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ABSTRACT: Arrays of cross-reactive sensors, combined with statistical or
machine learning analysis of their multivariate outputs, have enabled the
holistic analysis of complex samples in biomedicine, environmental science,
and consumer products. Comparisons are frequently made to the mammalian
nose or tongue and this perspective examines the role of sensing arrays in
analyzing food and beverages for quality, veracity, and safety. I focus on optical
sensor arrays as low-cost, easy-to-measure tools for use in the field, on the
factory floor, or even by the consumer. Novel materials and approaches are
highlighted and challenges in the research field are discussed, including sample
processing/handling and access to significant sample sets to train and test
arrays to tackle real issues in the industry. Finally, I examine whether the
comparison of sensing arrays to noses and tongues is helpful in an industry
defined by human taste.
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The food and beverage industries are a complex, multi-
trillion-dollar network of raw materials, semifinished, and

consumer products that spans hugely differing values from the
simplest daily staples up to the priciest Veblen goods. Within
this vast industry, sensing andmeasurement is crucial to monitor
materials safety (e.g., to check for spoilage or contamination), to
assess quality and integrity (if the material is what it claims to be
and if it is from where it claims to be from) and to lead product
design (taste, texture, appearance, longevity).
Typically, the need for metrology increases with increasing

product value (risk of fraud), increased material/product
heterogeneity (trying to “normalize” batches of a product), or
where human factors (consumer preference, nutritional value)
and legal ramifications (safety requirements, allergens des-
ignated or protected status) are considered.1 However, sensing
in food and drinks can be incredibly complex. Simpler measures
of color/optical density, pH, or mechanical properties are
routine. But to understand the hugely complex matrix of
chemistries contained in a food or beverage ingredient or
product that contribute to flavor or spoilage, much more
sophisticated methods are required.
Techniques such as mass spectrometry (MS) linked with

chromatography (gas, liquid, supercritical fluid driven) or
nuclear magnetic resonance spectroscopy (NMR) can be used
to directly analyze as many of the chemical species in a sample as
possible (“sensomics”), but given the large quantities of complex
spectrometric/spectroscopic data produced, the advent of easily
applied statistical and machine learning techniques (“chemo-
metrics”) has been crucial to make the most of the data.2

By way of example, Uhriń and co-workers have specialized in
the direct NMR spectroscopy and mass spectrometry measures
of Scotch whisky demonstrating methods for congener (flavor
molecule) elucidation,3,4 classification against flavor and
production method,5 and method development in high
resolution mass spectrometry to better analyze congeners and
better understand product appearance and stability.6

Untargeted liquid chromatography/mass spectrometry meth-
ods have been used to analyze off-flavors in coffee beans against
professional perception scores (here, the Specialty Coffee
Association cup scores). Peterson and co-workers were able to
use a machine learning model (orthogonal projection to latent
structures OPLS regression, vide inf ra) to identify four key
compounds (out of hundreds identified) that might negatively
impact coffee flavor and quantify these in roasted and unroasted
beans as a putative early indicator of quality.7

Other direct mass spectrometry methods such as matrix-
assisted laser desorption ionization (MALDI) have been
demonstrated in fingerprinting the authenticity and origin of
products, such as olive oil. Zambonin and co-workers measured
phospholipid profiles with MALDI mass spectrometry to
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analyze the presence of hazelnut oil in adulterated extra virgin
olive oil samples,8 and Kuo et al. used MALDI to measure
triacylglycerol fingerprints in a wide variety of edible oil mixtures
to classify and quantify adulterants.9

This is just a tiny sample of the work being done in this space,
but while such leaps in matching detailed molecular structure
and concentration information (molecular fingerprints) with
perception or veracity data with are hugely valuable, the barrier
to access the required instrumental methods is high. With
extensive set up and running costs and the need for highly
trained personnel, setting up these methods across production
sites or at the point-of-need can be challenging. So, the questions
arising are “can simpler, lower-cost methods provide high quality
chemical information on food and beverage samples?” and; “can
these approaches be applied at “point-of-need”, in goods-in, on
the factory floor, or at the point-of-sale, where there may only be
limited laboratory access or no laboratory at all?”

