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This Supplementary Material is organized as follows. Section S1 summarizes notation adopted throughout
this article. Model parameters together with their default values are listed in Section S2. Section S3 contains
detailed derivations pertaining to the discrete model and Section S4 to the upscaling and the resulting continuum
model. Finally, Section S5 presents calculations relating to the small-deformations and small-bead limits,
including that of the net force acting on the bead.

S1 Summary of notation

Below we list notation adopted in this work, stating the symbols and their definitions. We note that this table
is not exhaustive but with its help one can easily deduce all notation adopted in this work. For example, the
mesh spacing representative of the cytoskeleton εc is obtained by adding subscript c to the mesh spacing ε.

General

FS Abbreviation for filament segment

CL Abbreviation for crosslink

∼ Dimensional variable (above the symbol)

i, j Indices of the discrete network (as subscript)

kl Indices of tensors attaining value 1 or 2 for the two spatial dimensions (as subscript)

c Value representative of the cytoskeleton (as subscript)

I/O Pertaining to inner/outer region (as superscript)

Variables and Functions

X = (X,Y ) Initial configuration variables

x = (x, y) Deformed configuration variables

(u, v) Components of the displacement field

(x̂, ŷ) Small-deformations variables(
X̄, Ȳ

)
Initial configuration variables rescaled to the bead boundary region

Z̄ Stretched Ȳ coordinate

(µ, ν) Elliptical coordinates

r̃ End-to-end distance (straight-line distance between two ends of a filament segment)

r End-to-end distance normalized with respect to the stress-free contour length
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f Axial force in a filament segment (scales with N)

F Axial force in a filament segment (N = Nc)

e Energy stored in a filament segment (scales with N)

E Energy stored in a filament segment (N = Nc)

φ Polar angle

Parameters of the initial configuration

D̃ Domain length

N Number of filament segments belonging to one filament

R̃ Initial mesh spacing

ε Dimensionless initial mesh spacing

L̃ Stress-free contour length of a filament

Λ̃ Stress-free contour length of a filament segment

ξ Initial mesh spacing normalized with respect to the stress-free contour length

fp Force in a filament segment due to pre-stress (scales with N)

Fp Force in a filament segment due to pre-stress (N = Nc)

ω Dimensionless parameter of the small-deformations problem

σ̃p Macroscale pre-stress

a Bead radius

Material properties of the filaments

Ỹ Young’s modulus of a filament

b̃ Radius of a filament

k̃B Boltzmann constant

T̃ Absolute temperature

Λ̃p Persistence length of a filament

F̃entropic Entropic force

F̃enthalpic Enthalpic force

T1 Ratio of the entropic force to the enthalpic force

T2 One half of the ratio of the persistence length to the initial end-to-end distance

Deformation

φ∗ Pulling angle

Rb Magnitude of the bead displacement

Fb Magnitude of the net force acting on the bead

K Scalar measure of network stiffness

r̂
i± 1

2 ,j
/r̂

i,j± 1
2

Unit vectors pointing in the directions of filament segments adjacent to node (i,j)

l
i± 1

2 ,j
/l

i,j± 1
2

Deformed lengths of the filament segments

I Identity tensor

F Deformation gradient tensor
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C Right Cauchy-Green deformation tensor

I4/6 (C) Invariants of the right Cauchy-Green deformation tensor

S Nominal stress tensor

W Strain energy density

S2 Model parameters

S2.1 Summary of the dimensional and dimensionless models

The discrete model is only representative of a cytoskeletal mesh with spacing R̃c provided one takes N = Nc =
1/εc = D̃/R̃c - increasing N only facilitates convergence to the continuum model. Subject to the microscale
constitutive law (3), the dimensional model is then governed by ten parameters - three parameters describing
the initial geometry with the bead (D̃, R̃c and ã), four parameters describing mechanical properties of the
filaments under consideration (Ỹ , b̃c, Λ̃p and F̃p), two parameters governing the bead displacement (R̃b and φ∗)

and temperature T̃ . Remaining parameters can be deduced from these. Note in particular that the stress-free
contour length Λ̃c(F̃p) can be found numerically upon substituting b̃ = b̃c, r̃ = R̃c and f̃ = F̃p (provided
N = Nc) into (3); alternatively one can use an explicit approximation (S15) derived in Section S3.3.

Subject to the microscale constitutive law (5), the dimensionless model (for N = 1/εc) is governed by 7
parameters - εc, a, T1, T2, Fp, Rb and φ∗ - and ξ must be found by numerically solving (7). Alternatively,
one can impose the explicit approximations (9) (vimentin) or (S13) (actin; ξ is the given by (S12)) for the
microscale constitutive law, in which case the dimensionless model (N = 1/εc) needs 5 parameters for both
actin and vimentin - εc, a, Fp, Rb and φ∗ - and actin requires one more parameter (T2) for full specification.
Recall that in each of the above cases, it is assumed that filaments cannot withstand any compressive loads.

S2.2 Default dimensional parameters

Recall the default values D̃ = 5µm, R̃c = 0.05µm, N = (Nc =)100 (estimated in Section 2.1), φ∗ = π/6 and
0 ≤ R̃b ≤ R̃c (Section 4). We further use as default values T̃ = 300 K for the absolute temperature and ã = 0.25
µm for the bead radius [7]. The standard value of the Boltzmann constant is k̃B ≈ 1.38× 10−23m2kg s−2K−1.

Mechanical behaviour of actin filaments subject to tension has been widely studied experimentally. The
microscale constitutive law (3) has been shown to be equivalent to another constitutive model which in turn
reproduced the experimental data well [2, 6]. The following estimates for material parameters from (3) pertain
to actin filaments in vivo: Ỹ = 2 GPa, Λ̃p = 17µm and b̃ = 3.5 nm [8].

Even though vimentin has only gained significant attention from the scientific community relatively recently,
much is already known about its tensile behaviour. Using atomistic simulations, three distinct regimes in force
extension diagram of single vimentin dimer under tension were uncovered and the underlying changes in its
molecular structure identified [10]. Tensile behaviour of single vimentin filaments was measured [1], confirming
three distinct regimes reported previously [10], and showing good agreement between optical trap and atomic
force microscopy experiments. Unfortunately, it is very unclear how these results could be translated to vimentin
FSs of various contour lengths. For simplicity, we thus assume that a tensile response of a single vimentin FS
can be modelled using Equation (3) with an appropriate choice of model parameters. Vimentin filaments are
about 10 nm in diameter (b̃c = 5 nm) and their Young’s modulus was measured to be about Ỹ = 0.9 GPa [5].
The persistence length of vimentin is approximately Λ̃p = 1µm [8].

To allow as large deformations as possible without breaking the actin filaments, we take the tensile strength
F̃max of actin to be the upper bound of the values found in the literature, i.e. 600 pN [13], and the value 8 nN
provides us with a lower bound for the tensile strength of vimentin [1]. The only unknown parameter is then
the value of the force due to pre-stress F̃p. As discussed in the main body of this paper, we have not managed
to find any estimate for microscale force due to pre-stress (and, equivalently, pre-stretch ξ or stress-free contour
length Λ̃ values) representative of cells in vivo. Therefore, F̃p will here be considered a free parameter, with the
default value equal to one half of the tensile strength estimates from above.

