gradients are uploaded, and the
data is stored locally, useful information can still be recovered.
In this paper, we consider a reconstruction attack as the threat
model, where we assume that the server is honest but curious.
To be specific, they execute the FL honestly, but they try to
infer the private data from the transmitted data. Therefore, we
aim to prevent the model from obtaining the real data.

IV. PROPOSED OPTIMIZATION OF FEDERATED LEARNING
WITH NOISE

In this section, we propose an LDP-based FL scheme by
adding Gaussian noise. Then, two modifications on the local
cost function F (W ) are introduced to improve the conver-
gence under noise. The first can work on universal models,
while the second slightly varies for different ML models. In
this paper, the CNN and the DNN are used as the training
model along with the two modifications, and we provide the
corresponding derivations of the second modification on the
local objective function for them.

A. Differential privacy Federated Learning

We apply LDP to protect sensitive data from revealing.
Before applying DP mechanisms, each layer of the gradients
needs to be clipped element-wise as:

∇W t
i = ∇W t

i /max(1,
||∇W t

i ||2
nC

), (3)

so that it can eliminate their effect on average value to make
them close to the global gradients, where C is the sensitivity of
LDP, n is the size of the involved data samples and nC is the
clipping threshold. The DP noise is generated as N(0, C2σ2).
The σ2 is a preset base noise variance, and C is used to control
the noise scale. We adopt the calculation of C in [11]:

C =
median||∇W t

i ||2
n

=
median||W t−1 −W t

i ||2
n

, (4)

where C is calculated for each layer separately and by taking
the median value of all unclipped gradients in each client.
Then, the noise is added to the local gradients, and the noisy
gradients are sent to the server for aggregation. To track the
privacy loss, we use RDP [15] to calculate the final privacy
loss (ϵ, α) with a fixed δ and the total training rounds. In
our LDP scheme, each client records their privacy loss locally
and individually. Once the client has reached the preset privacy
budget (ϵ, δ), it drops out. The server can abort the training
process when there are not enough clients for training. Since
the clients are chosen every round randomly, the client drop-
out pattern satisfies a uniform distribution, which will not lead
to an unbalanced FL model.

B. Federated Learning with Noise Resistance

In this part, two different models are proposed to improve
the convergence performance under DP noise while maintain-
ing the same protection level, namely as Fed-nore-1&2 , which
are two different local training optimizers for FL by modifying
the local objective function in two different ways. To the



best of our knowledge, this is the first work to improve the
convergence performance in terms of time cost and accuracy of
the DP-based FL framework by modifying the local objective
function with a noise-related term while maintaining the same
privacy protection level.

In our proposed framework, we add a modification term
related to the noise to the local objective function. Then, local
models can offset the training loss caused by the noise through
optimization. Meanwhile, the privacy protection level is not
degraded since no changes are made to the DP mechanism
settings. The proposed Fed-nore-1 and Fed-nore-2 share the
same general FL protocol and the proposed LDP mechanism.
However, they are different at the local training optimizer,
where Fed-nore-1 is proposed to minimize the distance be-
tween the noisy gradients and the original ones, while Fed-
nore-2 is proposed to minimize the expected loss created by
the noise.

For Fed-nore-1, we consider the difference J between the
noisy and the original gradients, which is computed as:

J = ||wt
i −R(wt

i)||2 (5)

= ||wt
i − (wt

i +N(0, C2σ2))||2 (6)

= ||N(0, C2σ2)||2, (7)

where J can then be simplified to Cσ. By adding the dif-
ference between the original gradients and noisy ones into
the local objective function, the local optimizer can reduce
the distance between them in order to improve the accuracy
performance. Meanwhile, as no changes are made to the DP
mechanisms, the privacy protection level remains the same.
We then give the formal implementation of Fed-nore-1, where
the difference term is added to the local objective function as
follows:

argmin
W t

i

h(W t
i ;W

t) = F (W t
i ) + λnore1 · Cσ, (8)

where λnore1 is used to control the size of its effect.
Before introducing Fed-nore-2, the change in the loss is

considered. When the noise is added to the gradients, the loss
is added with a value, and the noisy gradients can be directly
derived through the gradient descent from the new loss. In
order to calculate the change, the backpropagation process of
training is reversed. We first consider a normal DNN with
ReLU as the activation function for hidden layers and the
Sigmoid as the activation function for the output layer. During
the backpropagation, the gradients are computed by taking the
partial derivatives of the loss with respect to each parameter
in the forward propagation as follows [27]:

dzK = aK − Y, (9)
dzk = dak × g′k(zk), (10)

dwk =
1

n′ dzk · (ak−1)
T , (11)

dbk =
1

n′

j=n′∑
dzjk,

(12)

dak−1 = (wk)
T · dzk, (13)

where K is the index of the final layer, dbk is the sum of
the dzk of every input, n′ is the number of the input data,
× means matrix-wise multiplication and ()T is the transpose
operation of matrix. The gradients are then used to update the
model. Based on the formula (9), to calculate the expected
change on the final loss, we need to calculate the expected
change on each layer’s dz.