■ ADDRESSING SENSING CHALLENGES IN THE
FOOD AND BEVERAGE INDUSTRY

Two approaches have been taken by researchers to try to address
these questions. The first approach is the use of direct
(miniaturized/portable) spectroscopy with diagnostic molec-
ular detection potential. Optical approaches often have a lower
setup and running costs, and are easier to shrink into a hand-held
device. Examples include excitation emission spectroscopy,
Raman spectroscopy or Infrared spectroscopy (IR).10 In each
case, statistical or machine learning-enabled deconvolution of
the output spectra can be used to identify certain optically active
components within a sample or reference a sample more broadly
against a database for classification. The amount of chemical
“omic” information is lower than for MS-coupled methods but
still high, and the approach is typically very rapid (minutes or
seconds). There can still be a need for more expensive excitation
sources, cameras or detectors to get the most detailed
information, but rapid leaps in miniaturization are reducing
cost and making these approaches more popular in the QC
laboratory and even amenable to online or operando applications
(e.g., hyperspectral imaging built into a production line).11 The
ability to undertake remote or spatially offset (noninvasive)
testing can be a benefit, and suites of spectral analysis libraries
and toolboxes are becoming available. A detailed discussion of
the potential of direct portable optical testing can be found in
several recent books and reviews,12,13 and here we will limit our

discussion to its use as a transducer in the read out of the second
common approach, chemical sensing arrays.
This second approach, the focus of this Perspective, is the

cross-reactive chemical sensing array (Figure 1). A group or
array of different sensors are exposed to a sample, and each
sensor reacts with components of the sample to generate a
collective response.14 Samples are typically complex mixtures of
chemical compounds (e.g., a foodstuff or a beverage), and the
chemical reactivity can be one or any combination of adsorption
to a surface, a redox process, a specific (bio)molecular
interaction, a supramolecular interaction, and so on. The key
to this approach is that different parts of the array will react with
different components within the mixture (cross-reactivity), and
measuring each element of the array holistically generates a
sensing “fingerprint” for the mixture.

■ CROSS-REACTIVE SENSOR ARRAY
CONSTRUCTION, MATERIALS AND ANALYTICAL
OUTPUTS

The cross-reactive sensing approach has been applied widely across
(bio)analytical chemistry, with the individual sensors in the arrays
constructed from reactive small molecules,15 macrocyclic or polymeric
supramolecular systems,16,17 nanoscale materials,18 or engineered
biomacromolecules.19,20 To generate a response from the array to the
chemistry contained within the sample, a range of binding or bonding
interactions can be probed, for example, dispersion forces, hydrogen
bonding, charge, or hydrophobic/hydrophilic interactions. Patterns of
receptors (e.g., polymers or nanoparticles with a particular repeat or
surface unit) or preorganized receptors (e.g., cavitands) can increase
specificity for elements in the array to key families of molecules in the
sample.16 Chemical reactivity (redox chemistry, formation of dynamic
or stable dative or covalent bonds) can also be exploited, increasing
array response and diversity, although the increased irreversibility of
these reactions lend themselves best to a one-time-use sensor array.21

The readout of the array can be achieved using a wide range of
optoelectronic transduction methods depending on the sensors used,
including electrochemical voltammetry, amperometry or impedance; or
optical absorbance, luminescence or vibrational spectroscopy.1 The
output at each array element is combined into a multivariate pattern for
the sample, and many different samples can be measured with the same
array to generate many different patterns based on their chemical
composition and reactivity. The similarities or differences between
these patterns can then be interrogated using statistical or machine
learning tools, using the tools of chemometrics.22

The patterns derived from the sensors are largely analyzed with
computationally inexpensive linear transformation methods such as
Principal Component Analysis (PCA) to examine which elements in an

Figure 1.Overview of sensing arrays in food and beverage analysis. Sensing arrays offer distinct advantages in analyzing the sensomic profiles of food
and beverages in minimal format that can be included in packaging or used on the factory floor. Many different types of arrays with many different
outputs can be tailored to the application in hand and read out by a consumer or an operator monitoring a process. Sensors can be designed for quality
assurance (QA), safety and spoilage, or food fraud applications.
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array contribute to the similarities or differences between samples
observed (an unsupervised approach), or its close relation, Linear
Discriminant Analysis (LDA), optimized for classification with data
labels provided by the user (a supervised approach).22 Clustering
analyses (e.g., unsupervised hierarchical clustering analysis, HCA) have
also been widely applied and have the advantage of defining many levels
of structure or similarity in the data beyond simple nearest neighbor
analysis. Regression is also increasingly valued, and methods such as
partial least-squares (or projection to latent structures) regression
(PLS) and orthogonal projections to latent structures (OPLS) are
increasingly applied to spectral data outputs.23,24 With the rise of
increased computer power, and larger, more diverse data sets, there is
also a growing move to more capable but perhaps less transparent and
more easily overfitted, supervised machine learning methods including
support vector machines (SVM), random forests and artificial neural
nets (ANNs).25

