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ABSTRACT The occupancy datasets are useful for planning important buildings’ related tasks such
as optimal design, space utilization, energy management, maintenance, etc. Researchers are currently
working on two key issues in building management systems. First, feasible and economical deployment
of indoor and outdoor weather and energy monitoring sensors for data acquisition. Second, the development
and implementation of cost-effective data-driven models with regular monitoring to ensure satisfactory
performance for occupancy prediction. In this context, we present an occupancy forecasting model for
different types of rooms in an academic building. A comprehensive dataset comprising indoor and outdoor
environmental variables such as energy consumption, Heating, Ventilation, and Air Conditioning (HVAC)
operational details and information on Wi-Fi-connected devices of a campus building, is used for occupants’
count prediction. A Light Gradient Boost Machine (LGBM) is applied for the selection of suitable features.
After the feature selection, Machine Learning (ML) models such as Extreme Gradient Boosting (XgBoost),
Adaptive Boosting (AdaBoost), Long Short-Term Memory (LSTM) and Categorical Boosting (CatBoost)
are employed to predict occupants’ count in each room. The models’ performances are evaluated using Root
Mean Square Error (RMSE), Mean Square Error (MSE), Mean Absolute Error (MAE), and Normalized
Root Mean Square Error (NRMSE). The proposed LGBM-XgBoost model outperforms other approaches
for each type of space. Moreover, to highlight the importance of LGBM as a feature selection technique, the
XgBoost model is also trained with all features. Results indicate that by selecting the appropriate features
through LGBM, the RMSE and MAE for lecture rooms 1 and 2 are improved by 61.67%, 36.17% and
67.05%, 63.67%, respectively. Similarly, for office rooms 1 and 2 RMSE and MAE are improved by 33.37%,
71.5% and 59.7%, 51.45%, respectively.

INDEX TERMS Occupancy Forecasting, XgBoost, LSTM, LGBM, Feature Selection, Machine Learning

I. INTRODUCTION

Various sensing technologies have been used to collect build-
ings’ data for the provision of effective energy management
solutions. Several types of sensors, such as current, voltage,
CO2, motion, humidity, temperature, etc., are used to collect
diverse kinds of building data. Building operations can be ef-

fectively planned using historical data to facilitate occupants
by the optimal provision of various services [1]. The building
services include optimal design, energy management, general
maintenance, space utilization, maintaining a comfortable
indoor temperature, etc. [2].

The sensors used for building data collection may interact
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through the Internet of Things (IoT). The IoT is a new era
of technology that creates the core structure of the fourth
industrial revolution. The IoT consists of “Things” termed
for physical objects, appliances, personal devices and equip-
ment that are interconnected through emerging technologies.
Another attention-grabbing feature of IoT is the provision of
fast automation processes in real-time for improving quality
of life [3].

Occupancy prediction is a crucial factor that contributes to
energy consumption in commercial and residential buildings
[4]. Occupancy information, including occupants’ presence,
count, identity, and activity, can be collected on temporal
(time) and spatial (space) bases [5]. Furthermore, a person’s
information in closed or open spaces can play a vital role in
optimal energy management and other building services [6].
Occupancy-based control is a technique that needs data from
indoor and outdoor sensors, human activities, building opera-
tions, etc., to save energy without disturbing occupants’ pref-
erences and comfort [7]. For instance, occupancy information
is effectively used for optimal control of Heating, Ventila-
tion, and Air Conditioning (HVAC) systems. Consequently,
significant improvement in building energy efficiency can
be achieved with low-cost investments [8] [9] [10]. Reliable
and accurate measurement of occupancy is important for
attaining maximum power saving with minimum comfort
disturbance. However, it is very crucial and challenging to get
precise predictions of occupants’ count, presence/absence,
etc. [11].

Researchers are currently working on two key issues in
building management systems. First is the challenge of fea-
sible and economical deployment of sensors i.e. indoor and
outdoor weather and energy monitoring sensors for data ac-
quisition. Second is the development and implementation of
cost-effective data-driven models with a regular monitoring
system to ensure satisfactory performance for occupancy
prediction. Therefore, we present a data-driven occupants’
count forecasting model for different types of rooms in an
academic building. A comprehensive dataset, comprising
indoor and outdoor environmental variables such as energy
consumption, HVAC operational details and information of
Wi-Fi connected devices of a campus building, is used for
occupants’ count prediction.

A. RESEARCH CONTRIBUTION
Various deep learning and Machine Learning (ML) architec-
tures such as Support Vector Machine (SVM) [12], Deep
Neural Networks (DNN) [13], Artificial Neural Networks
(ANN) [14], etc., have been proposed for occupancy forecast-
ing [15]. In this proposed study, a hybrid model consisting
of Light Gradient Boosting Machine (LGBM) and Extreme
Gradient Boosting (XgBoost) is presented for occupancy
forecasting in different rooms in an academic building. The
LGBM is implemented for selection of appropriate features
and then the XgBoost model predicts the occupancy in the
rooms. The main contributions of the paper are listed as:

1) A hybrid boosting algorithm (LGBM-XgBoost) is pre-

sented for occupancy estimation in different types of
rooms.