According to formulas (10)-(13) during the back-
propagation, dzi are used to obtain dzk−1 (only when k > 1),
dwk and dbk. Therefore, if the back-propagation is reversed,
dz is computed with the expected change on dzk−1 (only when
k > 1), and the noise on dwk and dbk, which are computed
in Lemma 1:

Lemma 1:

dzk = dwk · ak−1 + dbk + wk · dzk−1 × g′k(zk−1), (14)
dwk = N(wk), (15)

dbk = N(bk), (16)
dzk = N(wk) · ak−1 +N(bk) + wk · dzk−1 × g′k(zk−1),

(17)

where the formula (14) describes the procedure of reversing
the original gradients (without noise), and the formula (17)
is the expression of the expected change on every layer. The
proof of the Lemma 1 is presented in Appendix A.

Then, we propose the Theorem 1 of calculating the expected
change on the final loss.

Theorem 1: If we apply DP through the Gaussian mecha-
nism on FL, the noise added to the gradients can be regarded
as an expected change added to the loss, which can directly
derive the noisy gradients during the backpropagation. For a
DNN with ReLU as the hidden layer’s activation function and
Sigmoid as the output layer’s activation function, the expected
change to the loss is scaled to itself, which is obtained by
dividing the formula (14) by the formula (17) and the noise
generation method discussed in Section III.A. Finally, we
simplify the expected change on the loss to:

daK =
(aK − Y ) · σ√

n
. (18)

The proof of the Theorem 1 is presented in Appendix B. With
Theorem 1, Fed-nore-2 is proposed. To improve the accuracy
performance, we assume that by subtracting the original loss
from the expected change term, the new gradients with noise
addition can reach the same performance as the original ones.
Since we focus on the modification term as one term related
to the parameters, we discard the term of Y . Therefore, as
categorical-cross-entropy is used as the local loss function, the
formal definition of the local objective function in Fed-nore-2
is modified as:

argmin
wt

i

h(wt
i ;w

t) = −ln(alK ∗ (1− λnore2(
σ√
n
)), (19)

where l is the index of the correct label and λnore2 is used to
scale the proposed modification terms.

Then, we consider a CNN model with several convolution
layers followed by max pooling (the hyper-parameters of these



layers do not affect the results), a fully connected layer and
ReLU activation and a final softmax output layer. Similar
to DNN, we need to reverse the backpropagation. For the
CNN model, the gradients of the fully connected layer are
the same as the hidden layer in the DNN. With regards to the
convolution layer and pooling layer, the gradients are obtained
as follows:

dzk−1 = dzconvk ∗ rot180(ak)× g′k(zk−1), (20)
dwk = dzconvk ∗ ak−1, (21)

dzk−1 = upsample(dzpoolk ), (22)

where the upsampling process means that the gradients dzk−1

of the largest parameter in every sub-region created in down-
sampling is the same with dzk, while the others are zeros.
Then, we propose Corollary 1 to compute the expected change
in the loss due to the noise on the convolution layers.

Corollary 1: If we apply DP through the Gaussian mech-
anism on a regular CNN model, there is an expected change
in the final loss. With Theorem 1, the expected change on the
convolution layer is computed as follows:

dzk
dzk

=
σ√
n
. (23)

The proof of the Corollary 1 is presented in Appendix C.
The expected change of the max pooling layer is the same

with the added noise, and the one of the fully connected layers
is similar to DNN. Therefore, with Theorem 1 and Corollary
1, the expected change in the loss of CNN can be formalized
as the same with formula (19).

C. Proposed framework

In this part, the proposed framework with DP through Gaus-
sian Mechanism and Fed-nore-1&2 is introduced in Algorithm
1. At first, the server initializes the FL training and creates
an initial model W 0. In this part, every client can choose
their privacy budget and base noise variance σ on the purpose
of personalized privacy protection level. Then, in each round,
all the clients check for their remaining privacy budget and
drop out of training if it runs out. After that, the server
randomly selects m clients from the remaining clients, and
broadcasts the model to the selected clients. Next, the selected
clients use their local data to train the global model with Fed-
nore. To be specific, the local clients train the global model
with the local optimizer following formula (8) in Fed-nore-
1 or following formula (19) in Fed-nore-2. The clients then
calculate the gradients ∇W t

i , clip the gradients, add noise and
upload the noisy gradients ∇W t

i to the server. After receiving
all the noisy gradients, the server aggregates and averages
the gradients to obtain a new model. The server and clients
repeat the above procedures until the global model reaches an
acceptable accuracy or the server cannot find enough clients
with remaining privacy budgets for the training process.