Arguably the earliest examples and certainly the highest TRL
(technology readiness level) sensing arrays applied in the food and
beverage industry are cross-reactive electrochemical gas sensors as
“chemical noses”.26 These sensors are largely based around adsorption
of volatile species to arrays of chemiresistive materials, with various
chemical reactivities (acidic, basic, oxygen rich/poor) and filter layers
added on top. The measurement of the resistivity across each array
element comprises the sample fingerprint. These arrays originally made
use of metal oxide semiconductor materials, operating at high
temperatures (several hundred degrees centigrade), but more recently
arrays of modified carbonaceous materials such as carbon nanotubes
(CNTs) have become popular thanks to successful operation at or close
to room temperature (making them easier to build into portable
devices).27 Such sensors are best applied when there is a good set of
volatiles available from the food or beverage (to avoid the need to

volatilize the foodstuff or beverage via heating or other means). For
example, Swager and co-workers have classified cheeses and liquors,
among other foodstuffs/beverages, based on their volatile profiles, using
arrays of CNTs decorated with 20 “selector” molecules designed to
increase interactions between the CNTs and the sulfur compounds,
alcohols, carbonyls, alkanes, and aromatic compounds in the target
samples. They analyzed the array outputs with nearest neighbor analysis
(kNN) and random forests, with good success for cheese classification,
and moderate success for liquors and edible oils.28

The other common approach is to create an optode array. These
arrays are constructed from different, optically active materials, that
respond to the molecules in a sample with an optical wavelength shift
(change in color), or change in luminescent intensity (either steady-
state or lifetime changes).21 Chromophores can be modulated via
change of local environment (e.g., displacement from a supramolecular
host by an analyte molecule),16,29 or chemical reactivity between
analytes and the array.14,25 Examples include ligation of metal-
loporphyrins to create a change in absorbance/reflectance;30 the
reaction or borylated fluorophores with sugars to alter their
luminescence;31 the change of local polarity and charge around
environmentally responsive fluorophores such as coumarins, fluores-
cent polymers or fluorescent proteins to change their color and
intensity;32 or the change of the size, shape or local refractive index
around a plasmonic nanoparticle to change their plasmonic color.33−35

The sensor elements can be immobilized on a solid paper or glass
substrate or suspended in solution before addition of the sample
(typically in gas or liquid form) to generate the optical response in each
array element.

The responses generated can be measured across the array by eye if
the changes are clear and obvious enough, but more commonly, simple
cameras are used with red-green-blue (RGB) colorimetric analysis, or

Figure 2. A) RGB colorimetric responses of a 36-element reactive array, measured on a hand-held reader for various spirits after oxidation of their
headspace vapors. B) These patterns can be analyzed with PCA to identify factors such as Proof. Adapted with permission from Li & Suslick, ACS
Sensors. 2018, 3 (1), 121−127 Copyright 2018 American Chemical Society.40 C) Arrays of gold and aluminum nanoparticles on glass can be
multiplexed with orthogonal surface chemistries and nonoverlapping optical transmission spectra to create an array capable of discriminating spirits.
Adapted from Nanoscale 2019, 11 (32), 15216−15223 under a CC BY 3.0 DEED Unported license.33
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UV-visible-IR absorbance or luminescence spectroscopy, to measure
the output of each array element. The array format lends itself well to
high throughput read-out methods, such as wide-field and/or
hyperspectral imaging, or well-plate-style, serialized readout formats.36

The optical response of multiple luminescent sensor elements can be
highly multiplexed in a single location, further reducing the number of
array elements that need to be measured and the volume of sample
required (potentially down to a whole array in one few-μL well of a 384
well plate).25,37 The spectroscopic methods required enable the use of
portable spectroscopy via simple illumination sources and basic lenses
and gratings for spectroscopic analysis with a CCD or PMT
photodetector, or even cellphone cameras1,38