For completeness we also list the default values for the mechanical parameters of the dimensionless model
to be

T actin
1 ≈ 1× 10−9 T actin

2 ≈ 170 T vimentin
1 ≈ 1.9× 10−8 T vimentin

2 ≈ 10.

Table S1 lists key model parameters together with their default values.
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Table S1: Default values of discrete model parameters representative of cytoskeleton (N = 1/εc = 100). Note
that whenever applicable, the default value is stated for vimentin with the value for actin in parantheses.

Parameter Symbol Default value Units Source

Cell region size D̃ 5 µm biologically plausible

Inter-crosslink distance R̃c 0.05 µm [7]

# of FSs per filament Nc 100 - D̃/R̃c

Absolute temperature T̃ 300 K in vivo (rounded)
Bead radius ã 0.25 µm [7]

Bead displacement - maximum magnitude R̃b 0.05 µm R̃b = R̃c

Bead displacement - angle φ∗ π/6 - generic case

Young’s modulus Ỹ 0.9 (2.0) GPa [5, 8]

Filament radius b̃c 0.005 (0.0035) µm [5, 8]

Persistence length Λ̃p 1.0 (17.0) µm [5, 8]

Tensile strength F̃max 8.0 (0.6) nN Supplementary Section S2

Force due to pre-stress F̃p 4.0 (0.3) nN Supplementary Section S2

S3 Discrete model

S3.1 Stored elastic energy in undeformed and deformed configurations

The total (elastic) energy of the discrete network, denoted ẽT (introducing subscript T for total), is the sum
of contributions due to axial filament stretching. First let us note that the microscale constitutive law (3)
is parameterized by the stress-free contour length Λ̃ which in turn scales as O(1/N) in the N → ∞ limit.
Therefore, we simply write f̃ = f̃(r̃/Λ̃;N). We then express the elastic energy stored in an individual FS for
general N as

ẽ(r;N) =

rΛ̃∫
R̃sf

f̃

(
s̃

Λ̃
;N

)
ds̃, (S1)

where R̃sf denotes the stress-free end-to-end distance. Defining the deformed lengths of the FSs between
neighbouring CLs as

l̃i± 1
2 ,j

=

√
(x̃i±1,j − x̃i,j)

2
+ (ỹi±1,j − ỹi,j)

2
l̃i,j± 1

2
=

√
(x̃i,j±1 − x̃i,j)

2
+ (ỹi,j±1 − ỹi,j)

2
, (S2)

where the usage of the index ± 1
2 arises naturally between any two neighbouring CLs, the total energy ẽT can

be obtained by summing up these energies for all FSs, i.e.

ẽT =

N/2−1∑
i=−N/2+1

N/2−1∑
j=−N/2+1

[
ẽ

(
l̃i− 1

2 ,j

Λ̃
;N

)
+ ẽ

(
l̃i,j− 1

2

Λ̃
;N

)]
+

N/2−1∑
j=−N/2+1

ẽ

(
l̃N

2 − 1
2 ,j

Λ̃
;N

)
+

N/2−1∑
i=−N/2+1

ẽ

(
l̃i,N2 − 1

2

Λ̃
;N

)
.

(S3)

We assume no slippage of CLs along the filaments so that the stress-free contour lengths of every FS in the
undeformed and the deformed configurations are equal to Λ̃. Following Section S3.2, we can write the axial
forces as f̃(r;N) = NcF̃(r)/N and express the elastic energy stored in a single FS at the undeformed end-to-end
distance R̃ as

ẽ(ξ;N) =

R̃∫
R̃sf

Nc

N
F̃
(
s̃

Λ̃

)
ds̃, (S4)

where ξ is defined in (2) and we have

ẽ

(
r̃

Λ̃
;N

)
=

r̃∫
R̃sf

Nc

N
F̃
(
s̃

Λ̃

)
ds̃ = ẽ(ξ,N) +

r̃∫
R̃

Nc

N
F̃
(
s̃

Λ̃

)
ds̃. (S5)
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To derive the strain energy density in Section S4, it is also useful to introduce the elastically stored energy at
an arbitrary CL (i, j) as

ẽi,j(N) =
1

2

(
ẽ

(
l̃i− 1

2 ,j

Λ̃
, N

)
+ ẽ

(
l̃i+ 1

2 ,j

Λ̃
, N

)
+ ẽ

(
l̃i,j− 1

2

Λ̃
, N

)
+ ẽ

(
l̃i,j+ 1

2

Λ̃
, N

))
, (S6)

where the factor 1/2 accounts for the fact that the tensile energy stored in any FS corresponds to two CLs rather
than just one. We further define D̃sf = NR̃sf . For any r = r̃/Λ̃ we can then using integration by substitution

(s̃/Λ̃ = Ns̃/L̃ = t) write

ẽ(r,N) =
Nc

N

Λ̃r∫
R̃sf

F̃
(
s̃

Λ̃

)
ds̃ =

L̃Nc

N2

r∫
D̃sf/L̃

F̃(t)dt =

(
Nc

N

)2

Ẽ(r), (S7)

which defines the energy Ẽ(r) stored in a FS in a situation representative of cytoskeleton (N = Nc). Defining
ξsf = D̃sf/L̃, this can be split into the energy due to pre-stress ẼP and that supplied with the deformation ẼD
as

Ẽ(r) = D̃

ξNc

ξ∫
ξsf

F̃(t)dt+
D̃

ξNc

r∫
ξ

F̃(t)dt = ẼP + ẼD(r). (S8)

S3.2 Decreasing the mesh spacing

S3.2.1 Scaling geometric parameters with N

In Section 3 we upscale the discrete force balance into a continuum problem as N → ∞ (Λ̃/L̃ → 0). For the
continuum limit to be a good approximation of the discrete model at the baseline setup representative of the
cytoskeleton (i.e. using N = Nc = 100; for default values of all parameters see Section S2), we need to ensure
that all model parameters are appropriately scaled as N → ∞. As N increases we have R̃ = Nc/N × R̃c and
Λ̃ = Nc/N × Λ̃c where R̃c and Λ̃c are representative of the cytoskeleton. Note that the total length of the
network increases without bounds as N → ∞. Assuming constant density for the material of the filament, the
total mass is a constant multiple of the total volume 2(N −1)L̃πb̃2 and to keep this O(1) as N → ∞, we assume
that b̃ = b̃c

√
Nc/N where b̃c is a representative radius of the filament.