2) Comparative analysis of the proposed algorithm with
Adaptive Boosting (AdaBoost), Long Short-Term
Memory (LSTM), and Categorical Boosting (Cat-
Boost) models using different error evaluation tech-
niques is performed. Moreover, the models imple-
mented for comparative analysis are also trained on
selected features.

3) Comparing the performance of the hybrid approach
with the conventional model that is trained on all
features. Furthermore, the performance of the LGBM-
XgBoost model is also compared with different tech-
niques reported in the literature for occupancy forecast-
ing.

II. BACKGROUND AND MOTIVATION
In this section, literature review on occupancy detection and
prediction is presented. In [16], a comprehensive and state-
of-the-art review of occupancy estimation methodologies is
presented in which the authors have highlighted the impor-
tance of occupancy information for building managers and
designers to facilitate occupants in terms of their comfort,
indoor air quality, energy efficiency and safety. Moreover,
occupancy detection systems with associated cost, privacy
concerns, accuracy measurement and quantitative analysis
have been discussed.

Data from different indoor and outdoor sensors includ-
ing energy consumption, CO2, air temperature, Particulate
Matter 2.5 (PM 2.5), illuminance, humidity, Passive Infrared
(PIR), smart cameras, etc., are commonly used for occupancy
prediction [17]. A system has been presented as an imple-
mentation of low-cost sensors for occupancy detection for
each office separately in [18]. The PIR sensors are widely
used to detect human motion by measuring the infrared radi-
ation of objects as presented in [19]. The PIR sensors work on
speed, movement direction and displacement of an object or a
body. Therefore, it would be difficult to measure the number
of persons with their static condition in a specified area using
PIR sensors [20].

The occupancy prediction is also performed in [21] by
using different ML approaches for multiple buildings and
space types. In [22], a survey has been presented by authors
in which ML and deep learning models are discussed to
measure occupancy patterns. Moreover, occupancy detection
is further used for solving load forecasting, energy consump-
tion patterns, security, and users’ thermal comfort problems.
A study is presented in [23] to predict occupancy in living
and fitness gym rooms based on indoor environmental param-
eters (relative humidity, temperature, altitude, atmospheric
pressure). Additionally, authors have implemented SVM,
Decision Tree (DT) and K-Nearest Neighbor (KNN) to find
out the performance of these three models. In another study,
different data types such as indoor, outdoor, HVAC opera-
tion, energy consumption, Wi-Fi devices’ count and weather
have been collected through various sensors. Moreover, the
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authors used this comprehensive data to predict occupancy
in different types of rooms. Different deep learning algo-
rithms including LSTM, Gated Recurrent Unit (GRU), DNN,
Bi-Directional LSTM (Bi-LSTM), Bi-Directional GRU (Bi-
GRU) were implemented for occupancy prediction and their
performances are evaluated using Mean Absolute Error
(MAE) and Root Mean Square Error (RMSE) [24].

Another research has been presented by authors in which
occupancy is detected using ML algorithms in [25]. The
Naive Bayes (NB), Random Forest (RF), decision table and
simple logistics are used to detect occupancy and classify
persons’ presence or absence. Interest in finding indoor occu-
pancy to solve energy consumption problems and security is-
sues has increased. Furthermore, data-driven ML techniques
made it possible to predict occupancy with good accuracy
using heterogeneous types of data. Authors presented a fu-
sion technique called Neutrosophy, to solve uncertainty in
datasets and then it is tested and trained using SVM, KNN,
NB, and RF. By using the proposed technique, the accuracy
has been improved of these ML algorithms [26]. In another
research, a Support Vector Neural Network (SVNN) is used
to detect occupant presence and absence. Moreover, feature
extraction and feature reduction are used before classification
to refine the dataset [27].

The exponential growth of sensors technology is one of
the major reasons for the increased size, dimensions and
characteristics of data. Therefore, real-time and efficient
supervision, recognition and prediction of data to acquire
desired knowledge is a big challenge that has been ad-
dressed using various ML models. In some other research
work, feature selection is done as an additional step to point
out the most optimal features for target value prediction
and model’s accuracy improvement [28]. A study has been
presented in which three feature selection algorithms i.e.
Information Gain Attribute Evaluation (IGAE), Correlation
Attribute Evaluation (CAE) and Wrapper Subset Evaluation
(WSE) algorithms are used to enhance the accuracy of ML
models. After refining features, they are passed into Logistic
Model Trees (LMT) and Instance Based k (IBk), Multi-Layer
Perceptron (MLP) and Logistic Model (LM) to predict occu-
pancy in room space. The IBk with WSE has performed well
as compared to other techniques [29]. The authors in [30],
proposed a feature selection method that can be used for time
series forecasting using clustering technique. Furthermore,
the method is compared with Principal Component Analysis
(PCA) and kernel PCA. Additionally, comparative analysis
has shown an improvement in accuracy of the proposed
model.