The analysis of the optode signals generated by the array can be
achieved with the chemometric tools described above, with either point
color (RGB)/wavelength changes analyzed with supervised or
unsupervised discriminant or clustering methods or a full spectral
analysis with partial least-squares methods. The “depth” of data versus
the number of different samples and groupings is worth considering
when choosing an analysis method, to ensure the method used is
suitable for the data acquired (and assumptions of the method are not
violated, or overfitting does not occur).39

A final consideration when sensor arrays and statistical/machine
learning are applied to food and beverages is how the array and analyte
are placed in contact with each other. Natural volatiles can be sampled,
but if the material is a liquid or solid, it may require dissolution,
concentration, or dilution. Liquids can contain the whole sample,
including dissolved volatiles, and often have higher concentrations of
chemical analytes than those of vapors. Vapor sample concentration is
entirely dependent on the relative vapor pressures of the analytes and
the sampled headspace. However, vapors do typically present a “matrix
free” sample, whereas liquid samples can contain a large background of
uninteresting solvent (e.g., water or alcohol) that dilutes and interferes
with analyte-sensor interactions. Additionally, liquids or vapors may
benefit from some kind of pretreatment to improve the sensing
response.40 For liquids in particular, (micro)fluidic delivery across a
surface enables many spatially separate sensor elements to continuously
respond to the sample at once, while minimizing the volume of analyte
required, and is becoming a popular approach, alongside microwells.41

■ OPTICAL SENSOR ARRAYS FOR CHALLENGES IN
FOOD AND BEVERAGES

Classification and Forgery Detection. Many sensor
arrays, combined with statistical learning, have been demon-
strated for distinguishing between brands, classes, or styles of a
particular food or beverage (which may or may not be
immediately obvious to the eye, nose, or tongue of the relatively
well-educated taster/consumer).
Spirits are a popular target, with many examples of arrays that

distinguish between whiskies, baijiu and other fermented and
distilled beverages.42 The array chemistry should interact with
molecules in the beverage under study to detect subtle
differences between brands or production styles. For example,
whisky is perhaps best distinguished via chemistry arising from
its wood aging (tannins, polyphenols, lactones), whereas baijiu
can be distinguished via the chemistry arising from the
fermentation method and grain used, prior to distillation (esters
and organic acids).
Li and Suslick demonstrated headspace analysis on various

spirits, including whisky, bourbon, and brandy. The volatile
alcohols and carbonyls in the headspace were passed over a
reactive array of 36 chromophore elements, with a partial
preoxidation step (Figure 2A,B). The elements were composed
of an array of pH, oxidation/reduction, and base/acid
responsive molecular complexes that change color in a
differential fashion when exposed to various common functional
groups. RGB chromatic shifts (before versus after) across the

array were collected on a hand-held reader and analyzed by
HCA and SVM to identify 14 spirits from around the world, with
the outputs able to distinguish alcoholic strength (proof) as well
as sample dilution by as little as 1%.40 Suslick has pioneered this
style of gas-sensing optical array and previously demonstrated
the breadth of the approach, discriminating coffees, beers and
many other foodstuffs.43,44

Using an alternative approach featuring an array of duplexed
plasmonic elements of orthogonally functionalized Au and Al
nanoparticles, Clark and co-workers have created a “plasmonic
tongue” (Figure 2C). Each plasmonic element generates an
LSPR response that is modified by the local dielectric
environment, and by coating the plasmonic elements with
different chemistries, differential interactions with a sample can
be achieved. This red or blue shifts the plasmon response, giving
cross-reactive responses from a measurement of the array
transmission spectra. The multiplexed nature of the array
increased the dimensionality, and discriminating power for age
and style, when tested against seven whiskies as well as vodka
and 40% ethanol solution.33

Baijiu samples have been discriminated using a variety of
different arrays based around reactive chromophore gener-
ation,45 aggregation, growth or etching of silver and gold
nanoparticles,45−47 luminescent response of lanthanide con-
taining metal organic frameworks,48 and the luminescence
quenching/enhancement of colloidal quantum dots. In each
case, the optical signals were analyzed with PCA, LDA, and
HCA and in one case a neural network to distinguish between 12
and 22 brands of baijiu. In several cases the underlying chemistry
of the sample impacting the array (e.g., caproic acid, butyric acid,
ethyl acetate etc.) was identified and studied in isolation at
relevant concentrations.45