Algorithm 1 LDP-FL with Fed-nore-1&2

1: procedure SERVER
2: Generate a global model W 0, the number of remaining

clients M
0

and privacy budget for clients (ϵ, δ)
3: for round t = 0, 1, 2... do
4: M

t ← DP-client
5: if remaining clients are not enough then
6: return W t−1

7: Select a list of M clients as M t

8: for all Client i in M t do
9: ∇ W t+1

i ← Fed-nore-client(i,Wt)
10: ∇W t+1 = 1

M

∑Mt

i=1∇W
t+1
i

11: procedure DP-CLIENT
12: for every client k in M do
13: Calculate its privacy loss based on the number of

its participated communication rounds
14: if the privacy loss ≤ ϵ then
15: Client k drops out the training
16: return remaining clients M

t

17: procedure FED-NORE-CLIENT(t,i,W t)
18: if Fed-nore-1 then E epochs of
19: W t

i = argminW t
i
F (W t

i ) + λnore1 ∗ Cσ

20: if Fed-nore-2 then E epochs of
21: W t

i = argminW t
i
[−ln(alK ∗ (1− λnore2(

σ√
n
)))]

22: ∇W t+1
i = W t −W t

i

23: Gradients clipping
24: ∇W t+1

i + = N(0, C2
clienti

σ2
clienti

)

25: return ∇W t+1
i

D. Complexity analysis

In this subsection, we discuss the difference in complex-
ity among our proposed frameworks, traditional FL (Fed-
Avg) and traditional DP-FL (without Fed-nore), for one local
client. First, compared with Fed-Avg, the major changes in
traditional DP-FL are gradient clipping and noise computing.
As for gradients clipping, the weights need to be clipped
element-wise as ∇W t

i = ∇W t
i /max(1,

||∇W t
i ||2

C ) so that
the complexity would be O(size(∇W t

i )). Meanwhile, the
C is computed as C =

||∇W t
i ||2

n =
||W t−1−W t

i ||2
n , which

brings O(size(∇W t
i )) time. Second, the noise generates as

N(0, C2σ2), which takes O(1) time. Third, adding the noise
to the gradients as ∇W t+1

i + = N will take O(size(∇W t
i ))

time. In addition, the difference between our proposed work
and traditional DP-FL is only the modification of the local
objective function, which only takes O(1) time.

In conclusion, the complexity of our proposed algorithm is
dominated by the size of the model parameters, represented
as O(size(∇W t

i )).

V. CONVERGENCE ANALYSIS FOR THE PROPOSED MODELS

In this section, we present the theoretical convergence guar-
antee for our proposed models. We analyze the expectation of
the decrease in the loss function and then the convergence



bound for the models. For the Fed-nore-2, as we compute the
expectation of the effect of the noise on the loss and eliminate
the effect during optimizing, the convergence bound of Fed-
nore-2 is expected to be the same with FL without noise.
Therefore, we only focus on the convergence bound for the
Fed-nore-1 in this part.

For the derivation, we first make Assumption 1 for our
proposed model:

Assumption 1:
(a) Fi(W ) is β−Lipschitz, implying that ||∇Fi(W )|| ≤ β;
(b) F (W ) satisfies Polyak-Lojasiewicz condition with the

positive parameter mu, implying that F (W )−F (W ∗) ≤
1
2µ ||∇F (W )||2, where W ∗ is the optimal solution;

(c) Fi(W ) is ρ − Lipschitz smooth, implying that
||∇Fi(W )−∇Fi(W

′)|| ≤ ρ||w − w′||.
in which F () is the global loss function and computed as
F () =

∑ Fi()
m .

Based on Assumption 1, we can first obtain the expected
decrease in the global loss function for one round of training.

Lemma 2: The expected decrease of the loss for the global
loss function in one round is given as follows:

E{F (W
t+1

)− F (W
t
)} ≤ (

ρk2

2
− k)||∇F ||2

+ (1− kρ)||∇F ||E{||N ||}+ ρ

2
E{||N ||2},

(24)

where:
k =

1

1 + λσ
√
n

C

. (25)

The proof of Lemma 2 is presented in Appendix D.
Then, we assume the noise generated in all the rounds shares

the same bound value since they are generated in the same and
independent way, and the F () is convex. By using Lemma 2
and Assumption 1, the convergence of Fed-nore-1 is upper
bounded after T communication by:

Theorem 2: After T th communication of FL training with
noise and Fed-nore-1 as local loss function, the convergence
upper bound of the proposed model is presented as:

E{F (W
t+1

)− F (W ∗)} ≤ lTE{F (W
0
)− F (W ∗)}

+ (βq(1− kρ) +
ρ

2
q2) ∗ (1− lT )

1− l
,

(26)

where:

l = (µρk2 − 2kµ+ 1), (27)

q =
σ√
n
(λ ∗ σn 3

2 − β). (28)

The proof of Theorem 2 is presented in Appendix E.
In addition, we consider that F () is non-convex, we have

the following convergence analysis:
Theorem 3: If F () is non-convex and ρ-Lipschitz smooth,

we have the following bound after T communication round of
FL:

E||∇F ||2 ≤ F (W 0)− F (W ∗)

(k − ρk2

2 ) ∗ T
+

βq(1− kρ) + ρq2

2

(k − ρk2

2 )
. (29)

The proof of Theorem 3 is shown in Appendix F.

VI. RESULTS AND DISCUSSIONS

In this section, to validate the convergence performance
of our proposed models, multiple simulations of both Fed-
nore-1&2 are performed with the MNIST (a dataset hand-
written number image with 60000 training data and 10000
testing data) [28]. In this paper, we perform our FL with
100 simulated clients, and the training data is categorized by
class and divided through a Non-IID way into 200 shards,
while each shard contains the data with the same label. Then,
each client is assigned two shards with different classes.
To evaluate the performance, we deploy Fed-nore-1&2 with
different initial learning rates and different λ values, where
the learning rate will decay by 0.96 for the first 20 round and
be fixed after that. For the DP mechanism, we use δ = 1e−6
for all the simulations. We use an RDP-based privacy analysis
framework [29] to keep track of privacy loss and calculate the
final privacy parameters.

We study the Fed-nore on two models in our paper. The
first is a Multi-layer perceptron (MLP) with two hidden layers
(each layer has 200 hidden units) with ReLU activation and
an output layer with Softmax activation, which is optimized
by SGD. The MLP shares the same feed-forwarding and
backpropagation rules with basic DNN, which makes the
proposed Fed-nore-2 of DNN work on MLP. The second one
is a CNN model with two 5 × 5 convolution layers (the first
one with 32 channels and the second with 64 channels, both
followed by a 2× 2 max-pooling layer) and a fully connected
layer with Softmax activation. In each communication round,
50% of the clients are selected, and each client optimizes the
global model with the corresponding local loss function for 10
epochs. Besides, due to the randomness of the noise generation
and training, all the figures are processed in the same way
(smoothed averages of multiple simulations of the same hyper-
parameters). To show the effectiveness of our results, we
provide the results of the plain DP-FL as a baseline model,
which is the original DP-FL model without our improvements.
We truncate the training curve after 52 rounds, where the
increase in accuracy is marginal.

A. The performance of Fed-nore on DNN

In this subsection, the performance of Fed-nore-1 on the
MLP is first presented, where we evaluate Fed-nore-1 with
different λnore1 values (0.1, 1, 25).

The results of the Fed-nore-1 are compared with the plain
DP-FL under the same hyper-parameters settings, where the
plain DP-FL has an accuracy performance of 95.8% around
50th round. The results in Fig. 1 show that when the λnore1

value is larger than 0, our proposed framework can improve
the accuracy performance under DP-noise. In addition, when
the λnore1 is 1, its accuracy performance reaches the highest,
96.2%. However, when λnore1 is getting larger, the perfor-
mance is the same with the plain DP-FL and even worse.

Then, the performance of the Fed-nore-2 on the DNN
is evaluated where we test the model with λnore2 in



(0.1, 25, 200). As shown in Fig. 2, the accuracy performance
of Fed-nore-2 outperforms the plain DP-FL when the selected
λnore2 is larger than 0. Meanwhile, as λnore2 is increased, the
improvement of the Fed-nore-2 on the accuracy performance
becomes better, and the overall training accuracy is more
stable, which means that the noise has a smaller effect on
the accuracy performance. It is shown that our Fed-nore-2
has the best accuracy performance of 96.3% when λnore2

is 200. Meanwhile, it can reach 95.8% in the 38rd round,
which means that our proposed Fed-nore-2 can save up to
30% of the communication and computation cost compared
with the plain DP-FL and 5% compared to Fed-nore-1 even
though the best accuracy performance of it is lower than the
one of the Fed-nore-1. The simulations show that when the
λnore2 is larger than 200, the accuracy performance decreases.
Since the FL is deployed on many Internet of Things devices
having limited bandwidth, computational capability and power
[6], [30], our Fed-nore-2 can converge faster and reach an
acceptable accuracy performance while saving a huge amount
of communication cost.