S3.2.2 Scaling forces (including those due to pre-stress) with N

Next we need to ensure that we get O(1) tensile pre-stress in the N → ∞ limit. Substituting the above scalings
into (3) and switching to εc = 1/Nc, we get in the undeformed configuration

D̃

L̃
=

(
1 +

Nεcf̃p

πỸ b̃2c

)1−

√√√√√√ k̃BT̃

πΛ̃p

(
f̃p +

π2k̃BT̃ Λ̃pN
2

L̃2

)
 . (S9)

Using a dimensionless force due to pre-stress fp = f̃p/(πỸ b̃
2
c) (as per Section 2.6), equation (S9) becomes

D̃

L̃
= (1 + εcNfp)

1−

√√√√√√ k̃BT̃

πΛ̃p

(
πỸ b̃2cfp +

π2k̃BT̃ Λ̃pN
2

L̃2

)
 . (S10)

Deriving an explicit relationship for fp(N) would be cumbersome and the situation is further complicated by

the fact that L̃ depends on fp. However, in order to keep the right-hand side of (S10) O(1) in N → ∞ limit, fp
must scale as 1/N for large N . We thus get fp(N) = Fp/(εcN) with Fp = O(1), which ensures that the total
elastic energy stored in the pre-stressed domain stays O(1) as N → ∞ and we arrive at a finite (and non-zero)
pre-stress in the continuum limit.

Similarly, we must have f(r;N) = F(r)/(εcN). To demonstrate the central idea behind this scaling, resulting
force distributions for N = 10 and 20 (and otherwise default parameters for vimentin, as described in Section
S2) are shown in Figure S1. Notice how the colorbar ranges vary with increasing N , which reflects the force
scaling. In other words, for the discrete simulations to converge onto an O(1) force response in the continuum
(N → ∞) limit, forces must scale as 1/N and these forces are thus in physiologically realistic range only for
N = Nc.
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(a) N = 10 (b) N = 20

Figure S1: The solution profiles for (a) N = 10 and (b) N = 20 using default model parameters for vimentin.
Note that due to the smallness of N we show profiles in full domains (not only in the vicinity of the bead as we
did in the main body) and that the indicated lengths are in microns.

S3.3 Implicit and explicit microscale constitutive laws for vimentin and actin

S3.3.1 Explicit microscale constitutive laws for fixed N

We observe that T1 is very small for considered filaments - T1 ≈ 1.0 × 10−9 for actin and T1 ≈ 1.9 × 10−8 for
vimentin. Substituting T1 ≪ 1 into (7) we get (8) which provides an explicit relationship between the force due
to pre-stress and pre-stretch. While this formula provides a good approximation to the implicit formula (7) for
vimentin (provided the pre-stress is not too small), a non-negligible gap exists in the approximation for actin -
see Figure S2. Similarly, when we plot the microscale constitutive law (5) (using ξ corresponding to the default
pre-stress as found numerically from (7)) and compare it with the T1 = 0 approximation (9), we again observe
good agreement for vimentin but a clear gap for actin (see Figure S3). The gaps for actin can be explained

Fp

ξ

(a) Actin

Fp

ξ

(b) Vimentin

Figure S2: Numerically computed ξ(Fp; T1, T2) (solid blue) as compared with its T1 = 0 approximation (dashed
red) for (a) actin and (b) vimentin. The green dotted line in Figure (a) presents the approximation (S12) valid
for actin.

by a combination of considered force range (the maximum considered value of F is small for actin compared to
vimentin, due to the small tensile strength of the former) and the size of T2 (≈ 170 for actin, which means that
the spacing between neighbouring CLs is much shorter than the persistence length of actin). Having noticed
the largeness of T2 we (assume T1 = O(1) and) substitute the ansatz

ξ(Fp; T1, T2, εc, N) = ξ0(Fp; T1, εc, N) +
1

T2
ξ1(Fp; T1, εc, N) +O(T −2

2 ) (S11)

6



r

F

(a) Actin

r

F

(b) Vimentin

Figure S3: r(F ; T1, T2) from (7) using numerically calculated ξ corresponding to default pre-stress (solid blue)
as compared with its T1 = 0 approximation (dashed red) for (a) actin and (b) vimentin. The green dotted line
in Figure (a) presents the approximation (S13) valid for actin.

into (7) and get

ξ0 +
1

T2
ξ1 +O(T −2

2 ) = (1 + Fp)

1−
√√√√√ T1

Fp/(εcN) + 4π3 (εcNT2)2 T1
(
ξ20 +O(

√
T −1
2 )

)
 .

At the leading order in T2 (O(1)) we again get

ξ0 = 1 + Fp

and at O(T −1
2 ) we conclude

ξ1 = − 1 + Fp

2π3/2εcNξ20
= − 1

2π3/2εcN (1 + Fp)
.

Retaining the first two terms, the approximation reads

ξ = 1 + Fp −
1

T2
1

2 (1 + Fp)π3/2εcN
. (S12)

For actin, this provides a good approximation (without a significant gap) to (7), as shown in Figure S2a.
Similarly, we can expand (5) for T2 ≫ 1 and retaining O(T −1

2 ) terms we get

r = (1 + F)

(
1− 1

2π3/2εcNξT2

)
. (S13)

Using the approximation for ξ from (S12) in (S13), we again recover an excellent approximation without a gap,
see Figure S3a.

Redimensionalized microscale constitutive laws For the sake of completeness, we also state the approxi-
mate microscale constitutive laws in their dimensional forms (dimensionalizing both the force and the end-to-end
distance). For vimentin, dimensionless microscale constitutive law (9) can be redimensionalized using (8) to
give an expression in terms of the dimensional parameters of the approximate model (and N) which reads

f̃ = max

{
0,
πỸ b̃2c
R̃c

[(
1 +

F̃p

πỸ b̃2c

)
r̃ − D̃

N

]}
. (S14)

From (S12), we can deduce for actin

Λ̃ =
R̃

1 + Fp −
1

T2
1

2 (1 + Fp)π3/2εcN

(S15)
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and eventually conclude from (S13) the redimensionalized microscale constitutive law in the form

f̃ = max

0,
πỸ b̃2c
R̃c

 ξ

1− D̃

π3/2ξN Λ̃p

r̃ − D̃

N


 , (S16)

where ξ is given in (S12).

S3.3.2 Scaling of ξ with N for fixed Fp

We observed in Section S3.2.2 that the force due to pre-stress must scale as fp(N) = Fp/(εcN), with Fp = O(1).
In order to study how ξ scales with N and determine whether this scaling is consistent for both the implicit
model and the explicit approximations, we fix all parameters at their default value for both actin and vimentin
(including Fp; see Section S2) and find the root ξ of (7) as function of N numerically. The log-plots in Figure
S4 show that while ξ has not yet converged to its N → ∞ limit 1 + Fp for N = 1/εc = 100 (used as default
throughout this work and indicated by vertical black lines in the figure), the dependence is very weak for both
actin and vimentin. Moreover, (S12) provides a good approximation for ξ(N) near N = 1/εc = 100 for actin
(see dotted green curve in Figure S4a).