The spirits described above are often easily distinguished by
eye/smell/taste, so in many of these examples, and many more
besides,49 the need for the sensor array is justified by the need to
detect forgery or lower quality products from more expensive or
exclusive examples that might be mislabeled.42 However, in such
cases, if the chemistry sampled by the array is not specific
enough to the principal differences between the different classes
of product (i.e. the chemical differences between brands, makers,
styles, or even batches, is greater than the difference between
high- or low-quality products), then the sheer scale of the
pattern library required to identify all possible products may
cause overlaps between “good” and “bad” products.
Furthermore, in many works arrays are trained and tested

(clustered or discriminated) against the individual groups or
production styles rather than examples of good or bad products,
limiting the proof of utility for forgery detection. While “quick
and simple” antiforgery applications of sensing arrays in food
and beverages are attractive, they are only viable where the need
to detect forgery is justifiable and practicable: where there are
expensive (Veblen) goods and an extant forgery/black market;
high batch to batch consistency of chemistry or clear chemical
differences between real and fake goods; and opportunities to
sample products on import/export/sale/consumption to
actually find the forgeries. Thus, this is not the only area
where sensor array research should focus.
Food and Beverage Quality Assurance. There are many

foodstuff and beverage production methods where the
chemistry of the sample (and hence the taste and smell) is
altered via ingredients choice and product processing, and
sensing arrays provide a method for rapidly assessing the quality
of input materials that may impact on the downstream process
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Figure 3. A)Grouped responses to three classes of tea (30 examples) by 14 different proteinaceous barrels (B) with a displaced indicator dye. C) SVM
analysis of the fluorescence changes across the array could be used to successfully identify the teas. Adapted Nat Commun 2023, 14 (1), 383 under a
CC BY 4.0 license.19 D) Large chromatic changes across RGB space by gold nanoparticles in response to off flavors in maple sap and syrup samples
enable an array of responses from a single sensor element. The simplicity of the test enables this to be carried out at the point-of-need in rural Canada.
Reproduced from Anal. Methods 2020, 12 (19), 2460−2468 with permission from the Royal Society of Chemistry.57 E) Structural color created by
arrays of functionalized bacteriophages is used tomonitor the volatiles created by ripening bananas over 15 days. RGB extraction andHCA analysis can
be used to follow the process. Adapted from Kim et al. Sensors and Actuators B 2022, 362, 131763 copyright Elsevier (2022).58
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or the success of processes.2 This need is greatest where the
processes are lengthy, expensive, or otherwise hard to monitor;
where they cause clear chemical changes in the sample; and
rapid go/no-go decisions might save time, effort, and money.
Areas where assurance might be useful (alongside anticounter-
feiting, vide supra), include rapidly assessing the nutrient content
of raw ingredients (vitamins, minerals, antioxidants etc.);50

monitoring batch to batch variation in production inside sealed
containers (e.g., inside a cask or barrel); or assuring a product
has met legal minima, such as minimum aging requirements.51

Returning to the example of whisk(e)y, this is a product where
the major processing step is long aging in a closed wooden cask
for a legally mandated minimum period (3 years in the case of
Scotch Whisky, and often much longer) before blending (or
vatting) of multiple casks together into a batch for retail. As
different casks age at different rates, depending on the wood,
cask condition, and storage conditions, they impart different
flavor compounds to the spirit. To monitor how the different
casks are aging, every cask could be taste tested, but over
hundreds of casks in a warehouse or rickhouse, this takes a long
time. It is also often impractical or even unsafe to have a local GC
or similar tool. Sensing arrays can give a quick holistic
impression of a cask based on the reducing chemical content
in the aging whisky that stems from the wood contact, including
organic acids, polyphenols, furfurals etc. We recently demon-
strated a multidimensional sensor that consists of reacting gold
or silver salts with different whiskies to create plasmonic
nanoparticles as fingerprints for the whisky based on the color of

the nanoparticles formed and the rate of their formation,
collectively analyzed by HCA. Analysis of a semifinished
product, a single cask sampled over time, allowed for matching
of the developing chemistry with the sensor array output and
development of the sensor as a measure of cask age.52