Accurate prediction of occupancy is vital for optimal en-
ergy management and provision of building services. In light
of the above discussion, deep learning models such as LSTM
performs better for occupancy prediction. Different feature
selection techniques have been proposed to enhance the
models’ forecasting performance. However, several boosting
algorithms have not yet been studied for occupancy predic-
tion. In the proposed study, we present LGBM as a feature

selection technique. The LGBM is used to select the features
that have more predictive power for the targeted variable.
After feature selection, the XgBoost which is also a boosting
algorithm is proposed for occupancy prediction for different
space types. The performance of the proposed model is com-
pared with CatBoost, AdaBoost and LSTM using RMSE,
MAE, Mean Square Error (MSE) and Normalized Root Mean
Square Error (NRMSE).
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FIGURE 1: Block diagram of the proposed methodology.

III. METHODOLOGY
In this section, the methodology of the proposed work is
described. A comprehensive dataset consisting of four dif-
ferent rooms of a campus building is used. Furthermore,
feature selection is performed to improve the model’s per-
formance for occupancy prediction after data preprocessing.
Most crucial features are selected for occupancy prediction
and four different ML models are trained and then evaluated
through different performance indicators. A block diagram
of the complete methodology is presented in Figure 1 with
the following steps and a detailed description of each step is
given in subsequent sections.

1) Data set collection for proposed work and space type.
2) Data preprocessing and cleaning.
3) Selecting the appropriate features for occupancy detec-

tion using the LGBM algorithm.
4) Employing ML models for occupancy prediction.
5) Comparison of the proposed model with other ap-

proaches using RMSE, MSE, MAE and NRMSE.
6) Evaluating the importance of LGBM as a feature se-

lection technique by comparing the performance of
the proposed model trained with all features and the
features selected by LGBM.
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TABLE 1: Constructional and function description of each room.

Room type Occupant Storey Area Room height Occupant capacity Room volume
(m2) (m) (m3)

Lecture Room 1 Students 4th 118.6 4.1 40 486.2
Lecture Room 2 Students 4th 53.7 4.1 40 220.2
Office space 1 Staff 5th 98.4 4.2 15 413.2
Office space 2 Researchers 3rd 141.9 4.1 25 581.7

IV. DATASET DESCRIPTION OF BUILDING SPACE TYPE
The Building’s dataset, which is used for the proposed work
is of a 6-storey campus building of the National University of
Singapore i.e. School of Design and Environment 4 (SDE4).
This academic building has a floor area of 8588 square
meters and it is also certified as a net zero energy building
because of its reliance on renewable energy for annual energy
consumption [31]. In the proposed study, we have considered
two lecture rooms for students and two office rooms for staff
and researchers. Constructional specifications and functions
of each room are given in Table 1.

Sensors were deployed to collect dataset of six different
categories that make it comprehensive. The dataset includes
variables such as indoor environmental, outdoor weather,
energy consumption, HVAC operation and information of
Wi-Fi connected devices. The dataset resolution is 5 minutes.
Occupancy presence and persons’ count information is also
observed using surveillance cameras that are mounted out-
side the doors of lecture rooms and inside of office rooms.
Sensors-based data variables’ description, their respective
units and sensors deployment are given in Table 2.

A. DATA PREPROCESSING AND CLEANING
The data preprocessing includes cleaning, normalization and
imputation [32]. Data preprocessing is performed before
being given to the proposed feature selection algorithm. In
the data cleaning step, rows containing missing values are
removed from the dataset. Data normalization for the pro-
posed work is done using the “MinMax” scaler. It converts
minimum and maximum values of the dataset to 0 and 1,
respectively and the remaining values are adjusted between
0 and 1.

B. FEATURE SELECTION ALGORITHM
The purpose of feature selection is to identify the most cru-
cial features. The appropriate feature selection is important
to enhance the model’s performance and target prediction
accuracy. The LGBM is executed for the selection of optimal
and more suitable features that enhance the predictive ability
of the proposed model to detect the target variable. The
LGBM belongs to the family of Gradient Boosting Decision
Tree (GBDT) algorithms and can be used for classification,
ranking, etc. It has advantages like parallel training, reg-
ularization, sparse optimization and early stopping. It has
highly optimized histogram-based learning implementation
that contributes to the reduction of memory utilization and
run time improvement. Furthermore, LGBM can cause the

overfitting problem in case of small datasets which can be
overcome by tuning its hyper-parameters. In the proposed
work, hyper-parameter tuning of LGBM is done using the
“Optuna” algorithm to avoid the overfitting problem and it
is applied to the data of each room. The optimized values of
LGBM parameters for each space after tuning are given in
Table 3.

C. FEATURE SELECTION SCORE AND IMPORTANCE
FOR EACH ROOM
The LGBM technique is employed to calculate the feature
importance score using a split feature importance metric.
The split metric indicates how much a feature contributes to
improving the model’s performance during tree growth. The
split score can be calculated as the sum of squared improve-
ments in the objective function that is to be minimized or
maximized and higher split values indicate more influential
and contributing features in the prediction process [33]. The
top 15 features for all types of rooms are selected among
the given features in the dataset and their importance can be
estimated with the bar length of each parameter. Moreover, it
is clear from the graphical representation of Figure 2 that the
important features selected for each room are significantly
different. Figure 2(a) is a graphical illustration of the top 15
selected features for lecture room 1. It can be observed that
lighting load is the top most important feature. Apart from the
first top feature, ceiling fan and plug loads are also included
in this list. Indoor data variables such as indoor relative
humidity, CO2, PM 2.5 and temperature also have an impact
on occupancy patterns of lecture room 1. Wind speed and
direction, pressure and solar radiation categorized as outdoor
environmental variables also contribute to the prediction of
the target variable. Some other features related to HVAC
operations and Wi-Fi connected devices are identified as
useful to find out occupancy count.