N

ξ

(a) Actin

N

ξ

(b) Vimentin

Figure S4: As N → ∞, for default model parameters (including Fp) the numerically computed ξ (solid blue)
converges to 1+Fp (dashed magenta) for both actin (a) and vimentin (b). Even though the convergence is not
yet attained at N = 1/εc = 100, the dependence on N is weak. The green dotted curve in panel (a) corresponds
to the approximation (S12).

S3.4 Discrete model simulations for actin

We simulated the discrete model for actin using the microscale constitutive law (S16) with ξ given by (S12). As
in the main body, we plot the steady-state solutions in the vicinity of the bead. For bead displacements R̃b as

Figure S5: Steady-state solutions using default actin parameters with N = 1/εc = 100 for increasing R̃b

(zoomed-in onto the bead).
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small as (roughly) one tenth of the mesh size (R̃ = 0.05µm), actin FSs start experiencing tensile forces beyond
the upper limit of their tensile strength, 600 pN (see Figure S5). In particular, FSs in the wake of the bead
motion whose undeformed orientation has a significant component in its direction would typically be broken for
very small bead displacement, by being stretched beyond the tensile strength. Moreover, best-studied actin CLs
like filamin or alpha-actinin typically unbind at even lower rupture forces of 40− 80 pN [4] and such unbinding
and rebinding is thought to play a crucial role in viscoelastic response of cytoskeletal networks. At present,
our modelling framework is stationary and does not account for dynamic CLs. We thus acknowledge that the
model as it stands is not yet suitable for realistic description of crosslinked actin networks and postpone such
considerations for future work.
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S4 Upscaling and continuum model

S4.1 Details of discrete-to-continuum upscaling

S4.1.1 Upscaling the force balance

Denoting partial derivatives with subscripts, we can express the relevant finite differences using Taylor expansions as

xi+1,j − xi,j = x(Xi+1, Yj)− x(Xi, Yj) = (Xi+1 −Xi)xX(Xi, Yj)+

(Xi+1 −Xi)
2

2
xXX(Xi, Yj) +O((Xi+1 −Xi)

3) = εxX(Xi, Yj) +
ε2

2
xXX(Xi, Yj) +O(ε3).

(S17)

For other differences involving the deformed coordinate x occuring in our equations, we get

xi−1,j − xi,j = −εxX(Xi, Yj) +
ε2

2
xXX(Xi, Yj) +O(ε3)

xi,j+1 − xi,j = εxY (Xi, Yj) +
ε2

2
xY Y (Xi, Yj) +O(ε3)

xi,j−1 − xi,j = −εxY (Xi, Yj) +
ε2

2
xY Y (Xi, Yj) +O(ε3),

(S18)

and analogous equations hold for y. For convenience, we omit the point at which the derivatives are evaluated from
now on. In what follows we assume that all relevant partial derivatives of x and y are O(1). Assuming ε≪ 1, we apply
(S17)-(S18) to the dimensionless force balance (4) and bringing back the 1/(εcN) = ε/εc factor, we get{
F

(
ξ

√(
−xX +

ε

2
xXX +O(ε2)

)2
+
(
−yX +

ε

2
yXX +O(ε2)

)2) (
−xX + ε

2xXX +O(ε2),−yX + ε
2yXX +O(ε2)

)√(
−xX + ε

2xXX +O(ε2)
)2

+
(
−yX + ε

2yXX +O(ε2)
)2+

F

(
ξ

√(
xX +

ε

2
xXX +O(ε2)

)2
+
(
yX +

ε

2
yXX +O(ε2)

)2) (
xX + ε

2xXX +O(ε2), yX + ε
2yXX +O(ε2)

)√(
xX + ε

2xXX +O(ε2)
)2

+
(
yX + ε

2yXX +O(ε2)
)2+

F

(
ξ

√(
−xY +

ε

2
xY Y +O(ε2)

)2
+
(
−yY +

ε

2
yY Y +O(ε2)

)2) (
−xY + ε

2xY Y +O(ε2),−yY + ε
2yY Y +O(ε2)

)√(
−xY + ε

2xY Y +O(ε2)
)2

+
(
−yY + ε

2yY Y +O(ε2)
)2+

F

(
ξ

√(
xY +

ε

2
xY Y +O(ε2)

)2
+
(
yY +

ε

2
yY Y +O(ε2)

)2) (
xY + ε

2xY Y +O(ε2), yY + ε
2yY Y +O(ε2)

)√(
xY + ε

2xY Y +O(ε2)
)2

+
(
yY + ε

2yY Y +O(ε2)
)2
}
ε

εc
= 0.

(S19)
Assuming ε≪ 1, we Taylor expand the denominators according to

1√
A+Bε+ Cε2 +O(ε3)

=
1√
A

− Bε

2A3/2
+ ε2

3B2 − 4AC

8A5/2
+O(ε3) (S20)

and those in the discrete bending terms (with ε2 cancelling out as a common term in both the numerator and denomi-
nator) according to

1

A+Bε+O(ε2)
=

1

A
− Bε

A2
+O(ε2). (S21)

The nonlinear force terms are expanded as

F(ψ(ε)) = F(ψ(0)) + εF ′(ψ(0))ψ′(0) +O(ε2) (S22)

which holds for sufficiently smooth functions F and ψ. We denote

λX(X,Y ) = ξ
√
x2X + y2X λY (X,Y ) = ξ

√
x2Y + y2Y

10



using which the X−component of the force balance can be simplified to{(
−xX +

ε

2
xXX +O(ε2)

)( 1√
x2X + y2X

+
ε(xXxXX + yXyXX)

2(x2X + y2X)3/2
+O(ε2)

)(
F
(
λX
)
− εξF ′ (λX) xXxXX + yXyXX

2
√
x2X + y2X

+O(ε2)

)
+

(
xX +

ε

2
xXX +O(ε2)

)( 1√
x2X + y2X

− ε(xXxXX + yXyXX)

2(x2X + y2X)3/2
+O(ε2)

)(
F
(
λX
)
+ εξF ′ (λX) xXxXX + yXyXX

2
√
x2X + y2X

+O(ε2)

)
+

(
−xY +

ε

2
xY Y +O(ε2)

)( 1√
x2Y + y2Y

+
ε(xY xY Y + yY yY Y )

2(x2Y + y2Y )
3/2

+O(ε2)

)(
F
(
λY
)
− εξF ′ (λY ) xY xY Y + yY yY Y

2
√
x2Y + y2Y

+O(ε2)

)
+

(
xY +

ε

2
xY Y +O(ε2)

)( 1√
x2Y + y2Y

− ε(xY xY Y + yY yY Y )

2(x2Y + y2Y )
3/2

+O(ε2)

)(
F
(
λY
)
+ εξF ′ (λY ) xY xY Y + yY yY Y

2
√
x2Y + y2Y

+O(ε2)

)}
ε

εc
= 0

(S23)
and the Y−component to{(

−yX +
ε

2
yXX +O(ε2)

)( 1√
x2X + y2X

+
ε(xXxXX + yXyXX)