The quantity of antioxidant compounds, particularly
flavonoids, tannins, and other phenolic substances, are also
important in assessing the quality green and black teas against
grading scales, as well as their putative health benefits. For
example Huo et al. used a version of Suslick’s color changing
arrays to grade and identify geographical origin of nine green
teas.53 Similarly, the high antioxidant content of a luxury tea
(Tieguanyin) was leveraged in an array by Yang et al. to measure
different polyphenols in the tea with a peroxidase mimicking
metal organic particles and a TMB color changing output, and
discriminate genuine from adulterated samples.54

Many other examples of sensing teas exist using a versatile set
of sensing array construction methods. Ni et al. recently
leveraged the reactivity of boronates with catechols to create an
indicator displacement assay consisting of combinations of two
indicator fluorophores and three multidentate binder/quench-
ers for various plant derived polyphenols in tea. Various
statistical or ML techniques were applied to the data with LDA
found to be the most successful in discriminating the 16 teas
under test.55 Bunz and co-workers used a library of conjugated
polymers, some quenched by macrocyclic and cucurbit[8]uril to
measure amino acids or xanthines in teas. Molecules such as
caffeine and theobromine interacted with the polymers and

Figure 4. A) Pesticides can be detected and classified by preprocessing samples with a sensitive acetylcholine esterase (AChE) before exposing the
products to an array of five compounds that react calorimetrically to any H2O2 or thiocholine produced by the enzyme. Differential actions of the
enzyme and the array are analyzed by HCA to classify different pesticides in apple juice and tea. Adapted with permission from Anal. Chem. 2015, 87
(10), 5395−5400, Copyright 2015 American Chemical Society.62 B) Paper strips containing an array of indicator dyes within sealed meat and fish
packaging react to volatile compounds to signal spoilage. Analysis of the RGB images by PCA allowed for classification into “safe”, “warning”, and
“hazard” groups. Adapted from Foods 2020, 9 (5), 684 under a CC BY license.66 C)MOF-based colorimetric sensors for spoilage also react to emitted
volatile compounds, and kNN analysis of image color can be used tomonitor freshness of milk andmeat. Adapted fromAdv.Mater. Interfaces 2023, 10
(28), 202300329 under a CC BY 4.0 DEED license.67 D) An alternative transduction approach tomeasuring array-sample interactions is to use surface
enhanced Raman spectroscopy on an array of surface modified gold nanopillars. The surface modification differentially alters the interaction between
surface and target, and therefore what Raman signals are observed before analysis with PCA and LDA. Adapted from Nat Commun 2020, 11 (1), 207
under a CC BY 4.0 license.68
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macrocycle to trigger a differential turn on fluorescent response
that could separate the 22 different teas.56 Finally, Woolfson and
co-workers utilized an array of 14 different coiled coil peptide
barrels and an environmentally responsive dye (1,6-diphenyl-
1,3,5-hexatriene) to create differential fluorescent responses for
30 teas in three classes (earl gray vs black tea vs green tea) via a
support vector classifier (Figure 3A-C).19 While these later
examples focus mostly on discriminating green from black tea,
oolong tea, or other obviously different teas, they do highlight
how versatile chemical approaches, particularly using host−
guest or dynamic covalent interactions can be combined and
applied to create sensing arrays for the same target chemistries.
Maple syrup is an expensive product thanks to the remoteness

of the raw materials (in the forests of North America) and the
long processing (boiling) step to concentrate tree sap into the
final sugary syrup. Sap quality is hugely important because any
contaminants or “off-flavors” in the raw sap are unavoidably
concentrated into the final syrup, lowering the quality or spoiling
the batch. Compounding the difficulties, sap is harvested and
processed in large volumes far from laboratories, so a point-of-
need testing solution is useful for assessing sap quality before
batching and boiling. Masson and co-workers used a cross-
reactive gold-nanoparticle aggregation assay to assess the off-
note content of sap and finished syrup. Crucially the simple assay
has a multicolor read out (Figure 3D, so could be considered a
single element array) and can be performed at the point of need
in the sugar shacks in rural Quebec. The sample amino acid
content was identified as the key consideration for syrup quality
and could be measured by the red shifting of gold nanoparticles
mixed with sap, using an end-point colorimetric index −
COLORI, combined with a mixed effects statistical model to
predict likely syrup quality, based on assay data from over 29,000
sap and syrup samples.57,59