Meanwhile, we have evaluated Fed-nore-1&2 with different
base noise variances to show their robustness by choosing
σ in the range of (4, 6, 10, 12, 16, 24, 40). After calculating
the communication round with RDP for corresponding σ, we
present only the first 52 rounds (where the base noise variance
is 8) of the training results for those that have more training
rounds for comparison with the previous results. When the
base noise variance is smaller than 8, the communication round
for FL is much smaller, leading to the FL not converging so
that the accuracy performance is very bad. It is shown in Fig.
3 that under a small noise, our Fed-nore-1 can not improve the
accuracy performance. Besides, it is shown that with a larger
base noise variance (compared to the previous results) and an
optimal scaling factor, Fed-nore-1 can perform much better
than the plain DP-FL. For Fed-nore-2, it is shown in Fig. 4
that our proposed Fed-nore-2 can greatly improve the accuracy
performance compared to the plain DP-FL when the base noise
variance is small. However, the Fed-nore-2 performs worse
with an increasing base noise variance than the Fed-nore-1,
while it is still better than the plain DP-FL.

B. The performance of Fed-nore on CNN

In this subsection, the performance of the Fed-nore-1&2 on
the mentioned CNN model is demonstrated. Since the noise
is positively related to the learning rate (a larger learning rate
brings a larger l2-norm value), we present the Fed-nore-1&2
with different learning rates to show their performance. In this
simulation, we choose the learning rate from 0.01, 0.1 and 1.
We first present the results for our Fed-nore-1 on CNN with
the learning rates of 0.01 and 1. As shown in Fig. 5, Fed-
nore-1 can slightly improve the convergence performance and
accuracy performance for CNN with all the initial learning
rates when the scaling factor is set as ten. Then, we conduct
the simulation with an initial learning rate of 0.1 and different
scaling factors to further test its effectiveness. It is shown in
Fig. 6 that our Fed-nore-1 has a limited effect on the CNN
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Fig. 1. Accuracy performance of the Fed-nore-1 on DNN of
different scaling factor (λ) compared with the plain DP-FL.
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Fig. 2. Accuracy performance of the Fed-nore-2 on DNN of
different scaling factor (λ) compared with the plain DP-FL.

model by only improving the accuracy performance by 0.07%
with the optimal settings. Next, we evaluate Fed-nore-2 with
an initial learning rate of 0.1 and different scaling factors. As
shown in Fig. 7, our Fed-nore-2 can improve the accuracy
performance than the plain one when the scaling factor is
larger than 0.1. Meanwhile, it is found that when the scaling
factor is set to 10, the improvement is the best, and it can
save up to 40% of communication rounds to achieve the same
results with the plain DP-FL. We also test our Fed-nore-2 with
different initial learning rates. The results in Fig. 8 show that
our Fed-nore-2 can also improve the accuracy performance
with an initial learning rate of 0.01 compared with the plain
one. However, when the learning rate increases, our Fed-nore-
2 performs worse than the plain DP-FL.

In addition, we have performed simulations with CIFAR-10
on the same CNN model as previously. The data are assigned
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Fig. 3. Accuracy performance of the Fed-nore-1 on DNN of
different base noise variance and scaling factor (λ) compared
with the plain DP-FL.
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Fig. 4. Accuracy performance of the Fed-nore-2 on DNN of
different base noise variance and different scaling factor (λ)
compared with the plain DP-FL.

to 100 clients in the same way as MNIST. We present the
best accuracy of our proposed frameworks and plain DP-
FL within 50 communication rounds with different settings
in Table II, which shows that our proposed framework can
increase the test accuracy from 48.7% for plain DP-FL to
52.0% for Fed-nore-1 and 53.7% for Fed-nore-2. Meanwhile,
both Fed-nore-1&2 reach the highest accuracy with 10%
fewer communication rounds than plain DP-FL. Therefore, our
proposed Fed-nore-1&2 show a greater improvement on more
complicated datasets.

Moreover, we implement two strategies on CNN with
CIFAR-10 at the same time with an initial learning rate of
0.1, base sigma of 8 and several scaling factors. However,
the accuracy performance is worse than using only one, as
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Fig. 5. Accuracy performance of the Fed-nore-1 with a scaling
factor of 10 and of different learning rates compared with the
plain DP-FL.
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Fig. 6. Accuracy performance of the Fed-nore-1 of different
scaling factors (λ) compared with the plain DP-FL.

shown in Table II, and it also takes a longer time to reach the
same accuracy with the original DP-FL than using only one
strategy. A possible reason for this phenomenon is that they
may interfere with each other during local training.