2(x2X + y2X)3/2
+O(ε2)

)(
F
(
λX
)
− εξF ′ (λX) xXxXX + yXyXX

2
√
x2X + y2X

+O(ε2)

)
+

(
yX +

ε

2
yXX +O(ε2)

)( 1√
x2X + y2X

− ε(xXxXX + yXyXX)

2(x2X + y2X)3/2
+O(ε2)

)(
F
(
λX
)
+ εξF ′ (λX) xXxXX + yXyXX

2
√
x2X + y2X

+O(ε2)

)
+

(
−yY +

ε

2
yY Y +O(ε2)

)( 1√
x2Y + y2Y

+
ε(xY xY Y + yY yY Y )

2(x2Y + y2Y )
3/2

+O(ε2)

)(
F
(
λY
)
− εξF ′ (λY ) xY xY Y + yY yY Y

2
√
x2Y + y2Y

+O(ε2)

)
+

(
yY +

ε

2
yY Y +O(ε2)

)( 1√
x2Y + y2Y

− ε(xY xY Y + yY yY Y )

2(x2Y + y2Y )
3/2

+O(ε2)

)(
F
(
λY
)
+ εξF ′ (λY ) xY xY Y + yY yY Y

2
√
x2Y + y2Y

+O(ε2)

)}
ε

εc
= 0.

(S24)
At O(1) and O(ε), the balance is automatically satisfied. Returning to vector form, at O(ε2) we get

0 =
1

εc

{
F(λX)

(
(xX , yX)√
x2X + y2X

)
X

+ ξ
xXxXX + yXyXX

x2X + y2X
F ′(λX)(xX , yX) + F(λY )

(
(xY , yY )√
x2Y + y2Y

)
Y

+

ξ
xY xY Y + yY yY Y

x2Y + y2Y
F ′(λY )(xY , yY )

}
.

Recalling the definitions of λX and λY and multiplying by εc, we conclude the macroscale force balance (10).

S4.1.2 Deriving strain energy density

We further deduce the strain energy function for the derived continuum problem. As before, we nondimensionalize the
lengths with respect to D̃ and the forces with πỸ b̃2c (so that the energies are nondimensionalized with πD̃Ỹ b̃2c), Taylor
expand the dimensional energy stored at CL (i, j) (S6) and upon further simplifications get

ei,j(ε) =
ε2

ε2c

(
E
(
ξ
√
x2X + y2X

)
+ E

(
ξ
√
x2Y + y2Y

)
+O(ε)

)
,

where E is the dimensionless counterpart of the dimensional Ẽ defined in (S7). To arrive at macroscale strain energy
density W , we divide by an area corresponding to one CL in the undeformed configuration ε2 and sending ε → 0
(N → ∞) obtain

W =
1

ε2c

(
E
(
ξ
√
x2X + y2X

)
+ E

(
ξ
√
x2Y + y2Y

))
. (S25)

S4.2 Deducing the continuum problem under the linearized constitutive law

Under the linearized microscale constitutive law for vimentin (9), the continuum problem (10) takes (upon dividing by
ξ) the form (

(xX , yX)max

{
0, 1− 1

ξ
√
x2X + y2X

})
X

+

(
(xY , yY )max

{
0, 1− 1

ξ
√
y2Y + x2Y

})
Y

= 0. (S26)
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We further state the dimensional stress tensor (11) under (9) to be

S̃ =
πỸ b̃2c
Λ̃c


x̃X̃ max

0, 1− 1

ξ
√
x̃2
X̃
+ ỹ2

X̃

 ỹX̃ max

0, 1− 1

ξ
√
x̃2
X̃
+ ỹ2

X̃


x̃Ỹ max

0, 1− 1

ξ
√
x̃2
Ỹ
+ ỹ2

Ỹ

 ỹỸ max

0, 1− 1

ξ
√
x̃2
Ỹ
+ ỹ2

Ỹ



 , (S27)

and the dimensional counterpart of (S26) then reads

πỸ b̃2c
Λ̃c


(x̃X̃ , ỹX̃)max

0, 1− 1

ξ
√
x̃2
X̃
+ ỹ2

X̃




X̃

+

(x̃Ỹ , ỹỸ )max

0, 1− 1

ξ
√
ỹ2
Ỹ
+ x̃2

Ỹ




Ỹ

 = 0, (S28)

which is used in continuum simulations. Using the displacement field

ũ(X̃, Ỹ ) = x̃(X̃, Ỹ )− X̃ ṽ(X̃, Ỹ ) = ỹ(X̃, Ỹ )− Ỹ ,

this can be rewritten as

πỸ b̃2c
Λ̃c


(1 + ũX̃ , ṽX̃)max

0, 1− 1

ξ
√
(1 + ũX̃)

2
+ ṽ2

X̃




X̃

+

(ũỸ , 1 + ṽỸ )max

0, 1− 1

ξ
√
ũ2
Ỹ
+ (1 + ṽỸ )

2




Ỹ

 = 0.

(S29)

S4.3 Strain energy density and nominal stress tensor

S4.3.1 Relation to nonlinear elasticity models for fiber-reinforced materials

Redimensionalizing (S25) (in order to facilitate comparison with the standard results on fiber-reinforced materials), the
strain energy density can be rewritten in terms of the deformation gradient tensor F with components Fkl = ∂x̃i/∂X̃j

or in terms of the right Cauchy-Green deformation tensor C = F TF as

W̃ =

Ẽ
(
ξ
√
F 2
11 + F 2

21

)
+ Ẽ

(
ξ
√
F 2
12 + F 2

22

)
R̃2

c

=
Ẽ
(
ξ
√
C11

)
+ Ẽ

(
ξ
√
C22

)
R̃2

c

. (S30)

IntroducingM = (1, 0) andM ′ = (0, 1) as the two directions of filaments in the undeformed configuration and employing
the theory of fiber-reinforced materials, two invariants corresponding to these directions take forms I4 = M ·(CM) = C11

and I6 = M ′ · (CM ′) = C22. We can therefore express W̃ also in terms of the invariants of C as (12), thus establishing
connection to the rich literature on constitutive modelling of fiber-reinforced materials. Using (S8), we can express this
strain energy density as

W̃ (C) =

2

ξ∫
ξsf

F̃(t)dt+

ξ
√

I4(C)∫
ξ

F̃(t)dt+

ξ
√

I6(C)∫
ξ

F̃(t)dt

ξR̃c

, (S31)

where ξsf denotes the normalized stress-free end-to-end distance so that the first integral represents the strain energy
stored in the undeformed domain due to pre-stress (noting that in the undeformed configuration one has F = I and
I4(C) = I6(C) = 1) and the last two integrals represent the elastically-stored energy supplied with the deformation.
Finally, assuming the approximation (9), the strain energy density (12) can be written as

W̃ (C) =
πỸ b̃2cξ

2R̃c

[
max

(
0,
√
I4(C)− 1

ξ

)2

+max

(
0,
√
I6(C)− 1

ξ

)2
]
, (S32)

where ξ is approximated using (8). The problem (S29) can thus be re-formulated in the framework of nonlinear elasticity
as minimization of the strain energy (S32). We further propose a smooth approximation to the microscale constitutive
law and using

max (0, x) ≈ x

1 + e−κx
, (S33)
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which provides a good approximation to the maximum function for large κ, we get a smooth approximation to the strain
energy

W̃ (C) =
πỸ b̃2cξ

2R̃c

( √
I4(C)− 1/ξ

1 + e
−κ

(√
I4(C)−1/ξ

)
)2

+

( √
I6(C)− 1/ξ

1 + e
−κ

(√
I6(C)−1/ξ

)
)2
 , (S34)

the minimization of which is implemented in our FEniCS code. Figure S6 documents that the approximation (S33) with
κ = 200 leads to only negligible changes in the microscale constitutive law for vimentin.