A final example of quality assurance where arrays have been
applied is in monitoring fruit ripening. Many volatiles are
released during fruit ripening (including ethylene, 2-pentanone,
and 3-methyl-1-butanol) and need to be monitored in transit to
avoid spoilage. Oh and colleagues have pioneered colorimetric
sensing arrays created from bacterial phages bearing distinct
surface peptides, that self-assemble into microscale architectures
and display structural color.20 The interaction between different
phage-based materials and various gases causes material swelling
and changes the observed iridescence.60 Five differently
functionalized phage materials were exposed to fruit ripening
gases and ripening bananas, with their color changes monitored
by camera and processed to RGB shifts, to successfully follow
the ripening process via HCA analysis (Figure 3E).58

Food and Beverage Safety. A final exemplar area where
sensing arrays can be usefully applied is food and beverage
consumer safety. Arrays have been used to detect toxic
contaminants such as pesticide residues or heavy metals (Figure
4A),61,62 illegally introduced dopants such as melamine in infant
milk,63 or food-borne pathogens.64

Bacterial growth and spoilage of food items such as meat, fish,
and dairy poses a high risk to consumers.Markers of spoilage can
include biogenic amines such as spermine, organic acids, or
thiols. To detect biogenic amines, arrays comprising metal
complexes that change their UV-visible spectra have been shown
to be effective. Singh et al. built a liquid array and a portable
microplate reader that could detect spermine and tryptamine
contamination in meat and cheese, although sample preparation
was laborious.65 In a similar fashion Hormozi-Nezhad and co-
workers built a liquid array based on eight surface modified Ag

and Au NPs that aggregated and changed their plasmonic color
in the presence of biogenic amines in extracted meat samples
and would be similarly readable with a portable spectrometer.34

Unpowered, solid-state optical arrays that can be read with a
camera or by eye offer a huge advantage. They can be
incorporated within packaging as externally readable sensors
to indicate if the contents have spoiled. Arrays of reactive color-
changing ink spots responsive to pH (volatile organic acids and
amines) and thiols have been exploited by Magnaghi et al. for
defining “safe” “warning” or “hazard” categorizations to meat
and fish, that had been left at room temperature, from within the
packet (Figure 4B). RGB analysis on smartphone camera images
coupled with PCA could warn of spoilage, although these
categorizations were not externally defined by other gold
standard testing or microbiology.66 Heinke and co-workers
developed an array of thin metal organic framework (MOF)
films that formed Fabry-Peŕot cavities when oversputtered with
metal (Figure 4C). The porous cavity filling between metal
layers means gases entering the MOF material change the
observed color of the cavity, allowing for colorimetric gas
sensing based on the gases present and their interaction with the
varied MOF material. Read out was possible with a smartphone
camera, RGB analysis and kNN clustering, and the devices were
used to measure the spoilage of milk and meat samples inside
containers.67

■ THE FUTURE OF SENSOR ARRAYS FOR FOOD AND
BEVERAGES?

In the selection of examples above, I have tried to illustrate the
possibilities that chemical sensing arrays, combined with
statistical or machine learning can offer sensing in the food
and beverage industry, tackling challenges in quality assurance,
production, and safety. Newmaterials and approaches to sensing
in liquids and gases offer a wealth of cross-reactive or targeted
arrays, and a problem-driven approach is key to making useful
progress for the industry.
Arrays combined with hand-held/portable electronics and

optics are far more suited to point of need testing than the gold-
standard omic techniques such as LC, GC, MS and NMR.
Although arrays cannot deliver the same untargeted molecular
precision as these methods, they can be easily tuned for the
samples if the underlying chemical content is taken into
consideration when designing and constructing the sensing
elements. A move to embracing optical arrays allows for simple
analysis using hand-held devices, including smartphones, and
the computational power required to collect and analyze array
data against a pretrained model or a library of preclassified
samples is well within the capabilities of such devices for more
simple linear methods such as LDA. Even if more computa-
tionally expensive image/video analysis is required or the data
load is very high (many samples or time points), calculations can
be performed via remote data services.
A current challenge is that many arrays, from the original “e-