C. Performance comparison and discussion

The performance of the proposed framework is compared
with the plain DP-FL (the DP-FL framework uses the original
local loss function all the time), Fed-Avg and some well-
known DP-based learning in Table III, where R means the
communication rounds in FL and epochs in ML, SR means
the rate of clients selected in each round and ACC means the
accuracy performance. We provide our proposed framework
with the best accuracy performance results, where the results
in the blanket show the communication round to reach the
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Fig. 7. Accuracy performance of the Fed-nore-2 of different
scaling factors (λ) compared with the plain DP-FL.
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Fig. 8. Accuracy performance of the Fed-nore-2 with a scaling
factor of 10 and different learning rates compared with the
plain DP-FL.

same accuracy performance with the plain DP-FL. Meanwhile,
unlike the average results in all Figures, Table III contains the
best results under the optimal settings, where the base noise
variance is eight. It is shown in Table III that our proposed
Fed-nore-1 can slightly improve the accuracy performance for
the DNN and CNN while the Fed-nore-2 can save up to 40% of
the training time to reach the same results for both models and
also provides a much better accuracy performance compared
with Fed-nore-1.

By comparing the presented figures, we can also find that
the Fed-nore-1 works better when the noise variance is large
(large base noise variance and large learning rate), while Fed-
nore-2 shows it has much better performance when the value
of the noise variance is moderate.

Table II: This table shows the best accuracy comparisons
among the plain DP-FL and our proposed frameworks with
CIFAR-10.

Algorithm Scaling factor Accuracy
1 49.6%

Fed-nore-1 10 49.9%
20 52.0%
200 50.9%
0.1 51.1%

Fed-nore-2 1 52.4%
10 53.7%
200 50.9%

Fed-nore-1&2 10 49.0%
20 50.5%

Plain DP-FL 0 48.7%

Table III: This table shows convergence performance com-
parisons among other well-known privacy-preserving ML, the
plain DP-FL and our proposed framework with MNIST.

Framework R SR ACC DP budget
Fed-Avg 380 1 97%
DP-SGD(MLP) [14] 700 97% (8,1e-5)-DP
CDP-FL(MLP) [16] 11 0.5 78% (0.5,1e-3)-DP
LDP-FL(CNN) [17] 10 1 95.36% (0.5)-DP
Plain DP-FL(MLP) 52 0.5 95.9% (0.27,63)-RDP
Plain DP-FL(CNN) 52 0.5 98.7% (0.27,63)-RDP
Fed-nore-1(DNN) 52(42) 0.5 96.4%(96%) (0.27,63)-RDP
Fed-nore-2(DNN) 52(33) 0.5 96.7%(96%) (0.27,63)-RDP
Fed-nore-1(CNN) 52(49) 0.5 98.77%(98.7%) (0.27,63)-RDP
Fed-nore-2(CNN) 52(32) 0.5 99%(98.7%) (0.27,63)-RDP

VII. CONCLUSION

In this paper, we propose a novel FL framework to enhance
privacy protection in FL and its convergence performance in
terms of accuracy and time consumption. We first propose
an LDP-FL scheme by adding Gaussian noise on the local
gradients before uploading to satisfy RDP. Second, to improve
its performance, we propose two modifications on the local
objective function and detailed derivations to improve the
accuracy performance of the noisy training, namely Fed-nore-
1&2. The first one is to calculate the difference between the
noisy gradients and the original ones and add the difference
value to the local objective function, hence minimizing the
difference during the training under the same DP protection
level. The other one is to calculate the expected change
in the final loss due to the noise by reversing the back-
propagation process in the ML training. Then, by modifying
with the expected change in the local objective function, the
FL can also minimize the loss created by noise and converge
faster. Besides, both modification terms are controlled by a
scale value. Finally, we conduct multiple simulations on DNN
and CNN with the corresponding modification to show the
effectiveness of our proposed frameworks. For both CNN and
DNN, the results show that, compared to original DP-FL, our
Fed-nore-1&-2 can both increase the accuracy performance
and greatly increase the convergence time under different
magnitudes of the noise with an appropriate scale value. To



be specific, Fed-nore-2 can save up to 40% communication
rounds to reach the same accuracy results with the plain DP-FL
under optimal settings. On the other hand, when using CNN
as the training model, Fed-nore-2 also has a higher accuracy
performance than Fed-nore-1 for most scenarios. Besides, the
improvement of CIFAR-10 on accuracy is greater than the one
of MNIST. Furthermore, we find that Fed-nore-1 works better
with a relatively larger noise, while Fed-nore-2 works better
when the noise is small.

For future work, the scalability of our proposed framework
needs to be further studied. In addition, in this paper, we
only propose Fed-nore-2 for two types of ML models, so
our derivations of the two modifications on other widely used
models, including RNN, GNN and GCN, could be explored
to provide a more general implementation of the proposed
framework, which is expected to be similar to the currently
proposed method.