Figure S6: The smooth approximation (S33) with κ = 200 yields negligible changes to the microscale constitutive law
for vimentin.

S4.3.2 Stress tensor

Next, we deduce the components of the nominal stress tensor S̃ from S̃kl = ∂W̃/∂Fji getting (11). Storm et al.

[11] applied the Doi-Edwards construction [3] to a crosslinked network with an arbitrary distribution Ψ̃ of end-to-end
separation vectors r̃ and arrived at an averaged Cauchy stress tensor σ̃ of the form

σ̃T
kl =

ϱ̃

det(F )

〈
f̃(|F r̃|)Filr̃lFjkr̃k

|F r̃|

〉
Ψ̃(r̃)

where ϱ̃ denotes the number of FSs per unit volume (otherwise their notation coincides with ours). Note that the
microscale force was given as function of the dimensional end-to-end distance r̃, as opposed to the dimensionless distance
r. Letting δ̃(r̃) denote the Dirac delta function centered at r̃ = 0 and applying this formula to our two-dimensional case
with

Ψ̃(r̃) =
1

4

{
δ̃(r̃ − (R̃, 0)) + δ̃(r̃ − (−R̃, 0)) + δ̃(r̃ − (0, R̃)) + δ̃(r̃ − (0,−R̃))

}
reflecting the undeformed orientations of filaments in our geometry and with ϱ̃ = 2N2/D̃2, we arrive at a result identical

to the one obtained when the connection σ̃T = det(F )−1S̃
T
F T from nonlinear elasticity [9] is applied to (11), which

further certifies the correctness of our results.
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S5 Details of the small-deformations and small-bead analysis

S5.1 Deriving small-deformations limit

Substituting (17) into (10) we get

0 =

(
F
(
ξ
√
(1 +Rbx̂X)2 + (RbŷX)2 +O(R2

b)

)
(1 +Rbx̂X +O(R2

b), RbŷX +O(R2
b))√

(1 +Rbx̂X)2 + (RbŷX)2 +O(R2
b)

)
X

+(
F
(
ξ
√
(Rbx̂Y )2 + (1 +RbŷY )2 +O(R2

b)

)
(Rbx̂Y +O(R2

b), 1 +RbŷY +O(R2
b))√

(Rbx̂Y )2 + (1 +RbŷY )2 +O(R2
b)

)
Y

.

(S35)

Taylor expanding F as well as the denominators for Rb ≪ 1, we get

0 =
((
F(ξ) +RbξF ′(ξ)x̂X +O(R2

b)
)
(1 +Rbx̂X +O(R2

b), RbŷX +O(R2
b))
(
1−Rbx̂X +O(R2

b)
))

X
+((

F(ξ) +RbξF ′(ξ)ŷY +O(R2
b)
)
(Rbx̂Y +O(R2

b), 1 +RbŷY +O(R2
b))
(
1−RbŷY +O(R2

b)
))

Y
.

(S36)

The balance at O(1) is trivially satisfied. At O(Rb), we get (18)-(19) in the main text.

S5.2 Details of small-bead asymptotics

S5.2.1 x̂ problem

We split the analysis into the inner (boundary) region characterized by

X

a
= X̄ = O(1)

Y

a
= Ȳ = O(1)

where we use the ansatz for inner solution

x̂I(X̄, Ȳ , a) = x̂I0(X̄, Ȳ ) +
1

ln (1/a)
x̂I1(X̄, Ȳ ) +

1

ln2 (1/a)
x̂I2(X̄, Ȳ ) +O

(
1

ln3 (1/a)

)
satisfying the boundary condition at X̄2 + Ȳ 2 = 1, and the outer region X = O(1) = Y with the outer solution

x̂O(X,Y, a) = x̂O0 (X,Y ) +
1

ln (1/a)
x̂O1 (X,Y ) +

1

ln2 (1/a)
x̂O2 (X̄, Ȳ ) +O

(
1

ln3 (1/a)

)
satisfying the Dirichlet condition at the outer boundary x̂O = 0. The rationale behind the logarithmic terms
in the expansions will become apparent in the course of the analysis. In the inner region, we transform the Ȳ
coordinate according to Ȳ =

√
ωZ̄ so that we get Laplace’s equation for the leading-order inner solution

x̂I0,X̄X̄ + x̂I0,Z̄Z̄ = 0

on a domain with an ellipse cut out of it as depicted in Figure 5. We introduce elliptical coordinates

X̄ = c sinh(µ) sin(ν) Z̄ = c cosh(µ) cos(ν) (S37)

where c =
√

(1− ω)/ω is the (linear) eccentricity of the inner ellipse, (µ, ν) ∈ (µ1,∞)× [0, 2π] so that µ = µ1 =

cosh−1
(
(1− ω)−1/2

)
represents the elliptical (inner) boundary. Note that even if our outer domain boundary

is a circle in (X,Y ) coordinates (a square domain being even less amenable to analysis), in (X̄, Z̄) coordinates
it transforms into an ellipse with the same eccentricity as the inner (bead) elliptic boundary and therefore it
cannot be simply characterized by µ = µ2 for some µ2 > µ1 (because the eccentricity of ellipses given by µ =
constant in elliptical coordinates strictly decreases with µ). This causes the full problem (with a > 0) to be
analytically intractable and forced us to only study the a≪ 1 limit. Writing ΦI

0(µ, ν) = x̂I0(X̄, Z̄) we then have
ΦI

0(µ1, ν) = cos (φ∗) for all ν and

1

c2(cosh2(µ) + sin2(ν))

(
ΦI

0,µµ +ΦI
0,νν

)
= 0

and thus
ΦI

0,µµ +ΦI
0,νν = 0.