The most crucial features for lecture room 2, identified
by LGBM, are shown in Figure 2(b). For room 2, supply
air temperature is ranked as the top feature for target value
prediction. Mostly outdoor environmental parameters like
outdoor humidity, CO2, dry bulb temperature, wind direc-
tion and speed, barometric pressure and horizontal solar
radiations are significantly found to be useful in occupancy
prediction for lecture room 2. Indoor humidity, CO2 and
temperature are also included in the selected 15 variables.

Figure 2(c) is a feature selection representation of office
room 1. The figure illustrates that wind direction is the top
feature along with other outdoor variables (CO2, dry bulb
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TABLE 2: Variables description, their units and respective sensors deployment detail

1 Indoor environmental quality sensors
Measured variable Units Deployment
Volatile Organic Compound (VOC) ppb
Sound pressure level dB (A)
Indoor relative humidity %RH Deployed in each room
Indoor air temperature ◦C
Illuminance lux
PM 2.5 µg/m3

Indoor CO2 ppm
2 HVAC operational Deployment

measurement sensors
Measured variable Unit
Supply airflow CMH
Damper position %
Temperature setpoint ◦C FCU are installed to provide cooling
Cooling coil valve position ◦C in lecture rooms 1 and 2
Cooling coil valve command ◦C
Air Handling Units (AHU) fan speed Hz
Fan Coil Units (FCU) fan speed Hz
Offcoil air temperature ◦C
Offcoil temperature setpoint ◦C
Supply air humidity %RH Office spaces 1 and 2
Pressure across filter Pa are conditioned by AHU
Supply air static pressure Pa
Supply air temperature ◦C
3 Outdoor weather sensors Deployment
Measured variable Unit
Barometric pressure hPa
Dry bulb temperature ◦C
Global solar radiation W/m2

Wind direction ◦

Wind speed m/s At the roof of study building.
Outdoor CO2 ppm
Rainfall mm
Outdoor relative humidity %RH
4 Energy consumption Deployment

measurements
Measured variable Unit
Ceiling fan energy kWh
Lighting energy kWh
Plug load energy kWh In rooms and building level
Chilled water energy kWh
AHU/FCU fan energy kWh
5 Wi-Fi connection Deployment
Wi-Fi connected devices Number Routers in each room
6 Occupancy measurements Deployment
Occupant count Numbers Camera for each room

temperature, wind speed, pressure, and solar radiation) for
prediction results. Indoor environmental data (CO2, humid-
ity, PM 2.5 and temperature) variables also have an impact
on occupancy count prediction. The HVAC operational pa-
rameters (sound pressure level, supply air temperature and

pressure, off coil temperature) are also identified by the
proposed feature selection algorithm.

Top 15 selected features for office room 2 are shown in
Figure 2(d). In this case, wind speed and direction are top
features from outdoor variables. Outdoor environmental pa-
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TABLE 3: Optuna based hyper-parameter tuning of LGBM.

Hyper-parameter Optimized value Optimized value Optimized value Optimized value
for lecture room 1 for lecture room 2 for office room 1 for office room 2

Learning rate 0.01 0.01 0.1 0.002
No. of leaves 117 185 244 141
Colsample bytree 0.95 0.501 0.68 0.859
Subsample 0.806 0.96 0.866 0.736
Verbosity -1 -1 -1 -1
Random state 42 42 42 42
Device type “cpu” “cpu” “cpu” “cpu”
Objective “regression” “regression” “regression” “regression”
Metric “l2” “l2” “l2” “l2”
No. of threads 6 6 6 6
Reg alpha 9.78 3.3× 10−5 2.5× 10−7 8.84× 10−5

Minimum sum hessian in leaf 0.003 1.49 0.248 1.703
Reg lambda 5.09× 10−5 0.197 2.5× 10−7 5.25× 10−5

No. of estimators 1152 2326 5395 2468
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FIGURE 2: Feature selection using LGBM. (a) Lecture room 1. (b) Lecture room 2. (c) Office room 1. (d) Office room 2.

rameters i.e. CO2, pressure and dry bulb temperature are also
identified as crucial features. Indoor environmental (VOC,
temperature, PM 2.5, humidity and temperature) and HVAC
operation (sound pressure level, supply air temperature, flow
and off coil air temperature) parameters are also included in
15 crucial features for occupancy prediction.

It is clear from the results of feature selection that features
selected by LGBM for multiple rooms are different. It can be
observed that the number of indoor and outdoor parameters
have a significant contribution in all types of rooms. Further-

more, some HVAC operational parameters along with energy
consumption using different loads are also selected and found
useful for occupant count prediction.