APPENDIX

A. Proof of Lemma 1

To obtain the expected change on dzk, we first obtain dzk
by reversing the backpropagation. Then we can obtain the ex-
pected change dzk generated bt dwk and dbk correspondingly,
which is noted as ddwk

zk and ddbkzk. Based on formula (11),
we can get:

dwk =
1

n′ dzk · (a
T
k−1), (30)

dwk · ak−1 =
1

n′ dzk · (a
T
k−1) · ak−1, (31)

ddwk
zk = dwk · ak−1. (32)

Then, as formula (12) is a vectorization implementation for the
DNN training and we can not directly obtain ddbkzk, we obtain
an approximate value as ddbkzk = dbk. Therefore, for the first
layer, we can obtain its dzk through reverse backpropagation
as:

dzk = ddwk
zk + ddbkzk (33)

= dwk · ak−1 + dbk. (34)

After that, for all the following layers, to compute the reversed
dzk, we also need to consider the derivative part of the dzk−1.
Based on the formulas (10)-(13), we can get that:

dzk−1 = dak−1 × g′k−1(zk−1) (35)

= (wk)
T · dzk × g′k−1(zk−1) (36)

wk · dzk−1 = dzk × g′k−1(zk−1). (37)

Next, we need to simplify the multiplication term g′k−1(zk−1),
where g() is the activation function. For all the hidden layers
(except the first one), we use ReLU activation in this paper.
Therefore g′(z) is a function of following,

g′(z) =

{
0 z < 0,
1 others.

(38)

In this case, for all the elements in zk−1, whose values are not
larger than zero, the dzk has no effect on these elements so that

the reversed dzk from dzk−1 is zero. Then, for all the elements
in zk−1, whose values are larger than zero, the reversed dzk of
these elements are the same as the values of the corresponding
elements of dzk−1. To formalize, the expected changes dzk
from dzk−1, noted as ddzk−1

zk is computed equivalent as
followed:

ddzk−1
zk = wk · dzk−1 × g′k−1(zk−1). (39)

Then, for all the hidden layers (except the first one), the dzk
is computed:

dzk = ddzk−1
zk + dwk

zk + dbkzk (40)
= dwk · ak−1 + dbk + wk · dzk−1 × g′k−1(zk−1). (41)

Finally, to obtain the expected change in the noisy gradients
on the loss, we need to substitute the expected changes of
dwk, dbk and dzk−1 into formula (41), where the expected
changes of dwk and dbk are the noise added on the gradients
and the expected changes of dzk−1 is obtained by iterative
calculation.

B. Proof of Theorem 1

To find the expected change in the final loss function, we
first consider the relation between formulas (14) and (17) as
follows:

dzk
dzk

=
dwk · ak−1 + dbk + wk · dzk−1 × g′k−1(zk−1)

N(dwk) · ak−1 +N(dbk) + wk · dzk−1 × g′k(zk−1)
,

(42)
Then we generate the noise as follows:

N(∇W ) = N(0, C2σ2), (43)

where C is calculated in formula (3) as ||∇W ||
n for every layer.

Therefore, we can suffice to obtain the following:

N(dwk)

dwk
=
||N(dwk)||
||dwk||

=

||dwk||∗σ√
n

||dwk||
=

σ√
n
. (44)

With the formula (9) and the constant label value Y , we now
can finally obtain that the expected change of daK = σ√

n
∗

(aK − Y ), which completes the proof.

C. Proof of Corollary 1

Similar to Corollary 1, the expected change, dzk, is also
generated with the expected changes on dzk−1, dbk and dwk.
We use the properties of the convolution process, a ∗ b× c =
a ∗ (b × c) = a ∗ (b × c), to obtain the corresponding
expected change dzk−1

zk from the expected changes on dzk−1

as followed:

dzk−1 = dzk−1 ·
dzk−1

dzk−1
(45)

=
dzk−1

dzk−1
· dzconvk ∗ rot180(ak)× g′k(zk−1)

(46)

dzk−1
zconvk =

dzk−1

dzk−1
· dzconvk . (47)



Similarly, the corresponding expected change dwk
zk from the

expected changes on dwk can be computed as followed:

dconvwk
zk =

dzk−1

dzk−1
· dwk. (48)

Finally, by combining Corollary 1 and formulas (42) and (44),
we can obtain the following:

dzk =
σ√
n
· dzk (49)

D. Proof of Lemma 2

As shown in Algorithm 1, in one round of the training, we
have the following:

h(wt
i ;w

t) = Fi(Wi) + λ ∗ Cσ, (50)
∇h(wt

i ;w
t) = ∇Fi(Wi) + λ ∗ σ∇C, (51)