We assume ΦI
0 to be 2π−periodic in ν. As nothing drives the variation in ν in the inner layer, we search for a

solution in the form ΦI
0(µ, ν) = ΦI

0(µ) solving ΦI
0,µµ = 0. The solution reads ΦI

0 = A0µ+B0. Following the same

14



line of reasoning, we get that the higher-order terms ΦI
i (µ, ν) = x̂Ii (X̄, Z̄) are of the same form ΦI

i = Aiµ+Bi.
We transform back to Cartesian coordinates [12] so that

µ =
1

2
ln

(
1− 2q(X̄, Z̄) + 2

√
q2(X̄, Z̄)− q(X̄, Z̄)

)
(S38)

with

q(X̄, Z̄) =
−(X̄2 + Z̄2 − c2)−

√
(X̄2 + Z̄2 − c2)2 + 4c2X̄2

2c2
.

In (X̄, Ȳ ) variables and expressed using ω, q reads (25). Next we wish to write x̂I0 in the outer coordinates
(X,Z) for the purposes of matching with the outer layer. To do this, we first rewrite q in these variables and
expand in a as

q =
−(X/a)2 − (Z/a)2 + c2 −

√
((X/a)2 + (Z/a)2 − c2)

2
+ 4c2(X/a)2

2c2
=

−(X/a)2 − (Z/a)2 + c2 − 1/a2 ×
√
(X2 + Z2)2 + a2c2(2X2 − 2Z2) + a4c4

2c2
=

1

a2

(
−X

2 + Z2

c2

)
+O(1)

and then substitute it into (S38) to get

µ =
1

2
ln

1 +
2(X2 + Z2)

a2c2
+O(1) + 2

√(
X2 + Z2

a2c2

)2

+O

(
1

a2

)
+
X2 + Z2

a2c2
+O(1)

 =

1

2
ln

(
4(X2 + Z2)

a2c2
+O(1)

)
= ln

(
1

a

)
+ ln

(
2

c

√
X2 + Z2

)
+O(a2).

Thus we see that A0 must equal 0 because otherwise the matching would require a contribution of order
ln (1/a) ≫ 1 to exist in the outer solution. The inner boundary condition at the leading order then enforces
B0 = cos(φ∗). Our inner approximation thus so far reads

x̂I = cos(φ∗) +
1

ln (1/a)
(A1µ+B1) +

1

ln2 (1/a)
(A2µ+B2) +O

(
1

ln3 (1/a)

)
(S39)

and writing this in outer variables we get

cos(φ∗) +A1 +O

(
1

ln (1/a)

)
. (S40)

The leading order outer solution satisfies Laplace’s equation (in (X,Z) variables) and Dirichlet boundary con-
dition x̂O0 = 0 at the outer boundary. Irrespective of whether we assume this outer boundary to be a circle or a
square in the original - i.e. (X,Y ) - variables, the only admissible constant solution to this problem is x̂O0 ≡ 0.
Comparing this with (S40) we conclude that the matching requires A1 = − cos(φ∗). Finally, to satisfy the inner

boundary condition at O
(

1
ln (1/a)

)
, we must have B1 = −A1µ1 = cos (φ∗) cosh

−1
(
(1− ω)−1/2

)
. Substituting

A1 and B1 back into (S39) we get

x̂I = cos(φ∗) +
cos(φ∗)

(
−µ+ cosh−1

(
(1− ω)−1/2

))
ln (1/a)

+
1

ln2 (1/a)
(A2µ+B2) +O

(
1

ln3 (1/a)

)
. (S41)

Writing this in outer variables we get

0 +
1

ln (1/a)

(
cos(φ∗)

(
− ln (2/c)− ln

(√
X2 + Z2

)
+ cosh−1

(
(1− ω)−1/2

))
+A2

)
. (S42)

Note that to match the ln
(√
X2 + Z2

)
behaviour, the first-order correction in the outer solution must satisfy

x̂O1XX + x̂O1ZZ = −2π cos (φ∗)δ(0,0),

where δ(0,0) denotes the Dirac delta function (centered at the origin), and must vanish at the outer boundary.

Matching further requires A2 = cos (φ∗)
(
ln (2/c)− cosh−1

(
(1− ω)−1/2

))
. The inner boundary condition at

this order implies B2 = − cosh−1
(
(1− ω)−1/2

)
cos (φ∗)

(
ln (2/c)− cosh−1

(
(1− ω)−1/2

))
. By induction, we can

deduce the form of general Ai and Bi, getting A0 = 0, B0 = cos (φ∗) and for i ≥ 1

Ai = − cos (φ∗)
(
cosh−1

(
(1− ω)−1/2

)
− ln (2/c)

)i−1

Bi = − cosh−1
(
(1− ω)−1/2

)
Ai. (S43)
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The inner expansion thus reads

x̂I = cos (φ∗) +

∞∑
i=1

Aiµ+Bi

lni (1/a)
+O(a)

which using (S43) and the formula for the sum of an infinite geometric series gives

x̂I = cos (φ∗)

1 +
cosh−1

(
(1− ω)−1/2

)
− µ

ln (1/a)

∞∑
i=1

(
cosh−1

(
(1− ω)−1/2

)
− ln (2/c)

ln (1/a)

)i−1
+O(a) =

= cos (φ∗)

(
1 +

cosh−1
(
(1− ω)−1/2

)
− µ

ln (1/a) + ln (2/c)− cosh−1
(
(1− ω)−1/2

))+O(a).

Substituting µ from (S38) and expressing c in terms of ω, we arrive at (24).

S5.2.2 ŷ problem

The equation for ŷ becomes Laplace’s equation after transforming the X̄ coordinate according to X̄ =
√
ωW̄

(keeping Ȳ ) and we have the boundary condition ŷ = sin (φ∗) at the inner ellipse. We then must transform to
elliptical coordinates (ellipses now being oriented along the W̄ axis rather than Z̄ axis) as

Ȳ = c sinh(µ) sin(ν) W̄ = c cosh(µ) cos(ν) (S44)

where again c =
√
(1− ω)/ω is the (linear) eccentricity of the inner ellipse and µ1 = cosh−1

(
(1− ω)−1/2

)
denotes the (inner) elliptical boundary. The solutions to the resulting inner problems again read Ciµ+Di and
we again have

µ =
1

2
ln

(
1− 2q2(W̄ , Ȳ ) + 2

√
q22(W̄ , Ȳ )− q2(W̄ , Ȳ )

)
(S45)

where we now have

q2(W̄ , Ȳ ) =
−(W̄ 2 + Ȳ 2 − c2)−

√
(W̄ 2 + Ȳ 2 − c2)2 + 4c2Ȳ 2

2c2
.

In (X̄, Ȳ ) variables and expressed using ω, q2 reads (27). As before, we write the inner solutions in terms of
the outer variable and conclude that in order to match we must have C0 = 0 and inner boundary condition at
the leading order gives D0 = sin (φ∗). At the higher orders, we (analogous to the x̂ case) conclude

Ci = − sin (φ∗)
(
cosh−1

(
(1− ω)−1/2

)
− ln (2/c)

)i−1

Di = − cosh−1
(
(1− ω)−1/2

)
Ci (S46)

which leads to the inner expansion (26) for ŷ.