To find the correlation between the selected features and
occupancy data, we have performed a Pearson Correlation
Coefficient (PCC) analysis. The PCC analysis finds the linear
relationship between two variables. The range of PCC is from
-1 to 1 and defined by the following equation [34].
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p(m,n) = E(mn)/σmσn =

E(mn)− E(m)E(n)√
E(m)2 − E2(m)

√
E(n)2 − E2(n)

(1)

Where ’m’ and ’n’ are two variables and E(mn) represents
the correlation between ’m’ and ’n’. While ’σm’ and ’σn’ are
standard deviations of ’m’ and ’n’, respectively. The value
of PCC between 0 and 1 indicates that both variables are
positively correlated while PCC between 0 and −1 shows
a negative correlation. The 0 indicates that there is no cor-
relation between variables [34]. Figure 3 depicts the PCC
between occupancy and selected features. The findings of
PC analysis indicate that each selected feature correlates with
occupant count data.

D. MODELS’ DESCRIPTION
An overview of the proposed and ML algorithms used for
comparative analysis is presented in this section. The four
ML models are used for occupancy prediction in different
rooms of a campus building. LSTM, XgBoost, CatBoost, and
AdaBoost along with the feature selection step are investi-
gated for target value prediction. A detailed description of
each model is given one by one as follows.

1) Long Short-Term Memory (LSTM)
The LSTM model is one of the types of RNN that is designed
to solve vanishing gradients, long term dependencies and
exploding problems [35]. It consists of a memory block
architecture that is made up of a cell, input, output, and forget
gates. The working of the cell is to recall values in arbitrary
intervals of time and gates are used for information flow
regulation [36]. The working of LSTM model is based on
the following equations. Moreover, “sigmoid” and “tanh” are
used as activation functions in mathematical structure [37].

f (τ) = σ[Afx (τ) +Bfh (τ − 1) + uf ] (2)

i (τ) = σ [Aix (τ) +Bih (τ − 1) + ui] (3)

co (τ) = φ[Acx (τ) +Bch (τ − 1) + uc] (4)

o (τ) = σ [Aox (τ) +Boh (τ − 1) + uo] (5)

c (τ) = f (τ)
⊙

c (τ − 1) + i (τ)
⊙

co (τ) (6)

h (τ) = o (τ)
⊙

φ[c (τ)] (7)

(Af , Ai, Ao, Ac, Bf , Bi, Bo, Bc) and (uf , ui, uo, uc)
are the weights and biases, respectively. The symbols σ and
φ represent sigmoid and tanh activation functions while

⊙
shows element-wise multiplication.

2) Extreme Gradient Boosting (XgBoost)
The main purpose behind boosting is to combine several
weak learners or models having low accuracy and develop
a strong ensemble model to make better classification and
regression performance [38]. The XgBoost is an efficient

algorithm based on the machine learning Classification And
Regression Tree (CART) mechanism. It is a highly scalable
end-to-end tree-boosting algorithm with parallel as well as
distributed computing systems [39]. The XgBoost’s work
includes the concatenation of multiple decision trees. Each
CART is trained on a dataset and creates several weak
learning models. In the end, the error of each weak model
is minimized by combining those weak models into a strong
regression model. The XgBoost has powerful features such
as: (1) regularization to overcome the complexity of the
model and overfitting problem, (2) paralleling to make it
scalable, (3) tree pruning with ımaxdepthȷ approach to avoid
the fitting problem and enhance computational performance,
(4) sparsity awareness for handling sparsity patterns in the
dataset, (5) hardware optimization for using hardware re-
sources, (6) weighted quantile sketch for finding optimal
splitting in the dataset, (7) built-in cross-validation process
[40].

Let, D = (xi, yi) be a sample dataset including the
number of xi input features and yi target feature. The ob-
jective function of XgBoost is a sum of the loss function and
regularization term and is defined as [41]:

Objective =

n∑
i=1

L(yi pi) +

T∑
i=t

R(ft) (8)

Where ’n’ is the total number of samples or entries in the
dataset, ’i’ represents a single data point and ranges from 1
to ’n’ in the dataset. The term L(yi, pi), is a loss function
that measures the difference between a true value and the
predicted value of the target variable. The loss is shown by
’L’, ’yi’ is the true target value, and ’pi’ is the predicted
target value. In the regularization term R(ft), ’T ’ represents
the total number of the trees of XgBoost model with ft is tth
decision tree for optimizing tree construction. In the XgBoost
model, R(ft) is a combination two of regularization terms;
L1 (Lasso) and L2 (Ridge) [40].

R(ft) = γ

K∑
j=1

|wjt| + (1/2)λ

K∑
j=1

|w2
jt| (9)

Whereas,

’K’ is the total number of leaves in tree ’T ’ and wjt is a
weight given to the jth leave node to tth. The ’γ’ and ’λ’ are
the regularization parameters of L1 and L2, respectively.

The XgBoost loss function can be calculated using 2nd

order Taylor expansion, described by the following equations
[42].