W t+1
i = W t −∇h(wt

i ;w
t), (52)

∇W t+1
i = W t+1

i −W t, (53)

W
t+1

= W t +
1

m

∑
(∇W t+1

i +Ni), (54)

where η is the learning rate. By substituting formula (4) into
(52), we have:

∇h(wt
i ;w

t) = ∇Fi(Wi) + λ ∗ σW
t+1
i −W t

C
, (55)

Since Fi() is ρ-Lipschitz smooth as in Assumption 1, we can
obtain the following:

Fi(W
t+1

) ≤ Fi(W
t
) +▽(W

t
)T (W

t+1 −W
t
)

+
ρ

2
||W t+1 −W

t||2
, (56)

for all the W
t+1

and W
t
. Then for the global loss function,

since the global model is the average of the local models.
Therefore, we define F (W

t
) = E{Fi(W

t
)} and ∇F (W t) =

E{∇F (W t
i )}. Then we have the following:

E{F (W
t+1

)− F (W
t
)} ≤ E{∇(F (W t))T (W

t+1 −W
t
)}

+ E{ρ
2
||W t+1 −W

t||2}.
(57)

Based on the formulas (51), (52) and (54), we have:

W t+1 −W
t
= E{−(∇Fi(W ) + λ ∗ Cσ

√
n)}

= −((∇F (W
t
)− E{λ ∗ σ

√
n
W t+1

i −W t

C
})

= − ∇F
1 + λσ

√
n

C

.

(58)

By substituting formulas (54) and (58) into (57), we can
obtain:

E{F (W
t+1

)− F (W
t
)} ≤ E{∇FT (− ∇F

η + λσ
√
n

C

+N)}

+
ρ

2
E{|| − ∇F

1 + λσ
√
n

C

+N ||2}.

(59)

Then, using triangle inequation, we have:

E{F (W
t+1

)− F (W
t
)} ≤ (

ρk2

2
− k)||∇F ||2

+ (1− kρ)||∇F ||E{||N ||}+ ρ

2
E{||N ||2},

(60)

where:

k =
1

1 + λσ
√
n

C

, (61)

E. Proof of Theorem 2

By subtracting E{F (W ∗)} on both sides of formula (60),
we have the following:

E{F (W
t+1

)− F (W ∗)} ≤ E{F (W
t
)− F (W ∗)}

+ (
ρk2

2
− k)||∇F ||2 + (1− kρ)||∇F ||E{||N ||}

+
ρ

2
E{||N ||2},

(62)

We know that ||∇F (W )|| ≤ β and with formula (4), we can
bound ||W t+1 −W

T || as:

||W t+1 −W
T || = || − ∇F (W

t
)− E{λ ∗ σ

√
n
W t+1

i −W t

C
}||

≤ −β + λ ∗ σ
√
n
||W t+1 −W t||

C

≤ (λ ∗ σn 3
2 − β).

(63)

Then with the generating method in Algorithm 1, we can also
obtain:

E{||N ||} ≤ σ√
n
(λ ∗ σn 3

2 − β). (64)

Then by substituting formulas (58), (59), (63) and (64) into
(62) and with F (W ) − F (W ∗) ≤ 1

2µ ||∇F (W )||2, we know
that:

E{F (W
t+1

)− F (W ∗)} ≤ l ∗ E{F (W
t
)− F (W ∗)}

+ βq(1− kρ) +
ρ

2
q2,

(65)

where:

l = (µρk2 − 2kµ+ 1), (66)

q =
σ√
n
(λ ∗ σn 3

2 − β). (67)

Finally, since the noise is generated in the same and inde-
pendent way, we assume the noise for all the communication
rounds shares the same expected bound value. By repeating
the formula (65) for T communication round, the convergence
can be upper bounded as:

E{F (W
t+1

)− F (W ∗)} ≤ lTE{F (W
0
)− F (W ∗)}

+ (βq(1− kρ) +
ρ

2
q2) ∗ (1− lT )

1− l
.

(68)



F. Proof of Theorem 3

Based on formulas (60) and (64), we have the following :

F (W t+1) ≤ F (W t) + (
ρk2

2
− k)||∇F ||2

+ βq(1− kρ) +
ρ

2
q2.

(69)

By taking T iteration of formula (69), we have the following:

(k − ρk2

2
)
∑
||∇F ||2 ≤ F (W 0)− F (W ∗)

+ Tβq(1− kρ) + T
ρ

2
q2,

(70)

which implies:

E||∇F ||2 ≤ F (W 0)− F (W ∗)

(k − ρk2

2 ) ∗ T
+

βq(1− kρ) + ρq2

2

(k − ρk2

2 )
. (71)
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