S5.3 Leading-order approximations to the strain fields for small beads

We get

x̂IX/Y =− cos (φ∗)

2 ln (1/a) + ln (4ω/(1− ω))− 2 cosh−1
(
(1− ω)−1/2

) 1

1− 2q + 2
√
q2 − q

(
−2 +

2q − 1√
q2 − q

)
1

a

∂q

∂X̄/Ȳ
+O(1) =

1

a

cos (φ∗)

2 ln (1/a) + ln (4ω/(1− ω))− 2 cosh−1
(
(1− ω)−1/2

) 1√
q2 − q

∂q

∂X̄/Ȳ
+O(1)

(S47)

ŷIX/Y =
1

a

sin (φ∗)

2 ln (1/a) + ln (4ω/(1− ω))− 2 cosh−1
(
(1− ω)−1/2

) 1√
q22 − q2

∂q2
∂X̄/Ȳ

+O(1) (S48)

where q(X̄, Ȳ ) and q2(X̄, Ȳ ) are given by (25) and (27). We have

∂q

∂X̄
= − ωX̄

1− ω

(
1 +

ωX̄2 + Ȳ 2 + (1− ω)√
(ωX̄2 + Ȳ 2 − (1− ω))2 + 4(1− ω)ωX̄2

)
,

∂q

∂Ȳ
= − Ȳ

1− ω

(
1 +

ωX̄2 + Ȳ 2 − (1− ω)√
(ωX̄2 + Ȳ 2 − (1− ω))2 + 4(1− ω)ωX̄2

)
,

∂q2
∂X̄

= − X̄

1− ω

(
1 +

X̄2 + ωȲ 2 − (1− ω)√
(X̄2 + ωȲ 2 − (1− ω))2 + 4(1− ω)ωȲ 2

)
,

∂q2
∂Ȳ

= − ωȲ

1− ω

(
1 +

X̄2 + ωȲ 2 + (1− ω)√
(X̄2 + ωȲ 2 − (1− ω))2 + 4(1− ω)ωȲ 2

)
.

(S49)
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S5.4 Calculating net force exerted on a small bead

Parameterizing the circle as (X̄, Ȳ ) = (cos (φ), sin (φ)), we get the unit normal vector N = (cos (φ), sin (φ))
(pointing into the material) in the undeformed configuration and we calculate the total force exerted on the
bead by the material as a line integral over the circle of dimensional radius aD̃ and thus

F̃ b =
πỸ b̃2c
R̃c

2π∫
0

(
F(ξ) +RbξF ′(ξ)x̂IX +O(R2

b) RbF(ξ)x̂IY +O(R2
b)

RbF(ξ)ŷIX +O(R2
b) F(ξ) +RbξF ′(ξ)ŷIY +O(R2

b)

)(
cos (φ)
sin (φ)

)
aD̃dφ =

πỸ b̃2caRbξF ′(ξ)

εc

2π∫
0

(
x̂IX ωx̂IY
ωŷIX ŷIY

)(
cos (φ)
sin (φ)

)
dφ+O(R2

b). (S50)

Notice that the leading-order contributions (i.e. O(1) in Rb) cancel out. We calculate the leading-order approx-
imation for the X− and Y−components of the net force using (S47)-(S48) as

F̃X
b =

cos(φ∗)πỸ b̃
2
cRbξF ′(ξ)

εc
(
2 ln (1/a) + ln (4ω/(1− ω))− 2 cosh−1

(
(1− ω)−1/2

)) 2π∫
0

1√
q2 − q

(
∂q

∂X̄
cos (φ) + ω

∂q

∂Ȳ
sin (φ)

)
dφ+O(a)

F̃Y
b =

sin(φ∗)πỸ b̃
2
cRbξF ′(ξ)

εc
(
2 ln (1/a) + ln (4ω/(1− ω))− 2 cosh−1

(
(1− ω)−1/2

)) 2π∫
0

1√
q22 − q2

(
ω
∂q2
∂X̄

cos (φ) +
∂q2
∂Ȳ

sin (φ)

)
dφ+O(a)

(S51)

S5.4.1 Evaluating the integrands at the bead

Evaluating (25) at the bead (X̄, Ȳ ) = (cos (φ), sin (φ)) and using sin2 (φ) = 1− cos2 (φ), we get

q(φ) =
−ω cos2 (φ)− sin2 (φ) + (1− ω)−

√
(ω cos2 (φ) + sin2 (φ)− (1− ω))2 + 4(1− ω)ω cos2 (φ)

2(1− ω)

=
(1− ω) cos2 (φ)− ω −

√
(ω − (1− ω) cos2 (φ))2 + 4(1− ω)ω cos2 (φ)

2(1− ω)
= − ω

1− ω

(S52)

and conclude
1√
q2 − q

=
1− ω√
ω
.

Analogously, it is easy to show that q2 = q at the bead and thus

1√
q22 − q2

=
1− ω√
ω

Similarly, using (S49), the same trigonometric identity and our knowledge on what the square root term in
(S52) simplifies into, we get at the bead

∂q

∂X̄
cos (φ) + ω

∂q

∂Ȳ
sin (φ) =

− ω

1− ω

cos2 (φ)

1 +
ω cos2 (φ) + sin2 (φ) + (1− ω)√

(ω cos2 (φ) + sin2 (φ)− (1− ω))2 + 4ω(1− ω) cos2 (φ)

+

sin2 (φ)

1 +
ω cos2 (φ) + sin2 (φ)− (1− ω)√

(ω cos2 (φ) + sin2 (φ)− (1− ω))2 + 4ω(1− ω) cos2 (φ)

 =

− ω

1− ω

{
1 +

cos2 (φ)(2− ω + (ω − 1) cos2 (φ)) + (1− cos2 (φ))(ω + (ω − 1) cos2 (φ))

ω + (1− ω) cos2 (φ)

}
= − 2ω

1− ω

and following the same steps also

ω
∂q2
∂X̄

cos (φ) +
∂q2
∂Ȳ

sin (φ) = − 2ω

1− ω
.
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Substituting back into (S51) we get

F̃ b = −(cos (φ∗), sin (φ∗))F̃
0
b +O(a), (S53)

where

F̃ 0
b =

2πRb/εc
√
ξF(ξ)F ′(ξ)

ln (1/a) + ln (2
√
ω/(1− ω))− cosh−1((1− ω)−

1
2 )
πỸ b̃2c . (S54)

Using the constitutive law (9) and simplifying, the leading-order dimensionless net force can be written as

F 0
b =

2πRb/εc
√
Fp (1 + Fp)

ln (2
√

Fp/a)− cosh−1(
√
1 + Fp)

=
2πRb/εc

√
Fp (1 + Fp)

ln (2
√

Fp/a)− ln (
√
1 + Fp +

√
Fp)

2πRb/εc
√
Fp (1 + Fp)

ln

(
2
√
Fp

a
(√

1 + Fp +
√
Fp

)) =
2πRb/εc

√
Fp (1 + Fp)

ln

2
(√

Fp(1 + Fp)−Fp

)
a


, (S55)

which gives (29)-(30).
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