L(t) ≈
n∑

i=1

(L(yi, y
′
(i−1) + gifi(xi) + 1/2hif

2
i (xi)) (10)

gi = f ′(t) =
∂L(yi, y

′(t−1))

∂y′(t−1)
(11)

hi = f ′′(x) =
∂2L(yi, y

′(t−1))

∂y′(t−1)
(12)
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FIGURE 3: PCC between occupant count and selected features. (a) Lecture room 1. (b) Lecture room 2. (c) Office room 1. (d)
Office room 2.

The first and second-order gradient statistics on the loss
function are represented by ’gi’ and ’hi’, respectively. It is
a highly scalable algorithm that can steer sparse data and a
large number of datasets having multiple features. It is an
end-to-end tree-boosting system that is ten times faster than
existing single solutions.

3) Categorical Boosting (CatBoost)

The CatBoost is a type of GBDT algorithms applied to solve
forecasting, autonomous driving, and personal assistance-
related problems, etc. [43]. The CatBoost is quite different
from other boosting techniques due to its categorical feature
handling. Additionally, its working is based on the oblivious
tree method which has sequential development. The main
advantage of CatBoost is reducing the overfitting problem of
curves and it also improves execution speed [44].

4) Adaptive Boosting (AdaBoost)
The AdaBoost is an ensemble method in ML that builds a
model with a series of weak learners. Initially, equal weights
are assigned to each data point and used as input to the learner
model. The first learner identifies classifier data points and
it reassigns higher weights for the next learner if the data
points are incorrectly classified. The next classifier learner
is built and tries to correct errors present in the first model.
This process adaptively continues till the reduction of errors
and gives fast convergence with easy implementation [45].

E. HYPER-PARAMETERS TUNING OF ML MODELS
Hyper-parameters’ tuning plays an important role in the
accuracy improvement of a model. Optimal tuning of pa-
rameters also reduces computational time and increases pro-
cessing speed with low memory requirements. We have
used “Randomized Search” for hyper-parameter tuning in
the proposed work. Hyper-parameter tuning for each model
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TABLE 4: Hyper-parameter optimization with search space.

Models Hyper-parameter Search space Lecture Lecture Office Office
room 1 room 2 room 1 room 2
values values values values

Tree method [“gpu hist”, “approx”] “approx” “approx” “approx” “approx”
Subsamples [0.7,0.8,0.9,1] 0.9 0.8 0.9 1

Xgboost No. of estimators [100,200,300] 300 100 100 300
Maximum depth [6,9,12] 9 9 12 9
Learning rate [0.1,0.3,0.01,0.001] 0.3 0.3 0.3 0.3
Colsample bytree [0.6,0.8,0.9,1] 0.9 0.9 0.9 1

No. of estimators [200,300,400] 300 200 200 400
CatBoost Maximum depth [2,4,6,8] 8 4 2 2

Learning rate [0.1,0.03,0.01,0.001] 0.03 0.03 0.03 0.1
L2 leaf regularization [0.2,0.5,1,3] 1 0.2 0.02 0.2

No. of layers [2,3,4,5,6,7,8,] 4 3 5 4
Optimizers [“Adam”, “RMSprop”, “SDG”] SGD Adam Adam Adam

LSTM Learning rate [0.1, 0.05, 0.001, 0.0001] 0.005 0.01 0.001 0.005
Hidden layers [1,2,3,4] 2 2 3 3
Epochs [50, 100, 150, 200] 100 50 100 50
Batch size [16,32] 32 32 32 32

in the proposed work is presented in Table 4. Moreover,
tuned values of parameters obtained for the dataset of lecture
room 1 are also used for lecture room 2. Similarly, tuning
is performed on the dataset of office room 1 and results
are applied for office room 2. It is necessary to mention
that three optimizers i.e. Stochastic Gradient Descent (SGD),
RMSprop and Adaptive Movement Estimation (ADAM) are
used for the LSTM model.

F. EVALUATION METRICS
In the proposed study, four performance metrics: RMSE,
MSE, MAE and NRMSE are used to evaluate the prediction
performance of ML models that are applied for occupancy
prediction. The ’Xobi’ is the observed occupant numbers and
’Xpi’ is the predicted occupant numbers in a given space or
room type.

RMSE =

√√√√ 1

N

N∑
I=1

(X(obi) −X(pi))2 (13)

NRMSE =
RMSE

max(X(pi))−min(X(pi))
∗ 100 (14)

MAE =
1

N

N∑
I=1

|X(obi))−X(pi))| (15)

MSE =
1

N

N∑
I=1

((X(obi))−X(pi)))
2 (16)

V. RESULTS AND DISCUSSION
Results and discussion are explained in this section.

A. MODEL IMPLEMENTATION
In this section, model implementation is illustrated. Python
language is used for the model’s implementation and re-
sults simulations are performed on Intel(R) Core (TM) i7-
4710HQ CPU @ 2.50GHz processor. First, LGBM is used
for selecting the appropriate features for each space type.
The dataset of each room is reduced to 15 variables from a
comprehensive set of parameters after feature selection for a
fair comparison.

B. MODELS COMPARISON
This section presents the comparison of ML models, es-
pecially boosting algorithms for each room. Models’ oc-
cupancy prediction performance is obtained and evaluated
using RMSE, MSE, MAE, NRMSE as shown in Table 5. All
models are trained with 15 different features for each space
type for an impartial comparison.