noses” to the latest plasmonic sensor arrays, rely on a differential
adsorption or an increase in local molecular mass at each array
element to generate the signals. This can lead to relatively low
“orthogonality” in the data generated, limiting the discrim-
inatory power of the array as the number of different samples
increases and the similarity between them increases. Chemically
reactive arrays that have diverse responses to different chemical
moieties are a counter example, but are inherently “one-time”
use, which can be a limitation in certain circumstances.
Fluorophores that respond in color and intensity to different
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charge, solvation, and bonding environments can also increase
orthogonality, but weaker binding interactions require higher
concentrations of target to generate an effect.
Newmaterials being used to construct sensing arrays allow for

new modes of operation that may add orthogonality to the array
outputs. Steady state luminescence has been thoroughly
exploited, but lower cost integrated single photon avalanche
detector (SPAD) arrays have the potential to make lumines-
cence lifetime imaging more easily available, multiplying the
outputs of suitably designed luminescent array that varies in
intensity, emission color, and lifetime(s). Established plasmonic
materials (e.g., gold nanoparticles) and newer Raman-active 2D
materials (e.g., MXenes) open up the potential for surface
enhanced Raman arrays where surface chemistry interacts with
molecular targets to not only give a Raman spectrum of the
target but alter the enhanced spectrum of the surface coating,
giving rise to a highly multidimensional output from the array
with potential for “fingerprinting” as well as a degree of direct
detection via enhancements in key Raman regions.68

Array stability, whether the shelf life of a one-time use array or
long-term regenerability of a reusable array, is also a challenge.
Library collection and statistical training is only valid if the array
and its outputs are reproducible over time, and so simple
construction and built-in standardization (either unchanging
elements, measurement of standards, or pre/post exposure
measurements) are useful to ensure usable data is collected. This
is particularly relevant in the food and beverage industries, where
in-line testing is attractive for many processes, so arrays will have
to remain useable after extended periods in potentially harsh
environments without degrading or fouling. Much can be
learned from the application of arrays in medical diagnostics,69

however the number of assays required is greater and budgets
are typically tighter in food production, so cost and reusability is
a major consideration.
To better train arrays for current problems or challenges in the

industry, access to relevant and ideally large and varied sample
sets is key. This is particularly true for raw ingredients or
semifinished products, or spoiled or otherwise contaminated
products that would be hard to collect or mimic/spike without
stakeholder input. Such samples will enable researchers to go
beyond the simple classification of finished consumer products
bought in the local store, and begin to tackle more complex
challenges, as exemplified well by Masson’s work with the maple
syrup industry in Quebec.59

Given the analogy between chemical sensor arrays with
machine learning, and the mammalian olfaction system perhaps
the most exciting and challenging application in food and
beverages would be to generate sensors that can truly mimic
human smell and taste.70 Human noses do not operate like a GC
− we simply cannot distinguish that many different but similar
compounds, and many of the compounds detected are not
necessarily the compounds a human would use to “taste” or
distinguish a food product or beverage. By relying on cross-
reactivity, identifying key families or members of families of
compounds, and linking these to common descriptors, we can
holistically sample and distinguish complex mixtures just as a
sensing array can. So can we (and should we) try to align the
natural and the artificial? Recent work by Fan and co-workers
demonstrates a massively increased number of cross-reactive
elements that can be electrochemically surveyed on a chip from
tens to hundreds or even thousands. Combining this this with a
neural network and computer vision they created their version of
a “robot dog”, capable of sniffing out different foodstuffs and

detecting aging fruit, taking this biomimetic approach to a new
extreme.71

A sensing array that is well aligned to human tastes and
preferences could be invaluable in taste testing new products,
aligning the taste of products with the particular taste of a
distinct population, and measuring the consistency of the flavor
of a batch produced product when then rawmaterials are subject
to change. Many of these measures are currently achieved by
human tasting panels or skilled individuals (master blenders at a
distillery, for example), and there is a degree of reticence inmany
parts of the industry that these could or should ever be replaced.
And perhaps they cannot; after all, perception of food and drink
is so subjective there is always the need for the human element.
However, a versatile technology that is well aligned to taste and
smell, and can be tailored to the product under test, can make
taster’s lives easier. It could enable optimization and
parallelization, particularly when working with very strong
flavors, semifinished products (that do not yet taste “good”), or
when working with potential toxins where humans cannot
operate. It is in this space that I propose sensing arrays and
machine learning techniques will really impact industry in the
future.
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