1) Lecture room 1: Occupancy for lecture room 1 is
predicted using the proposed approach, AdaBoost,
CatBoost, and LSTM. The performance metrics show
that RMSE of 0.0715, 0.1515, 0.2283, and 4.612 are
achieved by LGBM-XgBoost, AdaBoost, CatBoost,
and LSTM, respectively. Similarly, the MSE score
achieved for LGBM-XgBoost, AdaBoost, CatBoost,
and LSTM models are 0.0059, 0.0029, 0.0521 and
21.27, respectively. It can be observed in Table 5 that
MAE and NRMSE are also calculated which show the
models’ performance. It is clearly shown from simu-
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TABLE 5: Performance evaluation of proposed models.

Location Models RMSE MSE MAE NRMSE

LGBM-XgBoost 0.0714 0.0059 0.015 0.7983

Lecture AdaBoost 0.1515 0.0229 0.1072 1.605

room 1 CatBoost 0.2283 0.0521 0.0965 2.901

LSTM 4.612 21.27 2.277 23.59

LGBM-XgBoost 0.575 0.331 0.162 3.02

Lecture AdaBoost 2.03 4.12 0.536 17.06

room 2 CatBoost 1.04 1.086 0.279 5.69

LSTM 1.66 2.75 0.398 7.65

LGBM-XgBoost 0.1211 0.0146 0.0757 1.331

Office AdaBoost 0.1732 0.03 0.0603 2.053

room 1 CatBoost 0.3582 0.128 0.323 4.86

LSTM 2.681 7.187 1.557 23.35

LGBM-XgBoost 0.072 0.0058 0.039 0.596

Office AdaBoost 0.3436 0.1181 0.2193 2.61

room 2 CatBoost 0.125 0.0156 0.1039 1.09

LSTM 0.131 0.0173 0.092 1.08

lation results that the LGBM-XgBoost has performed
better among all the ML models.

2) Lecture room 2: For lecture room 2, occupancy pre-
diction is also done using the proposed models. The
performance is evaluated using RMSE, MSE, MAE,
and NRMSE. The RMSE values obtained for LGBM-
XgBoost, AdaBoost, CatBoost, and LSTM are 0.575,
2.03, 1.04 and 1.66, respectively.

3) Office room 1: In this case, RMSE score values are
0.1211, 0.1732, 0.3582, and 2.681 for the proposed ap-
proach, AdaBoost, CatBoost, and LSTM, respectively.
All models’ performance evaluation using MSE, MAE
and NRMSE is elaborated in Table 5 which shows
that the proposed algorithm performs efficiently for
occupancy prediction task.

4) Office room 2: The proposed models are implemented
for occupancy prediction in office room 2 on the basis
of selected features. In this case, RMSE score val-
ues are 0.072, 0.3436, 0.125 and 0.131 for LGBM-
XgBoost, AdaBoost, CatBoost, and LSTM, respec-
tively.

In Table 6, the computational time recorded by the models
for predicting future time stamp occupancy is reported. The
findings of Table 6 indicate that the best computational time
for each space type is recorded by AdaBoost followed by Xg-
Boost models. However, the LSTM network records worse
computational time than other models. The tree-based struc-

TABLE 6: Computational time comparison.

Location Models Convergence Inference Computational
time time time

Lecture XgBoost 0.719 0.014 0.733
room 1 CatBoost 1.16 0.034 1.194

AdaBoost 0.45 0.025 0.475
LSTM 399.82 0.08 399.9

Lecture XgBoost 1.02 0.032 1.052
room 2 CatBoost 6.54 0.033 6.573

AdaBoost 0.435 0.008 0.443
LSTM 302.77 1.6 304.37

Office XgBoost 1.95 0.029 1.979
room 1 CatBoost 1.47 0.042 1.512

AdaBoost 0.94 0.016 0.956
LSTM 1027.68 5.57 1033.25

Office XgBoost 1.96 0.029 1.989
room 1 CatBoost 1.47 0.04 1.51

AdaBoost 0.943 0.0163 0.9593
LSTM 1027.67 5.75 1033.42

ture of gradient boosting algorithms helps them to record
better computational time than deep learning networks.

A graphical representation of the proposed models’ per-
formance is shown in Figures 4 and 5. The RMSE score
for the proposed approach, AdaBoost, CatBoost and LSTM
are illustrated in Figure 4 for lecture rooms 1 and 2. Figure
5 shows the RMSE of the models for office rooms 1 and
2. These bar plots illustrate the superiority of the proposed
algorithm.

Room 1 Room 2
0

1

2

3

4

RM
SE

Lecture room 1 and room 2 RMSE
LGBM-XgBoost
AdaBoost
CatBoost
LSTM

FIGURE 4: RMSE bar graph for lecture rooms 1 and 2.
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FIGURE 5: RMSE bar graph for office rooms 1 and 2.
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FIGURE 6: Graphical illustration of measured and predicted occupant count (a): Occupancy prediction for lecture room 1 . (b):
Occupancy prediction for lecture room 2 (c): Occupancy prediction for office room 1 (d): Occupancy prediction for office room 2.

The predicted results of occupant numbers are also com-
pared graphically against measured values in the test dataset.
Figure 6(a), and 6(b) illustrate the graphical representation of
occupancy measurement for lecture rooms 1 and 2. Graphical
illustrations in Figure 6(c) and 6(d) show occupancy mea-
surements for office rooms 1 and 2. It can be observed from
Figure 6 that the selected model can predict the occupancy
levels in all types of rooms near accurate value which shows
the prediction strength of the proposed algorithm.

The XgBoost model gives better results than other models
because of its ensemble nature that combines gradient boost-
ing and regularization techniques. It avoids the overfitting
of the curve by efficiently handling the non-linearities and
complexities in the dataset. The comprehensive compara-
tive analysis confirms the superiority of the XgBoost model
over other techniques in capturing nuanced patterns of the

datasets.

C. FEATURE SELECTION IMPORTANCE IN MODELS’
PERFORMANCE

The LGBM is investigated as a feature selection algorithm
in the proposed study. To explore the feature selection im-
portance and LGBM performance, the proposed LGBM-
XgBoost is compared with the conventional model that is
trained on all features. A comparison of occupancy prediction
errors with and without feature selection using evaluation
metrics for XgBoost is shown in Table 7. It can be observed
clearly that scores of RMSE, MSE, MAE and NRMSE are
improved with feature selection as compared to the conven-
tional model.

Graphical representation of feature selection importance is
illustrated in Figure 7. Figures 7(a) and 7(b) show the MAE
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FIGURE 7: Importance of feature selection (a): MAE bar graph for lecture room 1 and lecture room 2. (b): MAE bar graph for
office room 1 and office room 2. (c): RMSE bar graph for lecture room 1 and lecture room 2. (d): RMSE bar graph for lecture
room 1 and lecture room 2

TABLE 7: Performance evaluation of XgBoost trained with all
and selected features.

Location Model RMSE MSE MAE NRMSE

Lecture LGBM-XgBoost 0.0714 0.0059 0.015 0.7983

room 1 XgBoost 0.1863 0.0347 0.0235 1.62

Lecture LGBM-XgBoost 0.575 0.331 0.162 3.02

room 2 XgBoost 1.745 3.04 0.446 13.42

Office LGBM-XgBoost 0.1211 0.0146 0.0757 1.331

room 1 XgBoost 0.4548 0.2069 0.2661 5.157

Office LGBM-XgBoost 0.131 0.0173 0.092 1.08

room 2 XgBoost 0.3251 0.1057 0.1895 2.597

with and without feature selection for each room. Figures
7(c), and 7(d) show the RMSE with and without feature
selection for each room. The reduction in RMSE and MAE
indicates that the XgBoost model performs efficiently with
feature selection for each type of space.

TABLE 8: Proposed methodology literature comparison.

Reference Journal Space Model RMSE MAE
Reference Type
[24] Building and Office BiGRU 0.326 0.116

Proposed Environment rooms LGBM 0.193 0.114
approach XgBoost
[24] Library GRU 0.331 0.16

Proposed room LGBM- 0.033 0.0013
approach XgBoost

D. LITERATURE COMPARISON
In this section, we compare the performance of the proposed
LGBM-XgBoost model with different techniques reported
in the literature. In [24], the different DLN networks are
proposed for occupancy prediction for different space types
of a campus building of the National University of Singapore.
In Table 8, the RMSE and MAE of GRU and BiGRU for
occupancy forecasting are compared with the proposed tech-
nique. The findings of Table 8 demonstrate the effectiveness
of the proposed LGBM-XgBoost model.

VI. CONCLUSIONS
In this study, we have worked on the prediction of occu-
pants’ numbers by proposing LGBM as a feature selection
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algorithm on a comprehensive dataset of a campus building.
Different ML models, including XgBoost, AdaBoost, Cat-
Boost, and LSTM, have been studied and evaluated in the
proposed study. A comprehensive analysis is performed on
the basis of the following points: (1) extraction of 15 crucial
features from a given comprehensive dataset for occupancy
prediction in all types of rooms, (2) feature importance and
score are analyzed using LGBM as novel feature selection
technique, (3) after hyper-parameter tuning, ML models are
implemented on selected and all features of the given dataset
for occupancy prediction in each room, (4) performance
evaluation is done using RMSE, MSE, MAE, and NRMSE
to identify the best-performing model among all the proposed
ML models. The results have confirmed that the XgBoost is
the best-performing model for the prediction of occupants’
count for all rooms (lecture rooms 1, 2, office rooms 1, 2).
It is concluded that the proposed feature selection technique
enhanced the performance of the XgBoost model. Moreover,
results indicate that by selecting the appropriate features
using LGBM, the RMSE and MAE for lecture rooms 1 and
2 are improved by 61.67%, 36.17% and 67.05%, 63.67%,
respectively. Similarly, for office rooms 1 and 2 RMSE and
MAE have improved by 33.37%, 71.5% and 59.7%, 51.45%,
respectively. Moreover, the XgBoost algorithm has given a
near real value of the predicted variable as shown in the
results section.
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